Variants in GSTZ1 Gene Underlying Maleylacetoacetate Isomerase Deficiency: Characterization of Two New Individuals and Literature Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Newborn Screening
2.2. Genetic Analysis and Bioinformatic Analysis
2.3. Splice-Site Analysis
3. Results
Clinical Description and Molecular Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HT-1 | Tyrosinemia type I |
HT-2 | Tyrosinemia type II |
HT-3 | Tyrosinemia type III |
FAH | Fumarylacetoacetate Hydrolase |
NTBC | Nitisinone |
NBS | Newborn Screening |
SA | Succinylacetone |
DBS | Dried Blood Spot |
MAAI | Maleylacetoacetate Isomerase |
MAAID | Maleylacetoacetate Isomerase Deficiency |
NGS | Next-Generation Sequencing |
ACMG | American College of Medical Genetics |
VUS | Variant of Sncertain Significance |
LP | Likely Pathogenic |
HCC | Human Hepatocellular Carcinoma |
DCA | Dichloroacetate |
References
- van Spronsen, F.J.; Thomasse, Y.; Smit, G.P.; Leonard, J.V.; Clayton, P.T.; Fidler, V.; Berger, R.; Heymans, H.S. Hereditary tyrosinemia type I: A new clinical classification with difference in prognosis on dietary treatment. Hepatology 1994, 20, 1187–1191. [Google Scholar] [CrossRef]
- De Laet, C.; Dionisi-Vici, C.; Leonard, J.V.; McKiernan, P.; Mitchell, G.; Monti, L.; de Baulny, H.O.; Pintos-Morell, G.; Spiekerkötter, U. Recommendations for the management of tyrosinaemia type 1. Orphanet J. Rare Dis. 2013, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- La Marca, G.; Malvagia, S.; Pasquini, E.; Cavicchi, C.; Morrone, A.; Ciani, F.; Funghini, S.; Villanelli, F.; Zammarchi, E.; Guerrini, R. Newborn Screening for Tyrosinemia Type I: Further Evidence that Succinylacetone Determination on Blood Spot Is Essential. JIMD Rep. 2011, 1, 107–109. [Google Scholar] [CrossRef]
- De Jesús, V.R.; Adam, B.W.; Mandel, D.; Cuthbert, C.D.; Matern, D. Succinylacetone as primary marker to detect tyrosinemia type I in newborns and its measurement by newborn screening programs. Mol. Genet. Metab. 2014, 113, 67–75. [Google Scholar] [CrossRef]
- Yang, H.; Cyr, D.; Laframboise, R.; Wang, S.P.; Soucy, J.-F.; Berthier, M.-T.; Giguère, Y.; Waters, P.J.; Mitchell, G.A. Mildly elevated succinylacetone and normal liver function in compound heterozygotes with pathogenic and pseudodeficient FAH alleles. Mol. Genet. Metab. Rep. 2018, 14, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Al-Hertani, W.; Cyr, D.; Laframboise, R.; Parizeault, G.; Wang, S.P.; Rossignol, F.; Berthier, M.-T.; Giguère, Y.; Waters, P.J.; et al. Hypersuccinylacetonaemia and normal liver function in maleylacetoacetate isomerase deficiency. J. Med. Genet. 2017, 54, 241–247. [Google Scholar] [CrossRef]
- Gramer, G.; Fang-Hoffmann, J.; Kohlmüller, D.; Okun, J.G.; Prokisch, H.; Meitinger, T.; Hoffmann, G.F. New Cases of Maleylacetoacetate Isomerase Deficiency with Detection by Newborn Screening and Natural History over 32 Years: Experience from a German Newborn Screening Center. Int. J. Neonatal Screen. 2024, 10, 17. [Google Scholar] [CrossRef]
- Ruoppolo, M.; Scolamiero, E.; Caterino, M.; Mirisola, V.; Franconi, F.; Campesi, I. Female and male human babies have distinct blood metabolomic patterns. Mol. BioSyst. 2015, 11, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Scolamiero, E.; Albano, L.; Ansalone, A.; Caterino, M.; Corbo, G.; di Girolamo, M.G.; Di Stefano, C.; Durante, A.; Franzese, G. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol. BioSyst. 2015, 11, 1525–1535. [Google Scholar] [CrossRef]
- Ruoppolo, M.; Scolamiero, E.; Pecce, R.; Caterino, M.; Cherchi, S.; Mercuro, G.; Tonolo, G.; Franconi, F. Serum metabolomic profiles suggest influence of sex and oral contraceptive use. Am. J. Transl. Res. 2014, 6, 614–624. [Google Scholar]
- Ruoppolo, M.; Malvagia, S.; Boenzi, S.; Carducci, C.; Dionisi-Vici, C.; Teofoli, F.; Burlina, A.; Angeloni, A.; Aronica, T.; Bordugo, A.; et al. Expanded Newborn Screening in Italy Using Tandem Mass Spectrometry: Two Years of National Experience. Int. J. Neonatal Screen. 2022, 8, 47. [Google Scholar] [CrossRef]
- Lombardo, B.; D’Argenio, V.; Monda, E.; Vitale, A.; Caiazza, M.; Sacchetti, L.; Pastore, L.; Limongelli, G.; Frisso, G.; Mazzaccara, C. Genetic analysis resolves differential diagnosis of a familial syndromic dilated cardiomyopathy: A new case of Alström syndrome. Mol. Genet. Genom. Med. 2020, 8, e1260. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Frisso, G.; Detta, N.; Coppola, P.; Mazzaccara, C.; Pricolo, M.R.; D’Onofrio, A.; Limongelli, G.; Calabrò, R.; Salvatore, F. Functional Studies and In Silico Analyses to Evaluate Non-Coding Variants in Inherited Cardiomyopathies. Int. J. Mol. Sci. 2016, 17, 1883. [Google Scholar] [CrossRef] [PubMed]
- Berger, R. Tyrosinemia type Ib caused by maleylacetoacetate isomerase deficiency: A new enzyme defect. Pediat. Res. 1998, 23, 328A. [Google Scholar]
- Li, J.; Wang, Q.; Yang, Y.; Lei, C.; Yang, F.; Liang, L.; Chen, C.; Xia, J.; Wang, K.; Tang, N. GSTZ1 deficiency promotes hepatocellular carcinoma proliferation via activation of the KEAP1/NRF2 pathway. J. Exp. Clin. Cancer Res. 2019, 38, 438. [Google Scholar] [CrossRef]
- Luo, H.; Wang, Q.; Yang, F.; Liu, R.; Gao, Q.; Cheng, B.; Lin, X.; Huang, L.; Chen, C.; Xiang, J. Signaling metabolite succinylacetone activates HIF-1α and promotes angiogenesis in GSTZ1-deficient hepatocellular carcinoma. JCI Insight 2023, 8, e164968. [Google Scholar] [CrossRef]
- Stinton, C.; Geppert, J.; Freeman, K.; Clarke, A.; Johnson, S.; Fraser, H.; Sutcliffe, P.; Taylor-Phillips, S. Newborn screening for Tyrosinemia type 1 using succinylacetone—A systematic review of test accuracy. Orphanet J. Rare Dis. 2017, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Priestley, J.R.C.; Alharbi, H.; Callahan, K.P.; Guzman, H.; Payan-Walters, I.; Smith, L.; Ficicioglu, C.; Ganetzky, R.D.; Ahrens-Nicklas, R.C. The Importance of Succinylacetone: Tyrosinemia Type I Presenting with Hyperinsulinism and Multiorgan Failure Following Normal Newborn Screening. Int. J. Neonatal Screen. 2020, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, A.M.; Vliet, K.E.-V.; Heiner-Fokkema, M.R.; Bodewes, F.A.J.A.; Bos, D.K.; Zsiros, J.; van Aerde, K.J.; Koop, K.; van Spronsen, F.J.; Lubout, C.M.A. A False-Negative Newborn Screen for Tyrosinemia Type 1-Need for Re-Evaluation of Newborn Screening with Succinylacetone. Int. J. Neonatal Screen. 2023, 9, 66. [Google Scholar] [CrossRef]
- Van Vliet, K.; Dijkstra, A.M.; Bouva, M.J.; van der Krogt, J.; Bijsterveld, K.; van der Sluijs, F.; de Sain-van der Velden, M.G.; Koop, K.; Rossi, A.; Thomas, J.A. Maleic acid is a biomarker for maleylacetoacetate isomerase deficiency; implications for newborn screening of tyrosinemia type 1. J. Inher. Metab. Disea. 2023, 46, 1104–1113. [Google Scholar] [CrossRef] [PubMed]
- Kingsmore, S.F.; Smith, L.D.; Kunard, C.M.; Bainbridge, M.; Batalov, S.; Benson, W.; Blincow, E.; Caylor, S.; Chambers, C.; Del Angel, G.; et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am. J. Hum. Genet. 2022, 109, 1605–1619. [Google Scholar] [CrossRef] [PubMed]
PATIENT | Follow-Up (Main Points) | ||||||
---|---|---|---|---|---|---|---|
Biochemical/ Clinical Data | NBS Recall | First Evaluation | I↑ | II↓ | III | Last Evaluation | |
P1 | Age (months) | 0.1 | 0.7 | 0.9 | 1.1 | 33 | 43 |
SA (µmol/L) | 2.08 | 1.18 | 8.92 | 0.5 | Undetectable | 1.5 | |
Tyr (µmol/L) | 36 | 27 | N.A. | 758 | 69 | 74 | |
AST (U/L) | - | 72 | 49 | 70 | 30 | 45 | |
ALT (U/L) | - | 28 | 31 | 59 | 18 | 49 | |
GGT (U/L) | - | 160 | 150 | 196 | 18 | 24 | |
AFP (ng/mL) | - | 2467 | - | - | 15.2 | 3.1 | |
SA urine µM/mM creatinine | - | 1 | 36.5 | - | - | 5 | |
Liver Ultrasound | - | - | Regular size without focal lesions | - | Mild hepatomegaly (right lobe LD 130 mm) without focal lesions | - | |
Weight (Kg/centile) | 3.950 (75°) | 4.800 (75°) | - | 4.900 (75°) | 16.800 (90°) | 22 (>95°) | |
Length (cm/centile) | - | 58 (90–95°) | - | 58 (90°) | 99 (90°) | 103(75°) | |
Weight/Length (centile) | - | 50° | - | 25° | - | - | |
Head Circumference (cm/centile) | - | 38 (75°) | - | 39 (75°) | - | - | |
BMI (centile) | - | - | - | - | 16.6 (50–75°) | 21.1, (>95°) | |
P2 | |||||||
Age (months) | 0.1 | 0.3 | 1 | 5.5 | 12 | 18 | |
SA (µmol/L) | 2.24 | 1.48 | 0.48 | - | - | 0.49 | |
Tyr (µmol/L) | 24.5 | 79 | 128 | - | 73 | 102 | |
AST (U/L) | - | 92 | 39 | 55 | 47 | -- | |
ALT (U/L) | - | 21 | 20 | 27 | 22 | -- | |
GGT (U/L) | - | 64 | 101 | 11 | 10 | -- | |
AFP (ng/mL) | - | - | - | - | - | 8.30 | |
Weight (Kg/centile) | 2.940 | 2.980 (25°) | 3.900 (25–50°) | 6.060 (10–25°) | 7800 (10–25°) | 9.320 (5–10°) | |
Length (cm/centile) | 51 (50–75°) | 51 (50–75°) | 53 (25–50°) | 64 (25°) | 73 (25–50°) | 79 (25–50°) | |
Weight/Length (centile) | 5° | 5° | 25–50° | 25° | 5–10° | 5–10° | |
Head Circumference (cm/centile) | - | - | - | 41.3 (10–25°) | - | 45 (10–25°) | |
Liver Ultrasound | - | - | Regular size without focal lesions | - | - | Regular size without focal lesions | |
Heart Ultrasound | - | - | Ostium secundum atrial septal defect with moderate shunt | - | normal | - |
Case | Age at Last Follow-Up (Years) | Sex | Allele 1 | Allele 2 | Clinical Features | Treatment | Reference |
---|---|---|---|---|---|---|---|
1 | 13.3 | M | c.259C>T (p.Arg87Ter) | c.68-12G>A | Asymptomatic | None | [6] |
2 | 10.3 | F | c.449C>T (p.Ala150Val) | c.449C>T (p.Ala150Val) | Asymptomatic | None | [6] |
3 | 10 | M | c.449C>T (p.Ala150Val) | c.449C>T (p.Ala150Val) | Asymptomatic | None | [6] |
4 * | 2.5 | F | c.449C>T (p.Ala150Val) | c.449C>T (p.Ala150Val) | Asymptomatic | None | [6] |
5 * | 1.6 | F | c.449C>T (p.Ala150Val) | c.449C>T (p.Ala150Val) | Asymptomatic | None | [6] |
6 | 1.4 | M | c.295G>A (p.Val99Met | N.A. | Asymptomatic | None | [6] |
7 | 1.3 | M | c.136−2A>G | c.136−2A>G | Microcephaly, short stature | None | [7] |
8 | 32 | M | c.136−2A>G | c.136−2A>G | Asymptomatic | None | [7] |
9 | 3.5 | M | c.68-12G>A | c.464_471delinsCTGGG (p.Val155_Asp157delinsAlaGly) | Obesity | First NTBC and protein restriction, then discontinued | Current report |
10 | 1 | F | c.68-12G>A | c.295G>A (p.Val99Met) | Asymptomatic | None | Current report |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barretta, F.; Uomo, F.; Verde, A.; Fisco, M.; Gallo, G.; Albano, L.; Crisci, D.; Mazzaccara, C.; Strisciuglio, P.; Ruoppolo, M.; et al. Variants in GSTZ1 Gene Underlying Maleylacetoacetate Isomerase Deficiency: Characterization of Two New Individuals and Literature Review. Genes 2025, 16, 1009. https://doi.org/10.3390/genes16091009
Barretta F, Uomo F, Verde A, Fisco M, Gallo G, Albano L, Crisci D, Mazzaccara C, Strisciuglio P, Ruoppolo M, et al. Variants in GSTZ1 Gene Underlying Maleylacetoacetate Isomerase Deficiency: Characterization of Two New Individuals and Literature Review. Genes. 2025; 16(9):1009. https://doi.org/10.3390/genes16091009
Chicago/Turabian StyleBarretta, Ferdinando, Fabiana Uomo, Alessandra Verde, Mariagrazia Fisco, Giovanna Gallo, Lucia Albano, Daniela Crisci, Cristina Mazzaccara, Pietro Strisciuglio, Margherita Ruoppolo, and et al. 2025. "Variants in GSTZ1 Gene Underlying Maleylacetoacetate Isomerase Deficiency: Characterization of Two New Individuals and Literature Review" Genes 16, no. 9: 1009. https://doi.org/10.3390/genes16091009
APA StyleBarretta, F., Uomo, F., Verde, A., Fisco, M., Gallo, G., Albano, L., Crisci, D., Mazzaccara, C., Strisciuglio, P., Ruoppolo, M., Fecarotta, S., Parenti, G., Frisso, G., & Rossi, A. (2025). Variants in GSTZ1 Gene Underlying Maleylacetoacetate Isomerase Deficiency: Characterization of Two New Individuals and Literature Review. Genes, 16(9), 1009. https://doi.org/10.3390/genes16091009