Teashirt and C-Terminal Binding Protein Interact to Regulate Drosophila Eye Development
Abstract
1. Introduction
2. Materials and Methods
2.1. Drosophila melanogaster Fly Strains and Fly Husbandry
2.2. In Vivo EGFP Tagging at the 5′ of the Genomic Tsh Gene by the CRISPR-Cas9 Method to Generate N-Terminal EGFP-Tsh Fusion Protein
2.3. In Vivo 5′ FLAG Tagging of the Ctbp Gene by BAC Recombineering to Generate N-Terminal FLAG-CtBP Fusion Protein
2.4. Immunohistochemistry and Confocal Microscopy
2.5. Scanning Electron Microscopy (SEM)
2.6. Quantification of Ommatidia of Adult Eye SEM Images
2.7. Light Microscopy
2.8. Co-Immunoprecipitation (Co-IP)
2.9. GST Pulldown Assay
2.10. PCR, Restriction Digestion, Cloning, Plasmid Purification, and Transformation
2.11. Western Blot
3. Results
3.1. Ey, Tsh, and CtBP Exhibit Overlapping Expression in the Drosophila Larval Eye–Antennal Disc
3.2. Tsh and CtBP Interact Genetically During Drosophila Eye Development
3.3. Tsh Associates with CtBP in the Third Instar Eye–Antennal Disc in Vivo
3.4. Tsh Can Directly Bind to CtBP in Vitro
4. Discussion
4.1. CRISPR and BAC Recombineering Are Useful Techniques to Produce Functional Tagged Proteins from Tagged Genes in the Genome
4.2. Effect of Tsh and CtBP Interaction on Eye Development Varies with Their Relative Dosage
4.3. Both Coimmunoprecipitation and GST Pulldown Assays Provide Evidence for Tsh and CtBP Molecular Interaction in the Eye–Antennal Disc
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Silver, S.J.; Rebay, I. Signaling circuitries in development: Insights from the retinal determination gene network. Development 2005, 132, 3–13. [Google Scholar] [CrossRef]
- Baker, N.E.; Firth, L.C. Retinal determination genes function along with cell-cell signals to regulate Drosophila eye development: Examples of multi-layered regulation by master regulators. Bioessays 2011, 33, 538–546. [Google Scholar] [CrossRef]
- Pappu, K.; Mardon, G. Retinal specification and determination in Drosophila. In Results and Problems in Cell Differentiation; Springer: Berlin/Heidelberg, Germany, 2002; Volume 37, pp. 5–20. [Google Scholar]
- Fristrom, D.; Fristrom, J.W. The Metamorphic Development of the Adult Epidermis; CSH Press: New York, NY, USA, 1993; Volume 1–2. [Google Scholar]
- Kumar, J.P. Retinal determination the beginning of eye development. Curr. Top. Dev. Biol. 2010, 93, 1–28. [Google Scholar]
- Weasner, B.P.; Anderson, J.; Kumar, J.P. The Eye Specification Network in Drosophila. Proc. Indian Natl. Sci. Acad. B Biol. Sci. 2004, B70, 517–530. [Google Scholar] [PubMed]
- Bessa, J.; Casares, F. Restricted teashirt expression confers eye-specific responsiveness to Dpp and Wg signals during eye specification in Drosophila. Development 2005, 132, 5011–5020. [Google Scholar] [CrossRef][Green Version]
- Kenyon, K.L.; Ranade, S.S.; Curtiss, J.; Mlodzik, M.; Pignoni, F. Coordinating proliferation and tissue specification to promote regional identity in the Drosophila head. Dev. Cell 2003, 5, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Moses, K.E. Drosophila Eye Development, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 37. [Google Scholar]
- Treisman, J.E. Retinal differentiation in Drosophila. Wiley Interdiscip. Rev. Dev. Biol. 2013, 2, 545–557. [Google Scholar] [CrossRef]
- Roignant, J.Y.; Treisman, J.E. Pattern formation in the Drosophila eye disc. Int. J. Dev. Biol. 2009, 53, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Carthew, R.W. Pattern formation in the Drosophila eye. Curr. Opin. Genet. Dev. 2007, 17, 309–313. [Google Scholar] [CrossRef]
- Curtiss, J.; Mlodzik, M. Morphogenetic furrow initiation and progression during eye development in Drosophila: The roles of decapentaplegic, hedgehog and eyes absent. Development 2000, 127, 1325–1336. [Google Scholar] [CrossRef]
- Lebovitz, R.M.; Ready, D.F. Ommatidial development in Drosophila eye disc fragments. Dev. Biol. 1986, 117, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Wolff, T.; Ready, D.F. The beginning of pattern formation in the Drosophila compound eye: The morphogenetic furrow and the second mitotic wave. Development 1991, 113, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Frankfort, B.J.; Mardon, G. R8 development in the Drosophila eye: A paradigm for neural selection and differentiation. Development 2002, 129, 1295–1306. [Google Scholar] [CrossRef]
- Katz, B.; Minke, B. Drosophila photoreceptors and signaling mechanisms. Front. Cell. Neurosci. 2009, 3, 564. [Google Scholar] [CrossRef]
- Ready, D.F.; Hanson, T.E.; Benzer, S. Development of the Drosophila retina, a neurocrystalline lattice. Dev. Biol. 1976, 53, 217–240. [Google Scholar] [CrossRef]
- Datta, R.R.; Lurye, J.M.; Kumar, J.P. Restriction of ectopic eye formation by Drosophila teashirt and tiptop to the developing antenna. Dev. Dyn. 2009, 238, 2202–2210. [Google Scholar] [CrossRef]
- Bessa, J.; Gebelein, B.; Pichaud, F.; Casares, F.; Mann, R.S. Combinatorial control of Drosophila eye development by eyeless, homothorax, and teashirt. Genes. Dev. 2002, 16, 2415–2427. [Google Scholar] [CrossRef]
- Halder, G.; Callaerts, P.; Gehring, W.J. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 1995, 267, 1788–1792. [Google Scholar] [CrossRef]
- Hoang, C.Q.; Burnett, M.E.; Curtiss, J. Drosophila CtBP regulates proliferation and differentiation of eye precursors and complexes with Eyeless, Dachshund, Dan, and Danr during eye and antennal development. Dev. Dyn. 2010, 239, 2367–2385. [Google Scholar] [CrossRef]
- Pan, D.; Rubin, G.M. Targeted expression of teashirt induces ectopic eyes in Drosophila. Proc. Natl. Acad. Sci. USA 1998, 95, 15508–15512. [Google Scholar] [CrossRef] [PubMed]
- Mardon, G.; Solomon, N.M.; Rubin, G.M. dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development 1994, 120, 3473–3486. [Google Scholar] [CrossRef] [PubMed]
- Quiring, R.; Walldorf, U.; Kloter, U.; Gehring, W.J. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 1994, 265, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Curtiss, J.; Burnett, M.; Mlodzik, M. distal antenna and distal antenna-related function in the retinal determination network during eye development in Drosophila. Dev. Biol. 2007, 306, 685–702. [Google Scholar] [CrossRef]
- Desplan, C. Eye development: Governed by a dictator or a junta? Cell 1997, 91, 861–864. [Google Scholar] [CrossRef]
- Banerjee, S.J.; Curtiss, J. Dachshund and C-terminal Binding Protein bind directly during. Micropubl. Biol. 2024, 2024, 10-7912. [Google Scholar]
- Czerny, T.; Halder, G.; Kloter, U.; Souabni, A.; Gehring, W.J.; Busslinger, M. twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol. Cell 1999, 3, 297–307. [Google Scholar] [CrossRef]
- Gehring, W.J. The genetic control of eye development and its implications for the evolution of the various eye-types. Int. J. Dev. Biol. 2002, 46, 65–73. [Google Scholar] [CrossRef]
- Halder, G.; Callaerts, P.; Flister, S.; Walldorf, U.; Kloter, U.; Gehring, W.J. Eyeless initiates the expression of both sine oculis and eyes absent during Drosophila compound eye development. Development 1998, 125, 2181–2191. [Google Scholar] [CrossRef]
- Clements, J.; Hens, K.; Merugu, S.; Dichtl, B.; de Couet, H.G.; Callaerts, P. Mutational analysis of the eyeless gene and phenotypic rescue reveal that an intact Eyeless protein is necessary for normal eye and brain development in Drosophila. Dev. Biol. 2009, 334, 503–512. [Google Scholar] [CrossRef]
- Jiao, R.; Daube, M.; Duan, H.; Zou, Y.; Frei, E.; Noll, M. Headless flies generated by developmental pathway interference. Development 2001, 128, 3307–3319. [Google Scholar] [CrossRef] [PubMed]
- Kronhamn, J.; Frei, E.; Daube, M.; Jiao, R.; Shi, Y.; Noll, M.; Rasmuson-Lestander, A. Headless flies produced by mutations in the paralogous Pax6 genes eyeless and twin of eyeless. Development 2002, 129, 1015–1026. [Google Scholar] [CrossRef]
- Weasner, B.M.; Weasner, B.; DeYoung, S.M.; Michaels, S.D.; Kumar, J.P. Transcriptional activities of the Pax6 gene eyeless regulate tissue specificity of ectopic eye formation in Drosophila. Dev. Biol. 2009, 334, 492–502. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Phippen, T.M.; Sweigart, A.L.; Moniwa, M.; Krumm, A.; Davie, J.R.; Parkhurst, S.M. Drosophila C-terminal binding protein functions as a context-dependent transcriptional co-factor and interferes with both mad and groucho transcriptional repression. J. Biol. Chem. 2000, 275, 37628–37637. [Google Scholar] [CrossRef]
- Manfroid, I.; Caubit, X.; Kerridge, S.; Fasano, L. Three putative murine Teashirt orthologues specify trunk structures in Drosophila in the same way as the Drosophila teashirt gene. Development 2004, 131, 1065–1073. [Google Scholar] [CrossRef]
- Caubit, X.; Lye, C.M.; Martin, E.; Coré, N.; Long, D.A.; Vola, C.; Jenkins, D.; Garratt, A.N.; Skaer, H.; Woolf, A.S.; et al. Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development 2008, 135, 3301–3310. [Google Scholar] [CrossRef]
- Caubit, X.; Thoby-Brisson, M.; Voituron, N.; Filippi, P.; Bévengut, M.; Faralli, H.; Zanella, S.; Fortin, G.; Hilaire, G.; Fasano, L. Teashirt 3 regulates development of neurons involved in both respiratory rhythm and airflow control. J. Neurosci. 2010, 30, 9465–9476. [Google Scholar] [CrossRef]
- Caubit, X.; Gubellini, P.; Andrieux, J.; Roubertoux, P.L.; Metwaly, M.; Jacq, B.; Fatmi, A.; Had-Aissouni, L.; Kwan, K.Y.; Salin, P.; et al. TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons. Nat. Genet. 2016, 48, 1359–1369. [Google Scholar] [CrossRef]
- Chinnadurai, G. The transcriptional corepressor CtBP: A foe of multiple tumor suppressors. Cancer Res. 2009, 69, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Poortinga, G.; Watanabe, M.; Parkhurst, S.M. Drosophila CtBP: A Hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression. EMBO J. 1998, 17, 2067–2078. [Google Scholar] [CrossRef]
- Fasano, L.; Röder, L.; Coré, N.; Alexandre, E.; Vola, C.; Jacq, B.; Kerridge, S. The gene teashirt is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs. Cell 1991, 64, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Röder, L.; Vola, C.; Kerridge, S. The role of the teashirt gene in trunk segmental identity in Drosophila. Development 1992, 115, 1017–1033. [Google Scholar] [CrossRef] [PubMed]
- Datta, R.R.; Weasner, B.P.; Kumar, J.P. A dissection of the teashirt and tiptop genes reveals a novel mechanism for regulating transcription factor activity. Dev. Biol. 2011, 360, 391–402. [Google Scholar] [CrossRef][Green Version]
- Bessa, J.; Carmona, L.; Casares, F. Zinc-finger paralogues tsh and tio are functionally equivalent during imaginal development in Drosophila and maintain their expression levels through auto- and cross-negative feedback loops. Dev. Dyn. 2009, 238, 19–28. [Google Scholar] [CrossRef]
- Singh, A.; Kango-Singh, M.; Sun, Y.H. Eye suppression, a novel function of teashirt, requires Wingless signaling. Development 2002, 129, 4271–4280. [Google Scholar] [CrossRef]
- Rajput, M.; Momin, T.; Singh, A.; Banerjee, S.; Villasenor, A.; Sheldon, J.; Paudel, P.; Rajput, R. Determining the association between gut microbiota and its metabolites with higher intestinal Immunoglobulin A response. Vet. Anim. Sci. 2023, 19, 100279. [Google Scholar] [CrossRef]
- Singh, A.; Kango-Singh, M.; Choi, K.-W.; Sun, Y. Dorso-ventral asymmetric functions of teashirt in Drosophila eye development depend on spatial cues provided by early DV patterning genes. Mech. Dev. 2004, 121, 365–370. [Google Scholar] [CrossRef]
- Fang, M.; Li, J.; Blauwkamp, T.; Bhambhani, C.; Campbell, N.; Cadigan, K.M. C-terminal-binding protein directly activates and represses Wnt transcriptional targets in Drosophila. EMBO J. 2006, 25, 2735–2745. [Google Scholar] [CrossRef]
- Bhambhani, C.; Chang, J.L.; Akey, D.L.; Cadigan, K.M. The oligomeric state of CtBP determines its role as a transcriptional co-activator and co-repressor of Wingless targets. EMBO J. 2011, 30, 2031–2043. [Google Scholar] [CrossRef]
- Chinnadurai, G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol. Cell 2002, 9, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Chinnadurai, G. CtBP family proteins: More than transcriptional corepressors. Bioessays 2003, 25, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Govindaswamy, C. CtBP Family Proteins: Unique Transcriptional Regulators in the Nucleus with Diverse Cytosolic Functions; Landes Bioscience: Austin, TX, USA, 2007; 2000–2013 Madame Curie Bioscience Database. [Google Scholar]
- Chinnadurai, G. Transcriptional regulation by C-terminal binding proteins. Int. J. Biochem. Cell Biol. 2007, 39, 1593–1607. [Google Scholar] [CrossRef] [PubMed]
- Kuppuswamy, M.; Vijayalingam, S.; Zhao, L.-J.; Zhou, Y.; Subramanian, T.; Ryerse, J.; Chinnadurai, G. Role of the PLDLS-binding cleft region of CtBP1 in recruitment of core and auxiliary components of the corepressor complex. Mol. Cell Biol. 2008, 28, 269–281. [Google Scholar] [CrossRef][Green Version]
- Kumar, V.; Carlson, J.E.; Ohgi, K.A.; Edwards, T.A.; Rose, D.W.; Escalante, C.R.; Rosenfeld, M.G.; Aggarwal, A.K. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol. Cell 2002, 10, 857–869. [Google Scholar] [CrossRef]
- Nibu, Y.; Zhang, H.; Levine, M. Interaction of short-range repressors with Drosophila CtBP in the embryo. Science 1998, 280, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Sawada, J.I.; Sui, G.; Affar, E.B.; Whetstine, J.R.; Lan, F.; Ogawa, H.; Po-Shan Luke, M.; Nakatani, Y.; Shi, Y. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 2003, 422, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.; Crossley, M. The CtBP family: Enigmatic and enzymatic transcriptional co-repressors. Bioessays 2001, 23, 683–690. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Arnosti, D.N. Conserved catalytic and C-terminal regulatory domains of the C-terminal binding protein corepressor fine-tune the transcriptional response in development. Mol. Cell Biol. 2011, 31, 375–384. [Google Scholar] [CrossRef][Green Version]
- Eusebio, N.; Tavares, L.; Pereira, P.S. CtBP represses Dpp-dependent Mad activation during Drosophila eye development. Dev. Biol. 2018, 442, 188–198. [Google Scholar] [CrossRef]
- Saller, E.; Kelley, A.; Bienz, M. The transcriptional repressor Brinker antagonizes Wingless signaling. Genes. Dev. 2002, 16, 1828–1838. [Google Scholar] [CrossRef][Green Version]
- Gratz, S.J.; Harrison, M.M.; Wildonger, J.; O’Connor-Giles, K.M. Precise Genome Editing of Drosophila with CRISPR RNA-Guided Cas9. Methods Mol. Biol. 2015, 1311, 335–348. [Google Scholar][Green Version]
- Gratz, S.J.; Rubinstein, C.D.; Harrison, M.M.; Wildonger, J.; O’Connor-Giles, K.M. CRISPR-Cas9 Genome Editing in Drosophila. Curr. Protoc. Mol. Biol. 2015, 111, 31.2.1–31.2.20. [Google Scholar] [CrossRef] [PubMed]
- Venken, K.J.T.; Kasprowicz, J.; Kuenen, S.; Yan, J.; Hassan, B.A.; Verstreken, P. Recombineering-mediated tagging of Drosophila genomic constructs for in vivo localization and acute protein inactivation. Nucleic Acids Res. 2008, 36, e114. [Google Scholar] [CrossRef] [PubMed]
- Venken, K.J.T.; Carlson, J.W.; Schulze, K.L.; Pan, H.; He, Y.; Spokony, R.; Wan, K.H.; Koriabine, M.; de Jong, P.J.; White, K.P.; et al. Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat. Methods 2009, 6, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Tran, H.; Dostatni, N.; Ramaekers, A. EyeHex toolbox for complete segmentation of ommatidia in fruit fly eyes. Biol. Open 2025, 14, bio061962. [Google Scholar] [CrossRef]
- Duffy, J.B. GAL4 system in Drosophila: A fly geneticist’s Swiss army knife. Genesis 2002, 34, 1–15. [Google Scholar] [CrossRef]
- Brand, A.H.; Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118, 401–415. [Google Scholar] [CrossRef]
- Mani-Telang, P.; Sutrias-Grau, M.; Williams, G.; Arnosti, D.N. Role of NAD binding and catalytic residues in the C-terminal binding protein corepressor. FEBS Lett. 2007, 581, 5241–5246. [Google Scholar] [CrossRef][Green Version]
- Hamada, F.; Bienz, M. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev. Cell 2004, 7, 677–685. [Google Scholar] [CrossRef]
Combinations | Bait Protein | Prey Protein |
---|---|---|
A. This combination was used to verify if the GST-CtBP, but not the GST (control), could pull down Tsh in vitro. | GST-CtBP | Tsh |
GST | Tsh | |
B. This combination was used to verify if the GST-Tsh, but not the GST (control), could pull down CtBP in vitro. | GST-Tsh | CtBP |
GST | CtBP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banerjee, S.J.; Curtiss, J.; Drucker, C.; Hines, H. Teashirt and C-Terminal Binding Protein Interact to Regulate Drosophila Eye Development. Genes 2025, 16, 1045. https://doi.org/10.3390/genes16091045
Banerjee SJ, Curtiss J, Drucker C, Hines H. Teashirt and C-Terminal Binding Protein Interact to Regulate Drosophila Eye Development. Genes. 2025; 16(9):1045. https://doi.org/10.3390/genes16091045
Chicago/Turabian StyleBanerjee, Surya Jyoti, Jennifer Curtiss, Chase Drucker, and Harley Hines. 2025. "Teashirt and C-Terminal Binding Protein Interact to Regulate Drosophila Eye Development" Genes 16, no. 9: 1045. https://doi.org/10.3390/genes16091045
APA StyleBanerjee, S. J., Curtiss, J., Drucker, C., & Hines, H. (2025). Teashirt and C-Terminal Binding Protein Interact to Regulate Drosophila Eye Development. Genes, 16(9), 1045. https://doi.org/10.3390/genes16091045