Genetic and Clinical Spectrum of Limb–Girdle Muscular Dystrophies in Western Sicily
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients Population
2.2. Molecular Analysis
2.3. Statistical Analysis
3. Results
3.1. Patients’ Demographic and Clinical Features
3.2. Genetic Findings and Genotype–Phenotype Correlations
3.3. Comparison Among Genotypes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mercuri, E.; Muntoni, F. Muscular Dystrophies. Lancet 2013, 381, 845–860. [Google Scholar] [CrossRef]
- Straub, V.; Murphy, A.; Udd, B. 229th ENMC international workshop: Limb girdle muscular dystrophies—Nomenclature and reformed classification Naarden, the Netherlands, 17–19 March 2017. Neuromuscul. Disord. 2018, 28, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.P.; Straub, V. The Classification, Natural History and Treatment of the Limb Girdle Muscular Dystrophies. J. Neuromuscul. Dis. 2015, 2, S7–S19. [Google Scholar] [CrossRef] [PubMed]
- Angelini, C.; Giaretta, L.; Marozzo, R. An update on diagnostic options and considerations in limb-girdle dystrophies. Expert Rev. Neurother. 2018, 18, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswami, P.; Weiss, M.; Selcen, D.; David, W.; Raynor, E.; Carter, G.; Wicklund, M.; Barohn, R.J.; Ensrud, E.; Griggs, R.C.; et al. Evidence-based guideline summary: Diagnosis and treatment of limb-girdle and distal dystrophies: Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology 2014, 83, 1453–1463. [Google Scholar]
- Walton, J.N.; Nattrass, F.J. On the classification, natural history and treatment of the myopathies. Brain 1954, 77, 169–231. [Google Scholar] [CrossRef]
- Nallamilli, B.R.R.; Chakravorty, S.; Kesari, A.; Tanner, A.; Ankala, A.; Schneider, T.; da Silva, C.; Beadling, R.; Alexander, J.J.; Askree, S.H.; et al. Genetic landscape and novel disease mechanisms from a large LGMD cohort of 4656 patients. Ann. Clin. Transl. Neurol. 2018, 5, 1574–1587. [Google Scholar] [CrossRef]
- Chen, L.; Tang, F.; Gao, H.; Zhang, X.; Li, X.; Xiao, D. CAPN3: A muscle-specific calpain with an important role in the pathogenesis of diseases (Review). Int. J. Mol. Med. 2021, 48, 203. [Google Scholar] [CrossRef]
- Bansal, D.; Miyake, K.; Vogel, S.S.; Groh, S.; Chen, C.C.; Williamson, R.; McNeil, P.L.; Campbell, K.P. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 2003, 423, 168–172. [Google Scholar] [CrossRef]
- Zhang, X.; Vuolteenaho, R.; Tryggvason, K. Structure of the human laminin α2-chain gene (LAMA2), which is affected in congenital muscular dystrophy. J. Biol. Chem. 1996, 271, 27664–27669. [Google Scholar] [CrossRef]
- Bolduc, V.; Marlow, G.; Boycott, K.M.; Saleki, K.; Inoue, H.; Kroon, J.; Itakura, M.; Robitaille, Y.; Parent, L.; Baas, F.; et al. Recessive Mutations in the Putative Calcium-Activated Chloride Channel Anoctamin 5 Cause Proximal LGMD2L and Distal MMD3 Muscular Dystrophies. Am. J. Hum. Genet. 2010, 86, 213–221. [Google Scholar] [CrossRef]
- Brockington, M.; Yuva, Y.; Prandini, P.; Brown, S.C.; Torelli, S.; Benson, M.A.; Herrmann, R.; Anderson, L.V.; Bashir, R.; Burgunder, J.M.; et al. Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 21 as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum. Mol. Genet. 2001, 10, 2851–2859. [Google Scholar] [CrossRef]
- Savarese, M.; Sarparanta, J.; Vihola, A.; Udd, B.; Hackman, P. Increasing Role of Titin Mutations in Neuromuscular Disorders. J. Neuromuscul. Dis. 2016, 3, 293–308. [Google Scholar] [CrossRef]
- Nigro, V.; Savarese, M. Genetic basis of limb-girdle muscular dystrophies: The 2014 update. Acta Myol. 2014, 33, 1–12. [Google Scholar]
- Liu, W.; Pajusalu, S.; Lake, N.J.; Zhou, G.; Ioannidis, N.; Mittal, P.; Johnson, N.E.; Weihl, C.C.; Williams, B.A.; Albrecht, D.E.; et al. Estimating prevalence for limb-girdle muscular dystrophy based on public sequencing databases. Genet. Med. 2019, 21, 2512–2520. [Google Scholar] [CrossRef]
- Magri, F.; Nigro, V.; Angelini, C.; Mongini, T.; Mora, M.; Moroni, I.; Toscano, A.; D’ANgelo, M.G.; Tomelleri, G.; Siciliano, G.; et al. The italian limb girdle muscular dystrophy registry: Relative frequency, clinical features, and differential diagnosis. Muscle Nerve 2017, 55, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, E.; Brockington, M.; Straub, V.; Quijano-Roy, S.; Yuva, Y.; Herrmann, R.; Brown, S.C.; Torelli, S.; Dubowitz, V.; Blake, D.J.; et al. Phenotypic spectrum associated with mutations in the fukutin-related protein gene. Ann. Neurol. 2003, 53, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Magri, F.; Del Bo, R.; D’Angelo, M.G.; Sciacco, M.; Gandossini, S.; Govoni, A.; Napoli, L.; Ciscato, P.; Fortunato, F.; Brighina, E.; et al. Frequency and characterisation of anoctamin 5 mutations in a cohort of Italian limb-girdle muscular dystrophy patients. Neuromuscul. Disord. 2012, 22, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Hicks, D.; Sarkozy, A.; Muelas, N.; Koehler, K.; Huebner, A.; Hudson, G.; Chinnery, P.F.; Barresi, R.; Eagle, M.; Polvikoski, T.; et al. A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy. Brain 2011, 134, 171–182. [Google Scholar] [CrossRef]
- Cardy, C.M.; Potter, T. The predictive value of creatine kinase, EMG and MRI in diagnosing muscle disease. Rheumatology 2007, 46, 1617–1618. [Google Scholar] [CrossRef]
- Constantinides, V.C.; Papahatzaki, M.M.; Papadimas, G.K.; Karandreas, N.; Zambelis, T.; Kokotis, P.; Manda, P. Diagnostic accuracy of muscle biopsy and electromyography in 123 patients with neuromuscular disorders. Vivo 2018, 32, 1647–1652. [Google Scholar] [CrossRef]
- Fardeau, M.; Eymard, B.; Mignard, C.; Tomé, F.M.S.; Richard, I.; Beckmann, J.S. Chromosome 15-linked limb-girdle muscular dystrophy: Clinical phenotypes in Reunion Island and French metropolitan communities. Neuromuscul. Disord. 1996, 6, 447–453. [Google Scholar] [CrossRef]
- Fardeau, M.; Hillaire, D.; Mignard, C.; Feingold, N.; Feingold, J.; Mignard, D.; De Ubeda, B.; Collin, H.; Tomé, F.M.S.; Richard, I.; et al. Juvenile limb-girdle muscular dystrophy Clinical, histopathological and genetic data from a small community living in the Reunion Island. Brain 1996, 119, 295–308. [Google Scholar] [CrossRef]
- Kimura, J. Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Krenn, M.; Tomschik, M.; Wagner, M.; Zulehner, G.; Weng, R.; Rath, J.; Klotz, S.; Gelpi, E.; Bsteh, G.; Keritam, O.; et al. Clinico-genetic spectrum of limb-girdle muscular weakness in Austria: A multicentre cohort study. Eur. J. Neurol. 2022, 29, 1815–1824. [Google Scholar] [CrossRef]
- Lorenzoni, P.J.; Kay, C.S.K.; Ducci, R.D.P.; Fustes, O.J.H.; do Vale Pascoal Rodrigues, P.R.; Hrysay, N.M.C.; Arndt, R.C.; Werneck, L.C.; Scola, R.H. Single-centre experience with autosomal recessive limb-girdle muscular dystrophy: Case series and literature review. Arq. Neuro-Psiquiatr. 2023, 81, 922–933. [Google Scholar] [CrossRef] [PubMed]
- Lostal, W.; Urtizberea, J.A.; Richard, I.; Alonso-Jiménez, A.; Carlier, R.Y.; Carson, V.; Diaz-Manera, J.; Eymard, B.; Fardeau, M.; Gourlay, M.L.; et al. 233rd ENMC International Workshop:: Clinical Trial Readiness for Calpainopathies, Naarden, The Netherlands, 15–17 September 2017. Neuromuscul. Disord. 2018, 28, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.; Bladen, C.L.; Mayhew, A.; James, M.; Bettinson, K.; Moore, U.; Smith, F.E.; Rufibach, L.; Cnaan, A.; Bharucha-Goebel, D.X.; et al. The clinical outcome study for dysferlinopathy an international multicenter study. Neurol. Genet. 2016, 2, e89. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.; Bassez, G.; Bernard, R.; Krahn, M.; Labelle, V.; Figarella-Branger, D.; Pouget, J.; Hammouda, E.H.; Béroud, C.; Urtizberea, A.; et al. Dysferlin mutations in LGMD2B, Miyoshi myopathy, and atypical dysferlinopathies. Hum. Mutat. 2005, 26, 165. [Google Scholar] [CrossRef]
- Ivanova, A.; Smirnikhina, S.; Lavrov, A. Dysferlinopathies: Clinical and genetic variability. Clin. Genet. 2022, 102, 465–473. [Google Scholar] [CrossRef]
- Geranmayeh, F.; Clement, E.; Feng, L.H.; Sewry, C.; Pagan, J.; Mein, R.; Abbs, S.; Brueton, L.; Childs, A.-M.; Jungbluth, H.; et al. Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations. Neuromuscul. Disord. 2010, 20, 241–250. [Google Scholar] [CrossRef]
- Quijano-Roy, S.; Haberlova, J.; Castiglioni, C.; Vissing, J.; Munell, F.; Rivier, F.; Stojkovic, T.; Malfatti, E.; de la Banda, M.G.G.; Tasca, G.; et al. Diagnostic interest of whole-body MRI in early- and late-onset LAMA2 muscular dystrophies: A large international cohort. J. Neurol. 2022, 269, 2414–2429. [Google Scholar] [CrossRef]
- Murphy, L.B.; Schreiber-Katz, O.; Rafferty, K.; Robertson, A.; Topf, A.; Willis, T.A.; Heidemann, M.; Thiele, S.; Bindoff, L.; Laurent, J.; et al. Global FKRP Registry: Observations in more than 300 patients with Limb Girdle Muscular Dystrophy R9. Ann. Clin. Transl. Neurol. 2020, 7, 757–766. [Google Scholar] [CrossRef]
- Savarese, M.; Vihola, A.; Oates, E.C.; Barresi, R.; Fiorillo, C.; Tasca, G.; Jokela, M.; Sarkozy, A.; Luo, S.; Díaz-Manera, J.; et al. Genotype–phenotype correlations in recessive titinopathies. Genet. Med. 2020, 22, 2029–2040. [Google Scholar] [CrossRef]
- Perrin, A.; Juntas Morales, R.; Rivier, F.; Cances, C.; Walther-Louvier, U.; Van Goethem, C.; Thèze, C.; Lacourt, D.; Pégeot, H.; Zenagui, R.; et al. The importance of an integrated genotype-phenotype strategy to unravel the molecular bases of titinopathies. Neuromuscul. Disord. 2020, 30, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.S.; Coimbra-Neto, A.R.; Souza, P.V.S.; Winckler, P.B.; Gonçalves, M.V.M.; Cavalcanti, E.B.U.; Carvalho, A.A.; Sobreira, C.F.; Camelo, C.G.; Mendonça, R.D.; et al. Clinical and molecular findings in a cohort of ANO5-related myopathy. Ann. Clin. Transl. Neurol. 2019, 6, 1225–1238. [Google Scholar] [CrossRef] [PubMed]
- Redpath, G.M.I.; Woolger, N.; Piper, A.K.; Lemckert, F.A.; Lek, A.; Greer, P.A.; North, K.N.; Cooper, S.T.; Martin, T.F.J. Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair. Mol. Biol. Cell 2014, 25, 3037–3048. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Izawa, T.; Kuwamura, M.; Yamate, J. Dysferlin and animal models for dysferlinopathy. J. Toxicol. Pathol. 2012, 25, 135–147. [Google Scholar] [CrossRef]
- Gorgoglione, D.; Sabbatini, D.; Riguzzi, P.; Capece, G.; Pane, M.; Servidei, S.; Briganti, M.; Sancricca, C.; Bruschi, F.; Ardissone, A.; et al. Natural history of Becker muscular dystrophy: DMD gene mutations predict clinical severity. Brain 2025, 148, 1695–1706. [Google Scholar] [CrossRef]
- Sinagra, G.; Dal Ferro, M.; Gigli, M. The heart of dystrophinopathies. Eur. J. Heart Fail. 2021, 23, 1287–1289. [Google Scholar] [CrossRef]
- Ghaoui, R.; Cooper, S.T.; Lek, M.; Jones, K.; Corbett, A.; Reddel, S.W.; Needham, M.; Liang, C.; Waddell, L.B.; Nicholson, G.; et al. Use of whole-exome sequencing for diagnosis of limb-girdle muscular dystrophy: Outcomes and lessons learned. J. Am. Med. Assoc. Neurol. 2015, 72, 1424–1432. [Google Scholar] [CrossRef]
Clinical Variable | Total (N = 28) |
---|---|
Sex, M/F | 16/12 |
Age, median (IQR) | 56.6 (47.2–60.5) |
Age at onset in years, mean (SD) | 25.6 (17.7) |
Disease duration in years, mean (SD) | 25.1 (18.1) |
Level of CK (U/L), median (IQR) | 2000 (521.5–2649) |
Muscle biopsy with signs of myopathy, n (%) | 11 (39.2%) |
Myopathic EMG, n (%) | 13 (46.4%) |
Muscle RMN, n (%) | 1 (3.6%) |
Clinical manifestation | |
Cramps, n (%) | 6 (21.4%) |
Myalgia, n (%) | 7 (25%) |
Asymmetric weakness, n (%) | 6 (21.4%) |
Shoulder weakness, n (%) | 21 (75%) |
Pelvic weakness, n (%) | 20 (71.4%) |
Anterior leg weakness, n (%) | 18 (64.2%) |
Posterior leg weakness, n (%) | 19 (67.8%) |
Hand weakness, n (%) | 8 (28.6%) |
Scapular atrophy, n (%) | 18 (64.2%) |
Shoulder atrophy, n (%) | 20 (71.4%) |
Scapular winging, n (%) | 7 (25%) |
Pectoral atrophy, n (%) | 2 (7.1%) |
Hip atrophy, n (%) | 19 (67.8%) |
Thigh atrophy, n (%) | 14 (50%) |
Leg atrophy, n (%) | 10 (35.7%) |
Calf hypertrophy, n (%) | 5 (17.8%) |
Lordosis, n (%) | 6 (21.4%) |
Scoliosis, n (%) | 3 (10.7%) |
Joint/tendon contractures, n (%) | 10 (35.7%) |
Gowers maneuver, n (%) | 2 (7.1%) |
Myopathic gait, n (%) | 15 (53.6%) |
Wheelchair dependency, n (%) | 10 (35.7%) |
Cardiac involvement, n (%) | 5 (17.8%) |
Respiratory involvement, n (%) | 10 (35.7%) |
Clinical Variable | CAPN3 (n = 14) | DYSF (n = 5) | LAMA2 (n = 3) | ANO5 (n = 2) | FKTN (n = 2) | TTN (n = 2) |
---|---|---|---|---|---|---|
Sex, M/F | 9/5 | 2/3 | 1/2 | 1/1 | 2/0 | 1/1 |
Age, mean (SD) | 47.5 (17.4) | 55.6 (11.1) | 63.3 (15.6) | 55 (1.4) | 45.5 (14.8) | 46 (35.3) |
Age at onset in years, mean (SD) | 20.5 (13.5) | 27.5 (5.9) | 19 (23.8) | 48.5 (2.1) | 32.5 (3.5) | 35 (48.1) |
Disease duration in years, mean (SD) | 26.9 (17.0) | 28.2 (3.5) | 44.3 (27.7) | 6.5 (0.7) | 13 (11.3) | 11 (12.7) |
Level of CK (U/L), mean (SD) | 1907.8 (2076.5) | 4000 (1414.2) | 382.6 (352.1) | 2649 (496.4) | 2168 | 751 |
Muscle biopsy with signs of myopathy, n (%) | 6 (42.8%) | 1 (20%) | 2 (66.6%) | 1 (50%) | 0 | 1 (50%) |
Myopathic EMG, n (%) | 5 (35.7%) | 2 (40%) | 3 (100%) | 2 (100%) | 0 | 1 (50%) |
Muscle RMN, n (%) | 1 (7.1%) | 0 | 0 | 0 | 0 | 0 |
Patient | Status | Gene | DNA Variant | Protein | Zygosity |
---|---|---|---|---|---|
1 | VUS | CAPN3 | c.10G>A | p.Val4Ile | HET |
2 | VUS | CAPN3 | c.259C>G | p.Leu87Val | HET.COMP |
c.922G>A | p.Gly308Ser | ||||
3 | Pathogenic | CAPN3 | c.383A>T | p.Asp128Val | HET.COMP |
c.551C>T | p.Thr184Met | ||||
4 | Pathogenic | CAPN3 | c.550del | p.Thr184Argfs*36 | HOM |
5 | Pathogenic | CAPN3 | c.550del | p.Thr184Argfs*36 | HOM |
6 | Pathogenic | CAPN3 | c.883_886delinsCTT | p.Asp295Leufs*57 | HET.COMP |
c.1792_1795del | p.Lys598Profs*63 | ||||
7 | Pathogenic | CAPN3 | c.883_886delinsCTT | p.Asp295Leufs*57 | HET.COMP |
c.1792_1795del | p.Lys598Profs*63 | ||||
8 | Pathogenic | CAPN3 | c.1303G>A | p.Glu435Lys | HET.COMP |
c.1863_1864del | p.Glu622Glyfs*9 | ||||
9 | Pathogenic | CAPN3 | c.1466G>A | p.Arg489Gln | HET |
10 | VUS | CAPN3 | c.2257G>A | p.Asp753Asn | HET |
11 | VUS | CAPN3 | c.2257G>A | p.Asp753Asn | HET |
12 | Pathogenic | DYSF | c.4194C>A | p.Cys1398* | HOM |
13 | Pathogenic | DYSF | c.4194C>A | p.Cys1398* | HOM |
14 | Pathogenic | LAMA2 | c.850G>A | p.Gly284Arg | HOM |
15 | Pathogenic | LAMA2 | c.850G>A | p.Gly284Arg | HOM |
16 | Pathogenic | LAMA2 | c.1793_1795del | pVal598del | HOM |
17 | Pathogenic | ANO5 | c.1664G>T | p.Ser555Leu | HOM |
18 | Pathogenic | ANO5 | c.2498T>A | p.Met833Lys | HOM |
19 | Pathogenic | FKTN | c.1304A>G | p.Asp435Gly | HOM |
20 | Pathogenic | FKTN | c.1304A>G | p.Asp435Gly | HET.COMP |
c.1325A>G | p.Asn442Ser | ||||
21 | VUS | TTN | c.4749_4754del | p.Asn1584_Pro1585del | HET.COMP |
c.49815G>T | p.Lys16605Asn | ||||
22 | Pathogenic | TTN | c.49948+1G>A | HET.COMP | |
c.64397-2del | |||||
23 | Pathogenic | CAPN3 | c.883_886delinsCTT | p.Asp295Leufs*57 | COMBINED |
c.1792_1795del | p.Lys598Profs*63 | ||||
DYSF | c1385G>A | p.Arg462His | |||
24 | Pathogenic | DYSF | c.4194C>A | p.Cys1398* | COMBINED |
c.2051G>A | p.Arg684Gln | ||||
CAPN3 | c.590G>A | p.Arg197His |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rini, N.; Lupica, A.; Alonge, P.; Crescimanno, G.; Pignolo, A.; Messina, C.; Santa Paola, S.; Giuliano, M.; Borgione, E.; Lo Giudice, M.; et al. Genetic and Clinical Spectrum of Limb–Girdle Muscular Dystrophies in Western Sicily. Genes 2025, 16, 987. https://doi.org/10.3390/genes16080987
Rini N, Lupica A, Alonge P, Crescimanno G, Pignolo A, Messina C, Santa Paola S, Giuliano M, Borgione E, Lo Giudice M, et al. Genetic and Clinical Spectrum of Limb–Girdle Muscular Dystrophies in Western Sicily. Genes. 2025; 16(8):987. https://doi.org/10.3390/genes16080987
Chicago/Turabian StyleRini, Nicasio, Antonino Lupica, Paolo Alonge, Grazia Crescimanno, Antonia Pignolo, Christian Messina, Sandro Santa Paola, Marika Giuliano, Eugenia Borgione, Mariangela Lo Giudice, and et al. 2025. "Genetic and Clinical Spectrum of Limb–Girdle Muscular Dystrophies in Western Sicily" Genes 16, no. 8: 987. https://doi.org/10.3390/genes16080987
APA StyleRini, N., Lupica, A., Alonge, P., Crescimanno, G., Pignolo, A., Messina, C., Santa Paola, S., Giuliano, M., Borgione, E., Lo Giudice, M., Scuderi, C., Di Stefano, V., & Brighina, F. (2025). Genetic and Clinical Spectrum of Limb–Girdle Muscular Dystrophies in Western Sicily. Genes, 16(8), 987. https://doi.org/10.3390/genes16080987