Avian Cytogenomics: Small Chromosomes, Long Evolutionary History
Abstract
1. Introduction
2. General Organization of Bird Genomes
3. Sequencing Bird Genomes
4. Evolution of Birds and Their Genomes
5. Bird Chromosomes and Their Evolution
6. Genome Evolution: Synteny Disruptions, Centromere Repositioning and Repetitive Elements
7. Evolutionary Breakpoints and Synteny Blocks in Avian Genomes
8. Sex Chromosomes and Other Features
9. An Example of Analysis of Cytogenetic Maps and Chromosomal Rearrangements in Eight Birds
10. An Example of Evaluation of Cross-Species BAC Hybridization in the White-Throated Sparrow Genome Mapping
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffin, D.K.; Farré, M.; Lithgow, P.; O’Connor, R.; Romanov, M.N.; Larkin, D. Avian chromonomics goes functional. Chromosome Res. 2015, 23, 367. [Google Scholar] [CrossRef]
- Souza, G.M.; Vidal, J.A.D.; Utsunomia, R.; Deon, G.A.; de Oliveira, E.H.C.; Franca, R.T.; Porto-Foresti, F.; Liehr, T.; de Souza, F.H.S.; Kretschmer, R.; et al. Cytogenomic analysis in Seriemas (Cariamidae): Insights into an atypical avian karyotype. J. Hered. 2025, 116, 441–452. [Google Scholar] [CrossRef]
- O’Connor, R.E.; Kretschmer, R.; Romanov, M.N.; Griffin, D.K. A bird’s-eye view of chromosomic evolution in the Class Aves. Cells 2024, 13, 310. [Google Scholar] [CrossRef]
- Romanov, M.N.; Trukhina, A.V.; Smirnov, A.F.; Griffin, D.K. Actual Problems of Cytogenomics, Organization and Evolution of the Genomes and Chromosomes in Birds. In Molecular Genetic Technologies for Analysis of Gene Expression Related to Animal Productivity and Disease Resistance; Proceedings of the 3rd International Scientific and Practical Conference, Moscow, Russia, 30 September 2021; Pozyabin, S.V., Kochish, I.I., Romanov, M.N., Eds.; Ministry of Agriculture of the Russian Federation; Federal State Budgetary Educational Institution of Higher Education “Moscow State Academy of Veterinary Medicine and Biotechnology–MVA named after K.I. Scriabin”; Sel’skokhozyaistvennye Tekhnologii: Moscow, Russia, 2021; pp. 64–79. [Google Scholar] [CrossRef]
- Dodgson, J.B.; Romanov, M.N. Use of chicken models for the analysis of human disease. Curr. Protoc. Hum. Genet. 2004, 40, 15.5.1–15.5.11. [Google Scholar] [CrossRef]
- Schmid, M.; Smith, J.; Burt, D.W.; Aken, B.L.; Antin, P.B.; Archibald, A.L.; Ashwell, C.; Blackshear, P.J.; Boschiero, C.; Brown, C.T.; et al. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet. Genome Res. 2015, 145, 78–179. [Google Scholar] [CrossRef]
- Warren, W.C.; Hillier, L.W.; Tomlinson, C.; Minx, P.; Kremitzki, M.; Graves, T.; Markovic, C.; Bouk, N.; Pruitt, K.D.; Thibaud-Nissen, F.; et al. A new chicken genome assembly provides insight into avian genome structure. G3 2017, 7, 109–117. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, Z.; Bai, H.; Huang, Y.; Kang, N.; Ding, X.; Liu, J.; Luo, H.; Yang, C.; Chen, W.; et al. Evolutionary analysis of a complete chicken genome. Proc. Natl. Acad. Sci. USA 2023, 120, e2216641120. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, E.D.; Mirarab, S.; Aberer, A.J.; Li, B.; Houde, P.; Li, C.; Ho, S.Y.; Faircloth, B.C.; Nabholz, B.; Howard, J.T.; et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 2014, 346, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Prum, R.O.; Berv, J.S.; Dornburg, A.; Field, D.J.; Townsend, J.P.; Lemmon, E.M.; Lemmon, A.R. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 2015, 526, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Stiller, J.; Feng, S.; Chowdhury, A.A.; Rivas-González, I.; Duchêne, D.A.; Fang, Q.; Deng, Y.; Kozlov, A.; Stamatakis, A.; Claramunt, S.; et al. Complexity of avian evolution revealed by family-level genomes. Nature 2024, 629, 851–860. [Google Scholar] [CrossRef] [PubMed]
- International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004, 432, 695–716, Erratum in Nature 2005, 433, 777. [Google Scholar] [CrossRef]
- Lee, M.K.; Ren, C.W.; Yan, B.; Cox, B.; Zhang, H.B.; Romanov, M.N.; Sizemore, F.G.; Suchyta, S.P.; Peters, E.; Dodgson, J.B. Construction and characterization of three BAC libraries for analysis of the chicken genome. Anim. Genet. 2003, 34, 151–152. [Google Scholar] [CrossRef] [PubMed]
- Dodgson, J.B.; Romanov, M.N. The Chicken Genome: From Maps to Sequence. In Proceedings of the 8th International Symposium on Avian Endocrinology: Symposium Talk and Plenary Lecture Abstracts, Scottsdale, AZ, USA, 6–11 June 2004; Arizona State University: Scottsdale, AZ, USA, 2004; Abstract T26. Available online: https://kar.kent.ac.uk/46516/ (accessed on 24 July 2025).
- Dodgson, J.B.; Romanov, M.N.; Sizemore, F.G.; Price, J.A. Integration of Genetic and Physical Maps of the Chicken Genome. In Proceedings of the Advances in Genome Biology and Technology, in Cooperation with Automation in Mapping and DNA Sequencing, Marco Island, FL, USA, 5–8 February 2003; Advances in Genome Biology and Technology: Marco Island, FL, USA, 2003; p. 25. Available online: https://kar.kent.ac.uk/46428/ (accessed on 24 July 2025).
- Romanov, M.N.; Rondelli, C.M.; Dodgson, J.B. Alignment of the Linkage Map, Physical Map, and Sequence of the Chicken Genome. In Proceedings of the International Plant and Animal Genome XII Conference, San Diego, CA, USA, 10–14 January 2004; Scherago International: San Diego, CA, USA, 2004; p. 233, Abstract P651. Available online: https://kar.kent.ac.uk/46433/ (accessed on 24 July 2025).
- Romanov, M.N.; Kiazim, L.; O’Connor, R.; Griffin, D.K. Current Molecular Genetic and Genomic Technologies in the field of Studying the Avian Biology. 2. Basic Research. In Molecular Genetic Technologies for Analysis of Gene Expression Related to Animal Productivity and Disease Resistance, Proceedings of the 2nd International Scientific and Practical Conference, Moscow, Russia, 25 December 2020; Sel’skokhozyaistvennye Tekhnologii: Moscow, Russia, 2020; pp. 34–44. [Google Scholar] [CrossRef]
- Martell, H.; O’Connor, R.; Damas, J.; Mandawala, A.; Fowler, K.; Joseph, S.; Farré, M.; Romanov, M.N.; Lithgow, P.E.; Larkin, D.M.; et al. Assembling and Comparing Avian Genomes by Molecular Cytogenetics. In Proceedings of the 2nd Bioinformatics Symposium, Norwich, UK, 7 October 2015; International Society of Computational Biology, The Genome Analysis Centre: Norwich, UK, 2015. Abstract B21. Available online: https://kar.kent.ac.uk/57005/ (accessed on 24 July 2025).
- Sazanov, A.A.; Sazanova, A.L.; Romanov, M.N.; Stekol’nikova, V.A.; Malewski, T.; Korczak, M.; Jaszczak, K.; Smirnov, A.F. Molecular Organization of Chicken Genome. In Proceedings of the Genomic and Microarray Analysis in Biology and Medicine, Sucha Beskidzka, Poland, 25–28 June 2005; p. 26. Available online: https://kar.kent.ac.uk/46616/ (accessed on 24 July 2025).
- Romanov, M.N.; Griffin, D.K. Molecular Genetic and Genomic Approaches to Studying Evolution and Adaptation in Birds. In Molecular Genetic Technologies for Analysis of Gene Expression Related to Animal Productivity and Disease Resistance, Proceedings of the 3rd International Scientific and Practical Conference, Moscow, Russia, 30 September, 2021; Pozyabin, S.V., Kochish, I.I., Romanov, M.N., Eds.; Ministry of Agriculture of the Russian Federation; Federal State Budgetary Educational Institution of Higher Education, Moscow State Academy of Veterinary Medicine and Biotechnology–MVA named after K.I. Scriabin; Sel’skokhozyaistvennye Tekhnologii: Moscow, Russia, 2021; pp. 147–156. [Google Scholar] [CrossRef]
- Gill, F.; Donsker, D.; Rasmussen, P. (Eds.) IOC World Bird List (v15.1); Gill & Wright: London, UK, 2025. [Google Scholar]
- Tsuda, Y.; Nishida-Umehara, C.; Ishijima, J.; Yamada, K.; Matsuda, Y. Comparison of the Z and W sex chromosomal architectures in elegant crested tinamou (Eudromia elegans) and ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds. Chromosoma 2007, 116, 159–173. [Google Scholar] [CrossRef]
- Warren, W.C.; Clayton, D.F.; Ellegren, H.; Arnold, A.P.; Hillier, L.W.; Künstner, A.; Searle, S.; White, S.; Vilella, A.J.; Fairley, S.; et al. The genome of a songbird. Nature 2010, 464, 757–762. [Google Scholar] [CrossRef]
- Dalloul, R.A.; Long, J.A.; Zimin, A.V.; Aslam, L.; Beal, K.; Ann Blomberg, L.; Bouffard, P.; Burt, D.W.; Crasta, O.; Crooijmans, R.P.; et al. Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): Genome assembly and analysis. PLoS Biol. 2010, 8, e1000475. [Google Scholar] [CrossRef]
- Romanov, M.N.; Dodgson, J.B. Development of a Physical and Comparative Map of the Turkey Genome. In Proceedings of the International Plant and Animal Genome XIII Conference, San Diego, CA, USA, 15–19 January 2005; Scherago International: San Diego, CA, USA, 2005; p. 69, Abstract W297. Available online: https://kar.kent.ac.uk/46542/ (accessed on 24 July 2025).
- Romanov, M.N.; Dodgson, J.B. Cross-species overgo hybridization and comparative physical mapping within avian genomes. Anim. Genet. 2006, 37, 397–399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Jarvis, E.D.; Gilbert, M.T.P. Avian genomes. A flock of genomes. Introduction. Science 2014, 346, 1308–1309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, C.; Li, Q.; Li, B.; Larkin, D.M.; Lee, C.; Storz, J.F.; Antunes, A.; Greenwold, M.J.; Meredith, R.W.; et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 2014, 346, 1311–1320. [Google Scholar] [CrossRef]
- Romanov, M.N.; Farré, M.; Lithgow, P.E.; Fowler, K.E.; Skinner, B.M.; O’Connor, R.; Fonseka, G.; Backström, N.; Matsuda, Y.; Nishida, C.; et al. Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genom. 2014, 15, 1060. [Google Scholar] [CrossRef]
- Li, B.P.; Kang, N.; Xu, Z.X.; Luo, H.R.; Fan, S.Y.; Ao, X.H.; Li, X.; Han, Y.P.; Ou, X.B.; Xu, L.H. Transposable elements shape the landscape of heterozygous structural variation in a bird genome. Zool. Res. 2025, 46, 75. [Google Scholar] [CrossRef]
- Romanov, M.N.; Farré-Belmonte, M.; Lithgow, P.E.; O’Connor, R.; Fowler, K.E.; Larkin, D.M.; Griffin, D.K. In silico Reconstruction of Chromosomal Rearrangements and an Avian Ancestral Karyotype. In Proceedings of the International Plant and Animal Genome XXII Conference, San Diego, CA, USA, 10–14 January 2014; Scherago International: San Diego, CA, USA, 2014. Abstract P1106. Available online: https://kar.kent.ac.uk/37651/ (accessed on 24 July 2025).
- Kadi, F.; Mouchiroud, D.; Sabeur, G.; Bernardi, G. The compositional patterns of the avian genomes and their evolutionary implications. J. Mol. Evol. 1993, 37, 544–551. [Google Scholar] [CrossRef]
- Schmidt, C.J.; Romanov, M.; Ryder, O.; Magrini, V.; Hickenbotham, M.; Glasscock, J.; McGrath, S.; Mardis, E.; Stein, L.D. Gallus GBrowse: A unified genomic database for the chicken. Nucleic Acids Res. 2008, 36, D719–D723. [Google Scholar] [CrossRef]
- Burt, D.W.; White, S.J. Avian genomics in the 21st century. Cytogenet. Genome Res. 2007, 117, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Wallis, J.W.; Aerts, J.; Groenen, M.A.; Crooijmans, R.P.; Layman, D.; Graves, T.A.; Scheer, D.E.; Kremitzki, C.; Fedele, M.J.; Mudd, N.K.; et al. A physical map of the chicken genome. Nature 2004, 432, 761–764. [Google Scholar] [CrossRef]
- Habermann, F.A.; Cremer, M.; Walter, J.; Kreth, G.; von Hase, J.; Bauer, K.; Wienberg, J.; Cremer, C.; Cremer, T.; Solovei, I. Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res. 2001, 9, 569–584. [Google Scholar] [CrossRef] [PubMed]
- Waters, P.D.; Patel, H.R.; Ruiz-Herrera, A.; Álvarez-González, L.; Lister, N.C.; Simakov, O.; Ezaz, T.; Kaur, P.; Frere, C.; Grützner, F.; et al. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc. Natl. Acad. Sci. USA 2021, 118, e2112494118. [Google Scholar] [CrossRef]
- Álvarez-González, L.; Ruiz-Herrera, A. Evolution of 3D chromatin folding. Annu. Rev. Anim. Biosci. 2025, 13, 49–71. [Google Scholar] [CrossRef]
- Völker, M.; Backström, N.; Skinner, B.M.; Langley, E.J.; Bunzey, S.K.; Ellegren, H.; Griffin, D.K. Copy number variation, chromosome rearrangement, and their association with recombination during avian evolution. Genome Res. 2010, 20, 503–511. [Google Scholar] [CrossRef]
- Bickmore, W.A.; van Steensel, B. Genome architecture: Domain organization of interphase chromosomes. Cell 2013, 152, 1270–1284. [Google Scholar] [CrossRef]
- Kapusta, A.; Suh, A. Evolution of bird genomes—A transposon’s-eye view. Ann. N. Y. Acad. Sci. 2017, 1389, 164–185. [Google Scholar] [CrossRef]
- Sotero-Caio, C.G.; Platt, R.N.; Suh, A.; Ray, D.A. Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol. Evol. 2017, 9, 161–177. [Google Scholar] [CrossRef]
- de Oliveira Furo, I.; Kretschmer, R.; Dos Santos, M.S.; de Lima Carvalho, C.A.; Gunski, R.J.; O’Brien, P.C.M.; Ferguson-Smith, M.A.; Cioffi, M.B.; de Oliveira, E.H.C. Chromosomal mapping of repetitive DNAs in Myiopsitta monachus and Amazona aestiva (Psittaciformes, Psittacidae) with emphasis on the sex chromosomes. Cytogenet. Genome Res. 2017, 151, 151–160. [Google Scholar] [CrossRef]
- Kretschmer, R.; de Oliveira, T.D.; de Oliveira Furo, I.; Oliveira Silva, F.A.; Gunski, R.J.; del Valle Garnero, A.; de Bello Cioffi, M.; de Oliveira, E.H.C.; de Freitas, T.R.O. Repetitive DNAs and shrink genomes: A chromosomal analysis in nine Columbidae species (Aves, Columbiformes). Genet. Mol. Biol. 2018, 41, 98–106. [Google Scholar] [CrossRef]
- Kretschmer, R.; Toma, G.A.; Deon, G.A.; dos Santos, N.; dos Santos, R.Z.; Utsunomia, R.; Porto-Foresti, F.; Gunski, R.J.; Garnero, A.D.V.; Liehr, T.; et al. Satellitome analysis in the southern lapwing (Vanellus chilensis) genome: Implications for satDNA evolution in charadriiform birds. Genes 2024, 15, 258. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, J.; Bachtrog, D.; An, N.; Huang, Q.; Jarvis, E.D.; Gilbert, M.T.P.; Zhang, G. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 2014, 346, 1246338. [Google Scholar] [CrossRef]
- Peona, V.; Palacios-Gimenez, O.M.; Blommaert, J.; Liu, J.; Haryoko, T.; Jønsson, K.A.; Irestedt, M.; Zhou, Q.; Jern, P.; Suh, A. The avian W chromosome is a refugium for endogenous retroviruses with likely effects on female-biased mutational load and genetic incompatibilities. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200186. [Google Scholar] [CrossRef] [PubMed]
- Ayers, K.L.; Davidson, N.M.; Demiyah, D.; Roeszler, K.N.; Grützner, F.; Sinclair, A.H.; Oshlack, A.; Smith, C.A. RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome. Genome Biol. 2013, 14, R26. [Google Scholar] [CrossRef]
- Green, R.E.; Braun, E.L.; Armstrong, J.; Earl, D.; Nguyen, N.; Hickey, G.; Vandewege, M.W.; St. John, J.A.; Capella-Gutiérrez, S.; Castoe, T.A.; et al. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 2014, 346, 1254449. [Google Scholar] [CrossRef] [PubMed]
- Ellegren, H.; Smeds, L.; Burri, R.; Olason, P.I.; Backström, N.; Kawakami, T.; Künstner, A.; Mäkinen, H.; Nadachowska-Brzyska, K.; Qvarnström, A.; et al. The genomic landscape of species divergence in Ficedula flycatchers. Nature 2012, 491, 756–760. [Google Scholar] [CrossRef]
- Oleksyk, T.K.; Pombert, J.F.; Siu, D.; Mazo-Vargas, A.; Ramos, B.; Guiblet, W.; Afanador, Y.; Ruiz-Rodriguez, C.T.; Nickerson, M.L.; Logue, D.M.; et al. A locally funded Puerto Rican parrot (Amazona vittata) genome sequencing project increases avian data and advances young researcher education. Gigascience 2012, 1, 14. [Google Scholar] [CrossRef]
- Rands, C.M.; Darling, A.; Fujita, M.; Kong, L.; Webster, M.T.; Clabaut, C.; Emes, R.D.; Heger, A.; Meader, S.; Hawkins, M.B.; et al. Insights into the evolution of Darwin’s finches from comparative analysis of the Geospiza magnirostris genome sequence. BMC Genomics 2013, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.D.; Kronenberg, Z.; Li, C.; Domyan, E.T.; Pan, H.; Campbell, M.; Tan, H.; Huff, C.D.; Hu, H.; Vickrey, A.I.; et al. Genomic diversity and evolution of the head crest in the rock pigeon. Science 2013, 339, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Damas, J.; Farré, M.; Lithgow, P.; Romanov, M.; Li, C.; Griffin, D.K.; Larkin, D.M. Towards the construction of avian chromosome assemblies. Chromosome Res. 2015, 23, 378–379. [Google Scholar] [CrossRef]
- NCBI. Genomic Data Available from NCBI Datasets. Genome, National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA. 2025. Available online: https://www.ncbi.nlm.nih.gov/datasets/genome/ (accessed on 24 July 2025).
- Ellegren, H. The evolutionary genomics of birds. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 239–259. [Google Scholar] [CrossRef]
- Ganapathy, G.; Howard, J.T.; Ward, J.M.; Li, J.; Li, B.; Li, Y.; Xiong, Y.; Zhang, Y.; Zhou, S.; Schwartz, D.C.; et al. High-coverage sequencing and annotated assemblies of the budgerigar genome. Gigascience 2014, 3, 2047-217X-3-11. [Google Scholar] [CrossRef]
- Zhang, G.; Rahbek, C.; Graves, G.R.; Lei, F.; Jarvis, E.D.; Gilbert, M.T.P. Genomics: Bird sequencing project takes off. Nature 2015, 522, 34. [Google Scholar] [CrossRef]
- Griffin, D.K.; Farré, M.; Lithgow, P.; O’Connor, R.; Fowler, K.; Romanov, M.; Larkin, D. Avian cytogenetics goes functional. Chromosome Res. 2014, 22, 423–424. [Google Scholar] [CrossRef]
- Romanov, M.N.; Griffin, D.K. The use of avian BAC libraries and clones. Cytogenet. Genome Res. 2015, 145, 94–96. [Google Scholar] [CrossRef]
- Romanov, M.N.; Farré, M.; Lithgow, P.E.; O’Connor, R.; Fowler, K.E.; Skinner, B.M.; Larkin, D.M.; Griffin, D.K. Avian ancestral karyotype reconstruction and differential rates of inter- and intrachromosomal change in different lineages. Chromosome Res. 2015, 23, 414. [Google Scholar] [CrossRef]
- Kumar, S.; Hedges, S.B. A molecular timescale for vertebrate evolution. Nature 1998, 392, 917–920. [Google Scholar] [CrossRef]
- Pereira, S.L.; Baker, A.J. A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol. Biol. Evol. 2006, 23, 1731–1740. [Google Scholar] [CrossRef]
- Schmid, M.; Nanda, I.; Hoehn, H.; Schartl, M.; Haaf, T.; Buerstedde, J.M.; Arakawa, H.; Caldwell, R.B.; Weigend, S.; Burt, D.W.; et al. Second Report on Chicken Genes and Chromosomes 2005. Cytogenet. Genome Res. 2005, 109, 415–479. [Google Scholar] [CrossRef] [PubMed]
- Hedges, S.B.; Kumar, S. The Timetree of Life; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Griffin, D.K.; O’Connor, R.; Romanov, M.N.; Damas, J.; Farré, M.; Martell, H.; Kiazim, L.G.; Jennings, R.; Mandawala, A.A.; Joseph, S.; et al. Jurassic spark: Mapping the genomes of birds and other dinosaurs. Comp. Cytogenet. 2018, 12, 322–323. [Google Scholar] [CrossRef]
- O’Connor, R.; Romanov, M.N.; Farré, M.; Larkin, D.M.; Griffin, D.K. Gross genome evolution in the Dinosauria. Chromosome Res. 2016, 24 (Suppl. 1), S36–S37. [Google Scholar] [CrossRef]
- Clarke, J.A.; Tambussi, C.P.; Noriega, J.I.; Erickson, G.M.; Ketcham, R.A. Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 2005, 433, 305–308. [Google Scholar] [CrossRef]
- Torres, C.R.; Clarke, J.A.; Groenke, J.R.; Lamanna, M.C.; MacPhee, R.D.; Musser, G.M.; Roberts, E.M.; O’Connor, P.M. Cretaceous Antarctic bird skull elucidates early avian ecological diversity. Nature 2025, 638, 146–151. [Google Scholar] [CrossRef]
- O’Connor, J. Archaeopteryx. Curr. Biol. 2025, 35, R643–R644. [Google Scholar] [CrossRef]
- O’Connor, J.; Clark, A.; Kuo, P.C.; Kiat, Y.; Fabbri, M.; Shinya, A.; Van Beek, C.; Lu, J.; Wang, M.; Hu, H. Chicago Archaeopteryx informs on the early evolution of the avian bauplan. Nature 2025, 641, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Nishida-Umehara, C.; Tarui, H.; Kuroiwa, A.; Yamada, K.; Isobe, T.; Ando, J.; Fujiwara, A.; Hirao, Y.; Nishimura, O.; et al. Highly conserved linkage homology between birds and turtles: Bird and turtle chromosomes are precise counterparts of each other. Chromosome Res. 2005, 13, 601–615. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, R.E.; Romanov, M.N.; Farré, M.; Larkin, D.M.; Griffin, D.K. Reconstruction of the putative Saurian karyotype and the hypothetical chromosome rearrangements that occurred along the Dinosaur lineage. Chromosome Res. 2015, 23, 379–380. [Google Scholar] [CrossRef]
- O’Connor, R.; Damas, J.; Farré, M.; Romanov, M.N.; Martell, H.; Fonseka, G.; Jennings, R.; Kiazam, L.; Bennett, S.; Ward, J.; et al. Upgrading molecular cytogenetics to study reproduction and reproductive isolation in mammals, birds, and dinosaurs. Cytogenet. Genome Res. 2016, 148, 151–152. [Google Scholar] [CrossRef]
- Modi, W.S.; Romanov, M.; Green, E.D.; Ryder, O. Molecular cytogenetics of the California condor: Evolutionary and conservation implications. Cytogenet. Genome Res. 2009, 127, 26–32. [Google Scholar] [CrossRef]
- Romanov, M.N.; Ryder, O.A.; Koriabine, M.; Nefedov, M.; de Jong, P.J.; Dodgson, J.B. Comparative Physical Mapping in Avians and Conservation Genomics of California Condor. In Proceedings of the International Plant and Animal Genome XIV Conference, San Diego, CA, USA, 14–18 January 2006; Scherago International: San Diego, CA, USA, 2006. Abstract W227. Available online: https://kar.kent.ac.uk/46619/ (accessed on 24 July 2025).
- Romanov, M.N.; Koriabine, M.; Nefedov, M.; de Jong, P.J.; Ryder, O.A. Construction of a California condor BAC library and first-generation chicken–condor comparative physical map as an endangered species conservation genomics resource. Genomics 2006, 88, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Romanov, M.N.; Dodgson, J.B.; Gonser, R.A.; Tuttle, E.M. Comparative BAC-based mapping in the white-throated sparrow, a novel behavioral genomics model, using interspecies overgo hybridization. BMC Res. Notes 2011, 4, 211. [Google Scholar] [CrossRef] [PubMed]
- Lithgow, P.E.; O’Connor, R.; Smith, D.; Fonseka, G.; Al Mutery, A.; Rathje, C.; Frodsham, R.; O’Brien, P.; Kasai, F.; Ferguson-Smith, M.A.; et al. Novel tools for characterising inter and intra chromosomal rearrangements in avian microchromosomes. Chromosome Res. 2014, 22, 85–97. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, R.E.; Farré, M.; Joseph, S.; Damas, J.; Kiazim, L.; Jennings, R.; Bennett, S.; Slack, E.A.; Allanson, E.; Larkin, D.M. Chromosome-level assembly reveals extensive rearrangement in saker falcon and budgerigar, but not ostrich, genomes. Genome Biol. 2018, 19, 171. [Google Scholar] [CrossRef]
- O’Connor, R.E.; Kiazim, L.; Skinner, B.; Fonseka, G.; Joseph, S.; Jennings, R.; Larkin, D.M.; Griffin, D.K. Patterns of microchromosome organization remain highly conserved throughout avian evolution. Chromosoma 2019, 128, 21–29. [Google Scholar] [CrossRef]
- Kretschmer, R.; de Souza, M.S.; Furo, I.d.O.; Romanov, M.N.; Gunski, R.J.; Garnero, A.d.V.; de Freitas, T.R.O.; de Oliveira, E.H.C.; O’Connor, R.E.; Griffin, D.K. Interspecies chromosome mapping in Caprimulgiformes, Piciformes, Suliformes, and Trogoniformes (Aves): Cytogenomic insight into microchromosome organization and karyotype evolution in birds. Cells 2021, 10, 826. [Google Scholar] [CrossRef]
- Blagoveshchenskiĭ, I.I.; Sazanova, A.L.; Romanov, M.N.; Fomichev, K.A.; Stekol’nikova, V.A.; Sazanov, A.A. Cytogenetic Localization of the Genes on Avian Z and W Chromosomes with the Use of Large Insert Genomic Clones. In Problems of Biology, Ecology, Geography, Education: History and Contemporaneity, Proceedings of the 2nd International Scientific and Practical Conference, St. Petersburg, Russia, 3–5 June 2008; Pushkin Leningrad State University: St. Petersburg, Russia, 2008; pp. 61–62. Available online: https://kar.kent.ac.uk/46626/ (accessed on 24 July 2025).
- Blagoveshchenskiĭ, I.I.; Sazanova, A.L.; Stekol’nikova, V.A.; Fomichev, K.A.; Barkova, O.I.; Romanov, M.N.; Sazanov, A.A. Investigation of Pseudoautosomal and Bordering regions in Avian Z and W Chromosomes with the Use of Large Insert Genomic BAC Clones. Genetika 2011, 47, 312–319. Available online: https://pubmed.ncbi.nlm.nih.gov/21542301/ (accessed on 24 July 2025).
- Sazanov, A.A.; Romanov, M.N.; Sazanova, A.L.; Tzareva, V.A.; Kozyreva, A.A.; Price, J.A.; Smirnov, A.F.; Dodgson, J.B. Chromosomal Localization of Continuous Genomic Clones in the Chicken with a View of Comparative Mapping. In Genetics in the XXI Century: Current State and Prospects for Development, Proceedings of the III Congress of the Vavilov Society of Geneticists and Selectionists, Moscow, Russia, 6–12 June 2004; Vavilov Society of Geneticists and Selectionists, N.I. Vavilov Institute of General Genetics, M.V.; Lomonosov Moscow State University: Moscow, Russia, 2004; Volume 2, p. 271. Available online: https://kar.kent.ac.uk/46505/ (accessed on 24 July 2025).
- Sazanov, A.A.; Romanov, M.N.; Smirnov, A.F. Libraries of large-insert genomic clones as a tool for molecular cytogenetic analysis of avian genome. Russ. J. Genet. 2005, 41, 461–467. [Google Scholar] [CrossRef]
- Kiazim, L.G.; O’Connor, R.E.; Larkin, D.M.; Romanov, M.N.; Narushin, V.G.; Brazhnik, E.A.; Griffin, D.K. Comparative mapping of the macrochromosomes of eight avian species provides further insight into their phylogenetic relationships and avian karyotype evolution. Cells 2021, 10, 362. [Google Scholar] [CrossRef]
- Sazanova, A.L.; Romanov, M.N.; Blagoveshenski, I.Y.; Fomichev, K.A.; Stekol’nikova, V.A.; Nefedov, M.; de Jong, P.J.; Modi, W.S.; Ryder, O.A.; Dodgson, J.B.; et al. Cytogenetic Localization of avian Z- and W-linked Genes Using Large Insert BAC Clones. In Proceedings of the International Plant and Animal Genome XVI Conference, San Diego, CA, USA, 12–16 January 2008; Scherago International: San Diego, CA, USA, 2008; p. 257, Abstract P554. Available online: https://kar.kent.ac.uk/46625/ (accessed on 24 July 2025).
- Lithgow, P.E.; O’Connor, R.; Smith, D.; Fonseka, G.; Rathje, C.; Frodsham, R.; O’Brien, P.C.; Ferguson-Smith, M.A.; Skinner, B.M.; Griffin, D.K.; et al. Novel Tools for Characterising Inter- and Intra-chromosomal Rearrangements in Avian Microchromosomes. In Proceedings of the 2014 Meeting on Avian Model Systems, Cold Spring Harbor, NY, USA, 5–8 March 2014; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 2014; p. 56. Available online: https://kar.kent.ac.uk/46692/ (accessed on 24 July 2025).
- Alves Barcellos, S.; Kretschmer, R.; Santos de Souza, M.; Tura, V.; Pozzobon, L.C.; Ochotorena de Freitas, T.R.; Griffin, D.K.; O’Connor, R.; Gunski, R.J.; del Valle Garnero, A. Understanding microchromosomal organization and evolution in four representative woodpeckers (Picidae, Piciformes) through BAC-FISH analysis. Genome 2024, 67, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Adolfsson, S.; Ellegren, H. Lack of dosage compensation accompanies the arrested stage of sex chromosome evolution in ostriches. Mol. Biol. Evol. 2013, 30, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Nishida-Umehara, C.; Tsuda, Y.; Ishijima, J.; Ando, J.; Fujiwara, A.; Matsuda, Y.; Griffin, D.K. The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosome Res. 2007, 15, 721–734. [Google Scholar] [CrossRef] [PubMed]
- Hansmann, T.; Nanda, I.; Volobouev, V.; Yang, F.; Schartl, M.; Haaf, T.; Schmid, M. Cross-species chromosome painting corroborates microchromosome fusion during karyotype evolution of birds. Cytogenet. Genome Res. 2009, 126, 281–304. [Google Scholar] [CrossRef] [PubMed]
- Nishida, C.; Ishijima, J.; Kosaka, A.; Tanabe, H.; Habermann, F.A.; Griffin, D.K.; Matsuda, Y. Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation. Chromosome Res. 2008, 16, 171–181. [Google Scholar] [CrossRef]
- Joseph, S.; O’Connor, R.E.; Al Mutery, A.F.; Watson, M.; Larkin, D.M.; Griffin, D.K. Chromosome level genome assembly and comparative genomics between three falcon species reveals an unusual pattern of genome organisation. Diversity 2018, 10, 113. [Google Scholar] [CrossRef]
- Nie, W.; O’Brien, P.C.; Ng, B.L.; Fu, B.; Volobouev, V.; Carter, N.P.; Ferguson-Smith, M.A.; Yang, F. Avian comparative genomics: Reciprocal chromosome painting between domestic chicken (Gallus gallus) and the stone curlew (Burhinus oedicnemus, Charadriiformes)—An atypical species with low diploid number. Chromosome Res. 2009, 17, 99–113. [Google Scholar] [CrossRef]
- Kretschmer, R.; Souza, M.S.D.; Barcellos, S.A.; Degrandi, T.M.; Pereira, J.C.; O’Brien, P.; Ferguson-Smith, M.A.; Gunski, R.J.; Garnero, A.D.V.; Oliveira, E.H.C.D.; et al. Novel insights into chromosome evolution of Charadriiformes: Extensive genomic reshuffling in the wattled jacana (Jacana jacana, Charadriiformes, Jacanidae). Gen. Mol. Biol. 2020, 43, e20190236. [Google Scholar] [CrossRef]
- Duchêne, D.A.; Chowdhury, A.A.; Yang, J.; Iglesias-Carrasco, M.; Stiller, J.; Feng, S.; Bhatt, S.; Gilbert, M.T.P.; Zhang, G.; Tobias, J.A.; et al. Drivers of avian genomic change revealed by evolutionary rate decomposition. Nature 2025, 641, 1208–1216. [Google Scholar] [CrossRef]
- Torgasheva, A.A.; Malinovskaya, L.P.; Zadesenets, K.S.; Karamysheva, T.V.; Kizilova, E.A.; Akberdina, E.A.; Pristyazhnyuk, I.E.; Shnaider, E.P.; Volodkina, V.A.; Saifitdinova, A.F.; et al. Germline-restricted chromosome (GRC) is widespread among songbirds. Proc. Natl. Acad. Sci. USA 2019, 116, 11845–11850. [Google Scholar] [CrossRef]
- Kinsella, C.M.; Ruiz-Ruano, F.J.; Dion-Côté, A.M.; Charles, A.J.; Gossmann, T.I.; Cabrero, J.; Kappei, D.; Hemmings, N.; Simons, M.J.; Camacho, J.P.M. Programmed DNA elimination of germline development genes in songbirds. Nat. Commun. 2019, 10, 5468. [Google Scholar] [CrossRef] [PubMed]
- Sotelo-Muñoz, M.; Poignet, M.; Albrecht, T.; Kauzál, O.; Dedukh, D.; Schlebusch, S.A.; Janko, K.; Reifová, R. Germline-restricted chromosome shows remarkable variation in size among closely related passerine species. Chromosoma 2022, 131, 77–86. [Google Scholar] [CrossRef]
- Schlebusch, S.A.; Rídl, J.; Poignet, M.; Ruiz-Ruano, F.J.; Reif, J.; Pajer, P.; Pačes, J.; Albrecht, T.; Suh, A.; Reifová, R. Rapid gene content turnover on the germline-restricted chromosome in songbirds. Nat. Commun. 2023, 14, 4579. [Google Scholar] [CrossRef] [PubMed]
- Bravo, G.A.; Schmitt, C.J.; Edwards, S.V. What have we learned from the first 500 avian genomes? Annu. Rev. Ecol. Evol. Syst. 2021, 52, 611–639. [Google Scholar] [CrossRef]
- Borodin, P.; Chen, A.; Forstmeier, W.; Fouché, S.; Malinovskaya, L.; Pei, Y.; Reifová, R.; Ruiz-Ruano, F.J.; Schlebusch, S.A.; Sotelo-Muñoz, M.; et al. Mendelian nightmares: The germline-restricted chromosome of songbirds. Chromosome Res. 2022, 30, 255–272. [Google Scholar] [CrossRef]
- Seoighe, C.; Federspiel, N.; Jones, T.; Hansen, N.; Bivolarovic, V.; Surzycki, R.; Tamse, R.; Komp, C.; Huizar, L.; Davis, R.W.; et al. Prevalence of small inversions in yeast gene order evolution. Proc. Natl. Acad. Sci. USA 2000, 97, 14433–14437. [Google Scholar] [CrossRef]
- Fischer, G.; Neuvéglise, C.; Durrens, P.; Gaillardin, C.; Dujon, B. Evolution of gene order in the genomes of two related yeast species. Genome Res. 2001, 11, 2009–2019. [Google Scholar] [CrossRef]
- Britten, R.J.; Rowen, L.; Williams, J.; Cameron, R.A. Majority of divergence between closely related DNA samples is due to indels. Proc. Natl. Acad. Sci. USA 2003, 100, 4661–4665. [Google Scholar] [CrossRef]
- Biemont, C.; Vieira, C. Junk DNA as an evolutionary force. Nature 2006, 443, 521–524. [Google Scholar] [CrossRef]
- Eichler, E.E.; Sankoff, D. Structural dynamics of eukaryotic chromosome evolution. Science 2003, 301, 793–797. [Google Scholar] [CrossRef]
- Murphy, W.J.; Larkin, D.M.; der Wind, A.E.V.; Bourque, G.; Tesler, G.; Auvil, L.; Beever, J.E.; Chowdhary, B.P.; Galibert, F.; Gatzke, L.; et al. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 2005, 309, 613–617. [Google Scholar] [CrossRef]
- Carbone, L.; Vessere, G.M.; Hallers, B.F.T.; Zhu, B.; Osoegawa, K.; Mootnick, A.; Kofler, A.; Wienberg, J.; Rogers, J.; Humphray, S.; et al. A high-resolution map of synteny disruptions in gibbon and human genomes. PLoS Genet. 2006, 2, e223. [Google Scholar] [CrossRef]
- Carbone, L.; Nergadze, S.G.; Magnani, E.; Misceo, D.; Cardone, M.F.; Roberto, R.; Bertoni, L.; Attolini, C.; Piras, M.F.; de Jong, P.; et al. Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics 2006, 87, 777–782. [Google Scholar] [CrossRef]
- Cardone, M.F.; Alonso, A.; Pazienza, M.; Ventura, M.; Montemurro, G.; Carbone, L.; de Jong, P.J.; Stanyon, R.; D’Addabbo, P.; Archidiacono, N.; et al. Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs. Genome Biol. 2006, 7, R91. [Google Scholar] [CrossRef] [PubMed]
- Misceo, D.; Cardone, M.F.; Carbone, L.; D’Addabbo, P.; De Jong, P.J.; Rocchi, M.; Archidiacono, N. Evolutionary history of chromosome 20. Mol. Biol. Evol. 2005, 22, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Weigl, S.; Carbone, L.; Cardone, M.F.; Misceo, D.; Teti, M.; D’Addabbo, P.; Wandall, A.; Björck, E.; de Jong, P.J.; et al. Recurrent sites for new centromere seeding. Genome Res. 2004, 14, 1696–1703. [Google Scholar] [CrossRef] [PubMed]
- Kasai, F.; Garcia, C.; Arruga, M.V.; Ferguson-Smith, M.A. Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenet. Genome Res. 2003, 102, 326–330. [Google Scholar] [CrossRef]
- Sazanov, A.A.; Sazanova, A.L.; Tzareva, V.A.; Kozyreva, A.A.; Smirnov, A.F.; Romanov, M.N.; Price, J.A.; Dodgson, J.B. Chromosomal Localization of Large Insert Clones of the Chicken Genome: Expanding the Comparative Map. In Proceedings of the International Plant and Animal Genome XII Conference, San Diego, CA, USA, 10–14 January 2004; Scherago International: San Diego, CA, USA, 2004; p. 234. Available online: https://kar.kent.ac.uk/46441/ (accessed on 24 July 2025).
- Matzke, M.A.; Varga, F.; Berger, H.; Schernthaner, J.; Schweizer, D.; Mayr, B.; Matzke, A.J.M. A 41–42-bp tandemly repeated sequence isolated from nuclear envelopes of chicken erythrocytes is located predominantly on microchromosomes. Chromosoma 1990, 99, 131–137. [Google Scholar] [CrossRef]
- Wang, Z.; Miyake, T.; Edwards, S.V.; Amemiya, C.T. Tuatara (Sphenodon) genomics: BAC library construction, sequence survey, and application to the DMRT gene family. J. Hered. 2006, 97, 541–548. [Google Scholar] [CrossRef]
- Williamson, S.H.; Hubisz, M.J.; Clark, A.G.; Payseur, B.A.; Bustamante, C.D.; Nielsen, R. Localizing recent adaptive evolution in the human genome. PLoS Genet. 2007, 3, e90. [Google Scholar] [CrossRef]
- Galkina, S.; Deryusheva, S.; Fillon, V.; Vignal, A.; Crooijmans, R.; Groenen, M.; Rodionov, A.; Gaginskaya, E. FISH on avian lampbrush chromosomes produces higher resolution gene mapping. Genetica 2006, 128, 241–251. [Google Scholar] [CrossRef]
- Krasikova, A.; Deryusheva, S.; Galkina, S.; Kurganova, A.; Evteev, A.; Gaginskaya, E. On the positions of centromeres in chicken lampbrush chromosomes. Chromosome Res. 2006, 14, 777–789. [Google Scholar] [CrossRef]
- Crombach, A.; Hogeweg, P. Chromosome rearrangements and the evolution of genome structuring and adaptability. Mol. Biol. Evol. 2007, 24, 1130–1139. [Google Scholar] [CrossRef]
- Kazazian, H.H., Jr. Mobile elements: Drivers of genome evolution. Science 2004, 303, 1626–1632. [Google Scholar] [CrossRef]
- Dodgson, J.B.; Romanov, M.N.; Rondelli, C.M. Integration of Chicken Linkage and Physical Maps and Sequence Alignment Using Overgo Hybridization. In Proceedings of the International Plant and Animal Genome XII Conference, San Diego, CA, USA, 10–14 January 2004; Scherago International: San Diego, CA, USA, 2004; p. 59, Abstract W215. Available online: https://kar.kent.ac.uk/46432/ (accessed on 24 July 2025).
- Farré, M.; Narayan, J.; Slavov, G.T.; Damas, J.; Auvil, L.; Li, C.; Jarvis, E.D.; Burt, D.W.; Griffin, D.K.; Larkin, D.M. Novel insights into chromosome evolution in birds, archosaurs, and reptiles. Genome Biol. Evol. 2016, 8, 2442–2451. [Google Scholar] [CrossRef] [PubMed]
- Damas, J.; Kim, J.; Farré, M.; Griffin, D.K.; Larkin, D.M. Reconstruction of avian ancestral karyotypes reveals differences in the evolutionary history of macro- and microchromosomes. Genome Biol. 2018, 19, 155. [Google Scholar] [CrossRef]
- Larkin, D.M.; Pape, G.; Donthu, R.; Auvil, L.; Welge, M.; Lewin, H.A. Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories. Genome Res. 2009, 19, 770–777. [Google Scholar] [CrossRef]
- Dixon, J.R.; Selvaraj, S.; Yue, F.; Kim, A.; Li, Y.; Shen, Y.; Hu, M.; Liu, J.S.; Ren, B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Franke, M.; Ibrahim, D.M.; Andrey, G.; Schwarzer, W.; Heinrich, V.; Schöpflin, R.; Kraft, K.; Kempfer, R.; Jerković, I.; Chan, W.L.; et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 2016, 538, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Delbridge, M.L.; Patel, H.R.; Waters, P.D.; McMillan, D.A.; Graves, J.A.M. Does the human X contain a third evolutionary block? Origin of genes on human Xp11 and Xq28. Genome Res. 2009, 19, 1350–1360. [Google Scholar] [CrossRef] [PubMed]
- Modi, W.S.; Crews, D. Sex chromosomes and sex determination in reptiles: Commentary. Curr. Opin. Genet. Dev. 2005, 15, 660–665. [Google Scholar] [CrossRef]
- Trukhina, A.; Smirnov, A. Problems of birds sex determination. Nat. Sci. 2014, 6, 1232–1240. [Google Scholar] [CrossRef]
- Nakagawa, S. Is avian sex determination unique?: Clues from a warbler and from chickens. Trends Genet. 2004, 20, 479–480. [Google Scholar] [CrossRef]
- Vicoso, B.; Kaiser, V.B.; Bachtrog, D. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proc. Natl. Acad. Sci. USA 2013, 110, 6453–6458. [Google Scholar] [CrossRef]
- Guioli, S.; Lovell-Badge, R.; Turner, J.M. Error-prone ZW pairing and no evidence for meiotic sex chromosome inactivation in the chicken germ line. PLoS Genet. 2012, 8, e1002560. [Google Scholar] [CrossRef]
- Küpper, C.; Augustin, J.; Edwards, S.; Székely, T.; Kosztolányi, A.; Burke, T.; Janes, D.E. Triploid plover female provides support for a role of the W chromosome in avian sex determination. Biol. Lett. 2012, 8, 787–789. [Google Scholar] [CrossRef]
- Reed, K.J.; Sinclair, A.H. FET-1: A novel W-linked, female specific gene up-regulated in the embryonic chicken ovary. Mech. Dev. 2002, 119 (Suppl. 1), S87–S90. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Nishida-Umehara, C.; Ishijima, J.; Murakami, T.; Shibusawa, M.; Tsuchiya, K.; Tsudzuki, M.; Matsuda, Y. A novel family of repetitive DNA sequences amplified site-specifically on the W chromosomes in Neognathous birds. Chromosome Res. 2006, 14, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Nanda, I.; Schlegelmilch, K.; Haaf, T.; Schartl, M.; Schmid, M. Synteny conservation of the Z chromosome in 14 avian species (11 families) supports a role for Z dosage in avian sex determination. Cytogenet. Genome Res. 2008, 122, 150–156. [Google Scholar] [CrossRef]
- Rutkowska, J.; Lagisz, M.; Nakagawa, S. The long and the short of avian W chromosomes: No evidence for gradual W shortening. Biol. Lett. 2012, 8, 636–638. [Google Scholar] [CrossRef]
- Gunski, R.J.; Delgado Cañedo, A.; Del Valle Garnero, A.; Ledesma, M.A.; Coria, N.; Montalti, D.; Degrandi, T.M. Multiple sex chromosome system in penguins (Pygoscelis, Spheniscidae). Comp. Cytogenet. 2017, 11, 541–552. [Google Scholar] [CrossRef]
- Pozzobon, L.C.; Toma, G.A.; Cioffi, M.D.B.; de Oliveira, E.H.C.; Kretschmer, R.; de Freitas, T.R.O. Karyotype evolution of Suliformes and description of a ♂Z1Z1Z2Z2/♀Z1Z2W multiple sex chromosome system in boobies (Sula spp.). Genome 2025, 68, 1–11. [Google Scholar] [CrossRef]
- Smeds, L.; Warmuth, V.; Bolivar, P.; Uebbing, S.; Burri, R.; Suh, A.; Nater, A.; Bureš, S.; Garamszegi, L.Z.; Hogner, S.; et al. Evolutionary analysis of the female-specific avian W chromosome. Nat. Commun. 2015, 6, 7330. [Google Scholar] [CrossRef]
- Xu, L.; Auer, G.; Peona, V.; Suh, A.; Deng, Y.; Feng, S.; Zhang, G.; Blom, M.P.; Christidis, L.; Prost, S.; et al. Dynamic evolutionary history and gene content of sex chromosomes across diverse songbirds. Nat. Ecol. Evol. 2019, 3, 834–844. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Serra, F.; Bork, P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 2016, 33, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Damas, J.; O’Connor, R.; Farré, M.; Lenis, V.P.E.; Martell, H.J.; Mandawala, A.; Fowler, K.; Joseph, S.; Swain, M.T.; Griffin, D.K. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res. 2017, 27, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Lin, Y.; Tang, J. MLGO: Phylogeny reconstruction and ancestral inference from gene-order data. BMC Bioinform. 2014, 15, 354. [Google Scholar] [CrossRef] [PubMed]
- Tesler, G. GRIMM: Genome rearrangements web server. Bioinformatics 2002, 18, 492–493. [Google Scholar] [CrossRef]
- Romanov, M.N.; Narushin, V.G.; Gonser, R.A.; Tuttle, E.M. [Mathematical assessment of BAC-based interspecies hybridization data in the process of genomic mapping in the white-throated sparrow as an avian behavioral model]. In Molecular Genetic Technologies for Analysis of Gene Expression Related to Animal Productivity and Disease Resistance, Proceedings of the 2nd International Scientific and Practical Conference, Moscow, Russia, 25 December 2020; Sel’skokhozyaistvennye Tekhnologii: Moscow, Russia, 2020; pp. 91–99. [Google Scholar] [CrossRef]
- Wikipedia Contributors. Genomic Evolution of Birds. Wikipedia, The Free Encyclopedia. 2025. Available online: https://en.wikipedia.org/w/index.php?title=Genomic_evolution_of_birds&oldid=1301065240 (accessed on 24 July 2025).
- Kumar, S.; Stecher, G.; Suleski, M.; Hedges, S.B. TimeTree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017, 34, 1812–1819. [Google Scholar] [CrossRef]
- Kumar, S.; Suleski, M.; Craig, J.M.; Kasprowicz, A.E.; Sanderford, M.; Li, M.; Stecher, G.; Hedges, S.B. TimeTree 5: An expanded resource for species divergence times. Mol. Biol. Evol. 2022, 39, msac174. [Google Scholar] [CrossRef] [PubMed]
- TimeTree. Timescale of Life. Institute for Genomics and Evolutionary Medicine, Center of Biodiversity, Temple University, Philadelphia, PA, USA, 2005–2025. Available online: https://timetree.org/ (accessed on 24 July 2025).
- Seddon, P.J.; Seddon, R.J. Chromosome analysis and sex identification of Yelloweyed Penguins Megadyptes antipodes. Mar. Ornithol. 1991, 19, 144–147. [Google Scholar] [CrossRef]
- Romanov, M.N.; O’Connor, R.; Skinner, B.M.; Martell, H.; Farré, M.; Larkin, D.M.; Griffin, D.K. Comparative Cytogenomics Enhanced with Bioinformatic Tools Provides Further Insights into Genome Evolution of Birds and Other Amniotes. In Proceedings of the 2nd Annual Food, Nutrition and Agriculture Genomics Congress: Congress Workbook, London, UK, 29–30 April 2015; Oxford Global Conferences Ltd.: London, UK, 2015. Abstract 5. Available online: https://kar.kent.ac.uk/48107/ (accessed on 24 July 2025).
- Romanov, M.N.; Daniels, L.M.; Dodgson, J.B.; Delany, M.E. Integration of the cytogenetic and physical maps of chicken chromosome 17. Chromosome Res. 2005, 13, 215–222. [Google Scholar] [CrossRef] [PubMed]
Species | Latin Name | Order | Chromosome No. in the Genome Assembly | Genome ID in the NCBI Database 1 | Mitochondrial Genome |
---|---|---|---|---|---|
maguari stork | Ciconia maguari | Ciconiiformes | 31 | 92,799 | sequenced |
California condor | Gymnogyps californianus | Accipitriformes/Cathartiformes | 30 | 730 | – |
brown creeper | Certhia americana | Passeriformes | 24 | 103,027 | – |
white wagtail | Motacilla alba | Passeriformes | 31 | 43,097 | sequenced |
white-breasted antbird | Rhegmatorhina hoffmannsi | Passeriformes | 35 | 92,741 | – |
great tit | Parus major | Passeriformes | 31 | 12,863 | sequenced |
brown-headed cowbird | Molothrus ater | Passeriformes | 34 | 88,920 | – |
western jackdaw | Coloeus monedula | Passeriformes | 29 | 93,095 | – |
barn swallow | Hirundo rustica | Passeriformes | 39 | 73,420 | – |
house sparrow | Passer domesticus | Passeriformes | 30 | 17,653 | sequenced |
Swainson’s thrush | Catharus ustulatus | Passeriformes | 43 | 86,530 | sequenced |
common yellowthroat | Geothlypis trichas | Passeriformes | 34 | 86,337 | – |
European robin | Erithacus rubecula | Passeriformes | 33 | 92,589 | – |
Sunda zebra finch | Taeniopygia guttata | Passeriformes | 41 | 367 | sequenced |
Eurasian chaffinch | Fringilla coelebs | Passeriformes | 30 | 34,546 | – |
small tree finch | Camarhynchus parvulus | Passeriformes | 31 | 84,210 | – |
yellow-rumped warbler | Setophaga coronata | Passeriformes | 31 | 46,404 | sequenced |
collared flycatcher | Ficedula albicollis | Passeriformes | 30 | 11,872 | sequenced |
New Caledonian crow | Corvus moneduloides | Passeriformes | 36 | 85,337 | sequenced |
white-rumped munia | Lonchura striata | Passeriformes | 31 | 43,765 | sequenced |
lance-tailed manakin | Chiroxiphia lanceolata | Passeriformes | 35 | 86,579 | – |
superb fairywren | Malurus cyaneus | Passeriformes | 25 | 86,232 | sequenced |
garden warbler | Sylvia borin | Passeriformes | 37 | 92,826 | – |
hooded crow | Corvus cornix | Passeriformes | 29 | 18,230 | sequenced |
rifleman | Acanthisitta chloris | Passeriformes | 38 | 32,002 | sequenced |
Eurasian blackcap | Sylvia atricapilla | Passeriformes | 35 | 8421 | – |
black-throated flowerpiercer | Diglossa brunneiventris | Passeriformes | 31 | 103,900 | – |
black-capped chickadee | Poecile atricapillus | Passeriformes | 19 | 33,953 | sequenced |
European turtle dove | Streptopelia turtur | Columbiformes | 33 | 81,804 | – |
rock dove | Columba livia | Columbiformes | 29 | 10,719 | sequenced |
ruddy duck | Oxyura jamaicensis | Anseriformes | 34 | 87,936 | sequenced |
African pygmy goose | Nettapus auritus | Anseriformes | 34 | 87,938 | sequenced |
freckled duck | Stictonetta naevosa | Anseriformes | 34 | 87,939 | sequenced |
mallard (domestic duck) | Anas platyrhynchos | Anseriformes | 41 | 2793 | sequenced |
mute swan | Cygnus olor | Anseriformes | 36 | 38,225 | sequenced |
Muscovy duck | Cairina moschata | Anseriformes | 30 | 8552 | – |
tufted duck | Aythya fuligula | Anseriformes | 36 | 33,654 | sequenced |
black-headed duck | Heteronetta atricapilla | Anseriformes | 34 | 87,937 | sequenced |
northern flicker | Colaptes auratus | Piciformes | 12 | 96,575 | – |
southern red-fronted tinkerbird | Pogoniulus pusillus | Piciformes | 46 | 96,564 | sequenced |
downy woodpecker | Picoides pubescens | Piciformes | 46 | 32,059 | sequenced |
grey crowned crane | Balearica regulorum | Gruiformes | 37 | 17,144 | sequenced |
emu | Dromaius novaehollandiae | Casuariiformes | 31 | 123 | sequenced |
red-legged seriema | Cariama cristata | Cariamiformes | 52 | 31,967 | sequenced |
great potoo | Nyctibius grandis | Nyctibiiformes | 38 | 92,333 | sequenced |
European nightjar | Caprimulgus europaeus | Nyctibiiformes | 37 | 101,473 | – |
cuckoo | Cuculus canorus | Cuculiformes | 41 | 32,170 | sequenced |
red junglefowl (chicken) | Gallus gallus | Galliformes | 41 | 111 | sequenced |
turkey | Meleagris gallopavo | Galliformes | 36 | 112 | sequenced |
Japanese quail | Coturnix japonica | Galliformes | 29 | 113 | sequenced |
helmeted guineafowl | Numida meleagris | Galliformes | 30 | 14,094 | sequenced |
budgerigar | Melopsittacus undulatus | Psittaciformes | 32 | 10,765 | sequenced |
kākāpō | Strigops habroptila | Psittaciformes | 25 | 75,115 | sequenced |
monk parakeet | Myiopsitta monachus | Psittaciformes | 25 | 40,151 | – |
blue-fronted amazon | Amazona aestiva | Psittaciformes | 29 | 40,915 | – |
Abyssinian ground hornbill | Bucorvus abyssinicus | Bucerotiformes | 41 | 86,364 | – |
northern carmine bee-eater | Merops nubicus | Coraciiformes | 36 | 31,978 | sequenced |
razorbill | Alca torda | Charadriiformes | 26 | 84,534 | sequenced |
European golden plover | Pluvialis apricaria | Charadriiformes | 38 | 100,067 | sequenced |
common tern | Sterna hirundo | Charadriiformes | 27 | 66,333 | sequenced |
yellow-throated sandgrouse | Pterocles gutturalis | Pterocliformes | 36 | 32,063 | sequenced |
gyrfalcon | Falco rusticolus | Falconiformes | 24 | 43,830 | sequenced |
peregrine falcon | Falco peregrinus | Falconiformes | 19 | 132 | sequenced |
lesser kestrel | Falco naumanni | Falconiformes | 27 | 44,448 | sequenced |
Anna’s hummingbird | Calypte anna | Apodiformes | 33 | 32,060 | sequenced |
red-crested turaco | Tauraco erythrolophus | Musophagiformes | 33 | 32,247 | – |
American flamingo | Phoenicopterus ruber | Phoenicopteriformes | 33 | 31,928 | – |
golden eagle | Aquila chrysaetos | Accipitriformes | 28 | 32,031 | – |
Species | Karyotype (2n) | R1, % 1 | Inversions | Duplications | Translocations | Fusions | Fissions | Total Rearrangements | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Intra | Inter | Intra | Inter | All | |||||||
chicken | 78 | 100 | 3 | – | – | – | 1 | – | 3 | 1 | 4 |
guineafowl | 78 | 100 | 4 | – | – | – | 2 | – | 4 | 2 | 6 |
duck | 80 | 85.1 | 8 | – | – | – | – | – | 8 | 0 | 8 |
pigeon | 80 | 93.2 | 11 | – | – | – | – | – | 11 | 0 | 11 |
houbara | 78 | 87.8 | 9 | – | – | – | – | – | 9 | 0 | 9 |
blackbird | 80 | 78.4 | 9 | – | – | – | – | 1 | 9 | 1 | 10 |
canary | 80 | 73.0 | 4 | 2 | 2 | 2 | – | 1 | 8 | 3 | 11 |
woodcock | 96 | 73.0 | 8 | – | – | 3 | – | 5 | 8 | 8 | 16 |
Chromosomes | No. of Probes Used | No. of Successful Probes | Percentage of Successful DNA Hybridization | No. of Positive BAC Clones | Positive BAC Clones per Probe |
---|---|---|---|---|---|
Macrochromosomes (GGA1–GGA5) | 147 | 46 | 31.29% | 390 | 8.48 |
Intermediate chromosomes (GGA6–GGA10) | 18 | 5 | 27.78% | 40 | 8.00 |
Microchromosomes (GGA11–GGA28, GGA33) | 43 | 20 | 46.51% | 178 | 8.90 |
Sex chromosomes (GGAZ, GGAW) | 8 | 6 | 75.00% | 32 | 5.33 |
Cross-Species DNA Hybridization | Divergence Time, Million Years Ago 1 | No. of Probes by Species | No. of Successful Probes | Percentage Relative to Probes by Species | Probe Sequence Type | No. of Successful Probes by Type | Percentage of Relatively Successful Probes |
---|---|---|---|---|---|---|---|
Chicken–sparrow | 98.0 | 194 | 65 | 33.5% | chicken overgos | ||
coding regions | 47 | 72.3% | |||||
5’ and 3’ UTR | 6 | 9.2% | |||||
introns | 4 | 6.1% | |||||
other non-coding regions | 8 | 12.3% | |||||
Turkey-spa–row | 98.0 | 19 | 9 | 47.4% | turkey overgos | ||
coding regions | 9 | 100% | |||||
Zebra finch–sparrow | 38.0 | 3 | 3 | 100% | zebra finch overgos | ||
coding regions | 3 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griffin, D.K.; Kretschmer, R.; Larkin, D.M.; Srikulnath, K.; Singchat, W.; Narushin, V.G.; O’Connor, R.E.; Romanov, M.N. Avian Cytogenomics: Small Chromosomes, Long Evolutionary History. Genes 2025, 16, 1001. https://doi.org/10.3390/genes16091001
Griffin DK, Kretschmer R, Larkin DM, Srikulnath K, Singchat W, Narushin VG, O’Connor RE, Romanov MN. Avian Cytogenomics: Small Chromosomes, Long Evolutionary History. Genes. 2025; 16(9):1001. https://doi.org/10.3390/genes16091001
Chicago/Turabian StyleGriffin, Darren K., Rafael Kretschmer, Denis M. Larkin, Kornsorn Srikulnath, Worapong Singchat, Valeriy G. Narushin, Rebecca E. O’Connor, and Michael N. Romanov. 2025. "Avian Cytogenomics: Small Chromosomes, Long Evolutionary History" Genes 16, no. 9: 1001. https://doi.org/10.3390/genes16091001
APA StyleGriffin, D. K., Kretschmer, R., Larkin, D. M., Srikulnath, K., Singchat, W., Narushin, V. G., O’Connor, R. E., & Romanov, M. N. (2025). Avian Cytogenomics: Small Chromosomes, Long Evolutionary History. Genes, 16(9), 1001. https://doi.org/10.3390/genes16091001