Screening and Stability Analysis of Reference Genes in Pastor roseus
Abstract
1. Introduction
2. Materials and Methods
2.1. P. roseus Blood Collection and Preservation
2.2. Total RNA Extraction and cDNA Synthesis
2.3. Primer Design and Standard Curve Establishment
2.4. Quantitative Real-Time PCR
2.5. Stability Analysis of Reference Genes
2.6. Relative Expression Analysis of Ephrin-B1
3. Results and Analysis
3.1. Total RNA Quality Control
3.2. Validation of Primer Specificity and Amplification Efficiency for Candidate Reference Genes
3.3. Expression Stability of Candidate Reference Genes
3.4. Comprehensive Stability Evaluation of Candidate Reference Genes
3.4.1. GeNorm Analysis
3.4.2. NormFinder Analysis
3.4.3. BestKeeper Analysis
3.4.4. RefFinder Analysis
3.4.5. Validation of Reference Gene Expression Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hobson, K.A.; Yohannes, E. Establishing elemental turnover in exercising birds using a wind tunnel: Implications for stable isotope tracking of migrants. Can. J. Zool. 2007, 85, 703–708. [Google Scholar] [CrossRef]
- Quader, S.; Raza, R.H. MigrantWatch: A citizen science programme for the study of bird migration. Indian Birds 2008, 3, 202–209. [Google Scholar]
- Yu, Y.W. The Distribution and Biological Characteristics of Sturnus roseus in Tacheng. China Acad. J Electron. Publ. House 2012, 77–80. [Google Scholar] [CrossRef]
- Yu, F.; Ji, R. The Role and Problem Analysis of Sturnus roseus by Manpower Attraction on Grasshopper Control in Xinjiang. Chin. J. Biol. Control 2007, 23, 93–96. [Google Scholar]
- Jia, B.Y.; Wu, Y.Q.; Yue, H.; Bao, X.K. Relationship Analysis on Birds and Forest Biological Control. Hubei Agric. Sci. 2018, 57, 85–89. [Google Scholar]
- Khan, M.; ud Din, S.; Karam, M.; Umrani, A.M. Flight of Rosy Straling (Pastor roseus Linnaeus, 1758) in District Harnai, Balochistan, Pakistan. Int. J. Forest Sci. 2024, 4, 241–247. [Google Scholar]
- Li, H.; Wang, W.; Lou, S.Q.; Guo, J.M.; Mu, K.S.; Guo, S.P.; Yin, B.L.; Kong, Q.G. Development and Prospects of Pastor roseus and Insectivorous Poultry for Locust Control in Yili Grasslands. Xin Jiang Xu Mu Ye 2010, 57–59. [Google Scholar] [CrossRef]
- Kumar, R. Rosy starling Pastor roseus: A first record from Uttarakhand, India. Indian Birds 2015, 10, 135–136. [Google Scholar]
- Oo, S.S.L.; Kyaw, M.; Hlaing, N.M.; Renner, S.C. New to Myanmar: The Rosy Starling Pastor roseus (Aves: Passeriformes: Sturnidae) in the Hkakabo Razi Landscape. J. Threat. Taxa 2020, 12, 15493–15494. [Google Scholar] [CrossRef]
- Fowler, M.A.; Paquet, M.; Legault, V.; Cohen, A.A.; Williams, T.D. Physiological predictors of reproductive performance in the European Starling (Sturnus vulgaris). Front. Zool. 2018, 15, 45. [Google Scholar] [CrossRef]
- Du, G.L.; Zhao, H.L.; Ma, C.Y.; Tu, X.B.; Zhang, Z.H. Effect of Pink Starlings Nest Struction and Migrating Time on Grasshoppers Management. Chin. J. Biol. Control 2018, 34, 923–926. [Google Scholar]
- Chen, L.; Guo, L.Y.; Zhang, T.; Zhang, S.S.; Gu, R.J.; Zhang, G.X.; Xie, K.Z.; Wang, J.Y. Screening of Reference Genes for RT-qPCR in Different Tissues of White King Pigeon. Sci. Technol. 2020, 56, 77–82. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, X.; Liu, X.; Li, C.; He, L.; Chen, S.; Su, J. Selection of reliable reference genes for gene expression studies on Rhododendron molle G. Don. Front. Plant Sci. 2016, 7, 1547. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Wang, J.; Liu, J.; Guo, J.; Wang, Z.; Zhang, X.; Yang, H. Selection of reliable reference genes for real-time qRT-PCR analysis of Zi geese (Anser anser domestica) gene expression. Asian-Australas. J. Anim. Sci. 2013, 26, 423. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X. Transcriptome Analyses of Magnetic and Olfactory Navigation and Orientation Genes in Pigeons (Columba livia). Master’s Thesis, Beijing Forestry University, Beijing, China, 2022. [Google Scholar]
- Zhang, B.B.; Shen, X.; Li, X.J.; Tian, Y.B.; Ouyang, H.J.; Huang, Y.M. Reference gene selection for expression studies in the reproductive axis tissues of Magang geese at different reproductive stages under light treatment. Sci. Rep. 2021, 11, 7573. [Google Scholar] [CrossRef]
- Luo, J.; Wang, A.; Cheng, Y.; Rong, H.; Guo, L.; Peng, Y.; Xu, L. SeleCtion and validation of suitable reference genes for RT-qPCR analysis in Apolygus lucorum (Hemiptera: Miridae). J. Econ. Entomol. 2020, 113, 451–460. [Google Scholar] [CrossRef]
- Li, Y.Y.; Chen, X.; Yang, J.X.; Chen, Q.; Song, T.Y.; Ge, J.Q. Evaluation of housekeeping genes as references for quantitative real-time PCR analysis of European eel, Anguilla anguilla. J. Fish Biol. 2023, 102, 141–154. [Google Scholar] [CrossRef]
- Wang, Z.H. First Insights into Breeding Ecology and Migratory Dispersal of the Pastor roseus in Xinjiang. Master’s Thesis, Minzu University of China, Beijing, China, 2012. [Google Scholar]
- Suksaweang, S.; Jiang, T.X.; Roybal, P.; Chuong, C.M.; Widelitz, R. Roles of EphB3/ephrin-B1 in feather morphogenesis. Int. J. Dev. Biol. 2012, 56, 719–728. [Google Scholar] [CrossRef]
- Ishida, K.; Mitsui, T. Role of the boundary in feather bud formation on one-dimensional bioengineered skin. APL Bioeng. 2018, 2, 016107. [Google Scholar] [CrossRef]
- Hedenström, A. Adaptations to migration in birds: Behavioural strategies, morphology and scaling effects. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 287–299. [Google Scholar] [CrossRef]
- Ma, Z.J.; Wang, Y.; Chen, J.K. Physiological ecology of migratory birds during the stopover periods. Acta Ecol. Sin. 2005, 25, 275–283. [Google Scholar]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2006, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Liu, Y.X.; Wang, S.S.; He, Y.H.; Yuan, G.Z.; Pu, X.Y.; Zhou, C. Research progress on grasshoppers in Xinjiang. Plant Prot. 2025, 51, 30–36+122. [Google Scholar]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Artika, I.M.; Dewi, Y.P.; Nainggolan, I.M.; Siregar, J.E.; Antonjaya, U. Real-time polymerase chain reaction: Current techniques, applications, and role in COVID-19 diagnosis. Genes 2022, 13, 2387. [Google Scholar] [CrossRef]
- Kozera, B.; Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 2013, 54, 391–406. [Google Scholar] [CrossRef]
- Tang, P.A.; Zhang, Q.L.; Xue, H.; Yuan, M.L. Selection of reference genes in quantitative real-time PCR of Plodia interpunctella (Lepidoptera: Pyralidae). Sci. China Life Sci. 2016, 46, 1201–1209. [Google Scholar]
- Pitsava, G.; Settas, N.; Faucz, F.R.; Stratakis, C.A. Carney triad, Carney-Stratakis syndrome, 3PAS and other tumors due to SDH deficiency. Front. Endocrinol. 2021, 12, 680609. [Google Scholar] [CrossRef]
- Olias, P.; Adam, I.; Meyer, A.; Scharff, C.; Gruber, A.D. Reference genes for quantitative gene expression studies in multiple avian species. PLoS ONE 2014, 9, e99678. [Google Scholar] [CrossRef]
- Dong, X.L.; Wang, J.Q.; Bu, D.P.; Liu, G.L.; Zhao, G.Q.; Zhang, C.L.; Yang, G.; Li, D.; Wei, H.Y.; Zhou, L.Y. The selection of reference genes in young mouse small intestine. J. Gansu Agric. Univ. 2009, 44, 20–24+29. [Google Scholar]
- Jia, B.; Ma, Y.; Pang, B.P.; Shan, Y.M.; Bao, Q.L.; Han, H.B.; Tan, Y. Screening of reference genes for quantitative real-time PCR in Lygus pratensis (Hemiptera: Miridae). Acta Entomol. Sin. 2019, 62, 1379–1391. [Google Scholar]
- Sun, H.C.; Lv, X.N.; Tong, G.X.; Yin, J.S.; Xue, S.Q.; Zhang, L.N.; Han, Y. Screening of reference genes for Real-time quantitative PCR in Stewart’s naked high—Asian-carp Oxygymnocypris stewartia. J. Dalian Ocean. Univ. 2019, 34, 370–375. [Google Scholar]
- Motonari, T.; Yoshino, Y.; Haruta, M.; Endo, S.; Sasaki, S.; Miyashita, M.; Chiba, N. Evaluating homologous recombination activity in tissues to predict the risk of hereditary breast and ovarian cancer and olaparib sensitivity. Sci. Rep. 2024, 14, 7519. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.Y.; Weng, X.X.; Li, F.; Li, F.D.; Wang, W.M.; Liu, T. Selection of Reference Genes in Small Intestinal Mucosa of Hu Lambs. Chin. J. Anim. Nutr. 2015, 27, 3478–3484. [Google Scholar]
- Hua, Y.L.; Zhang, X.Y.; Cao, H.G.; Yang, G.S.; Shi, X.E. Screening and Validation of Endogenous Reference Genes in Porcine Skeletal Muscle. Sci. Technol. 2022, 58, 224–228. [Google Scholar]
- Dong, L.; Yao, L.M.; Dai, C.J.; Zhang, L.; Huang, P.P.; Wnag, J.Y. Expression and purification of β-actin antibody from Larim-ichthys crocea. Mar. Sci. 2014, 38, 22–28. [Google Scholar]
- Wang, S.; Yao, L.; Ma, M.; Jiang, L.R.; Ke, D.Z.; Liu, L.; Li, J.X.; Jiang, R.; Wang, J.W. Stability Analysis of Reference Genes in Liver of Rats under Different Fructose Feeding Conditions. Genom. Appl. Biol. 2017, 36, 3315–3321. [Google Scholar]
- Hope, S.F.; Buenaventura, C.R.; Husain, Z.; DuRant, S.E.; Kennamer, R.A.; Hopkins, W.A.; Thompson, C.K. Limited Support for Thyroid Hormone or Corticosterone Related Gene Expression as a Proximate Mechanism of Incubation Temperature-Dependent Phenotypes in Birds. Front. Physiol. 2019, 10, 857. [Google Scholar] [CrossRef]
- Zinzow-Kramer, W.M.; Horton, B.M.; Maney, D.L. Evaluation of reference genes for quantitative real-time PCR in the brain, pituitary, and gonads of songbirds. Horm. Behav. 2014, 66, 267–275. [Google Scholar] [CrossRef]
- Pederson, T. The ribosome: A structural biology triumph offering new horizons. Faseb J. 2019, 33, 4655–4656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Shi, X.L.; Chen, C.G.; Wen, G.L.; Zhao, Z.H.; Shi, J. Selection of Reliable Reference Genes Using Quantitative Real- time PCR in Caged Layers (Gallus gallus domesticus) During the Late Laying Period Under Different GluN Treatment. J. Agric. Biotechnol. 2017, 25, 1998–2008. [Google Scholar]
- Zhang, H.R.; Chen, S.J.; Pi, J.K.; Yue, H.; Liu, Z.X.; Tang, C. mRNA transcription profile of chicken toll-like receptor 21 in vitro and in vivo under avian infectious laryngotracheitis virus infection. Chin. J. Prev. Vet. Med. 2011, 33, 965–969. [Google Scholar]
- Zhang, Y.; Chen, J.; Chen, G.; Ma, C.; Chen, H.; Gao, X.; Zhou, Z. Identification and validation of reference genes for quantitative gene expression analysis in Ophraella communa. Front. Physiol. 2020, 11, 355. [Google Scholar] [CrossRef]
- Xie, F.L.; Wang, J.Y.; Zhang, B.H. RefFinder: A web-based tool for comprehensively analyzing and identifying reference genes. Funct. Integr. Genom. 2023, 23, 125. [Google Scholar] [CrossRef]
- Hernandez, F.P.V.; Nunez, M.M.; Rivas, M.R.; Portillo, R.E.V.; Martinez, M.D.B.; Suarez, S.L.; Cardenas, F.D.R. Reference genes for RT-qPCR normalisation in different tissues, developmental stages and stress conditions of amaranth. Plant Biol. 2018, 20, 713–721. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol | Gene Name | Primer Sequences (5′-3′) | Product Size (bp) | GenBank ID | Standard Curve | E (%) | R2 |
---|---|---|---|---|---|---|---|
RPS2 | Ribosomal Protein S2 | F:GGAGTGGATTCCTGTCACC | 130 | PV870197 | y = −3.2377x + 19.031 | 104 | 0.9979 |
R:CGAGGAGCCCAGGAAGAAATC | |||||||
ACTB | β-Actin | F:CATCTACGAAGGCTATGCCC | 142 | PV870193 | y = −3.0362x + 16.948 | 113 | 0.9982 |
R:GTCACGCACGATTTCTCTCTC | |||||||
SDHA | Succinate Dehydrogenase Complex Subunit A | F:CGCAATACCCAGTAGTGGACC | 153 | PV870198 | y = −3.1911x + 21.564 | 106 | 0.9969 |
R:GTGCAGCAACAGTATGAGAGCG | |||||||
B2M | β-2-microglobulin | F:CGAGGAGGGAAAGGAGAAC | 170 | PV870194 | y = −3.0703x + 14.255 | 112 | 0.9942 |
R:GGATGAAGGGCACATAGACC | |||||||
UBE2G2 | Ubiquitin Conjugating Enzyme E2G 2 | F:TCCATCCTTCACGCTCCT | 133 | PV870199 | y = −3.4677x + 20.254 | 94 | 0.9963 |
R:CACTTTCATCATTTGGCTCT | |||||||
RPL4 | Ribosomal Protein L4 | F:CCAACCTGCGCAAGAACAAC | 173 | PV870196 | y = −3.1957x + 19.031 | 106 | 0.9948 |
R:GCCGCCACGACACATATTG | |||||||
EFNB1 | Ephrin-B1 | F:TCAAGTTCCAGGAGTTCAGCC | 98 | PV870195 | |||
R:GCCATCCAGCGTGCCATT |
Gene | Mean Quantification Cycle (Ct) | SD | Coefficient of Variation (CV %) |
---|---|---|---|
RPS2 | 19.25 | 1.28 | 6.64% |
UBE2G2 | 23.75 | 1.77 | 7.45% |
SDHA | 21.88 | 1.49 | 6.80% |
RPL4 | 18.73 | 1.89 | 10.09% |
ACTB | 17.98 | 1.30 | 7.24% |
B2M | 15.42 | 1.04 | 6.75% |
Rank | Female | Male | Nestlings |
---|---|---|---|
1 | ACTB | RPS2 | SDHA |
2 | SDHA | ACTB | RPL4 |
3 | RPS2 | SDHA | ACTB |
4 | UBE2G2 | B2M | B2M |
5 | RPL4 | RPL4 | UBE2G2 |
6 | B2M | UBE2G2 | RPS2 |
Genes | N | Geometric Mean [Ct] | Arithmetic Mean [Ct] | Min [Ct] | Max [Ct] | SD [ ± Ct] | CV [%Ct] | r | p |
---|---|---|---|---|---|---|---|---|---|
RPS2 | 15 | 19.21 | 19.25 | 17.28 | 22.21 | 1.01 | 5.26 | 0.668 | 0.006 |
ACTB | 15 | 17.93 | 17.98 | 15.53 | 19.66 | 1.10 | 6.09 | 0.813 | 0.001 |
SDHA | 15 | 21.83 | 21.88 | 19.08 | 24.72 | 1.22 | 5.55 | 0.938 | 0.001 |
B2M | 15 | 15.39 | 15.42 | 13.50 | 16.77 | 0.8 | 5.17 | 0.602 | 0.001 |
UBE2G2 | 15 | 23.69 | 23.75 | 21.24 | 26.51 | 1.49 | 6.29 | 0.749 | 0.001 |
RPL4 | 15 | 18.64 | 18.73 | 14.98 | 22.69 | 1.35 | 7.21 | 0.865 | 0.001 |
Method | Expression Stability Ranks | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Delta CT | SDHA | ACTB | RPS2 | B2M | RPL4 | UBE2G2 |
Genorm | SDHA/RPL4 | ACTB | RPS2 | B2M | UBE2G2 | |
Normfinder | SDHA | ACTB | RPS2 | B2M | RPL4 | UBE2G2 |
BestKeeper | B2M | RPS2 | ACTB | SDHA | RPL4 | UBE2G2 |
RefFinder | SDHA | ACTB | RPS2 | B2M | RPL4 | UBE2G2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Li, R.; Wang, X.; Hu, H.; Yang, K.; Wu, J.; Lin, J.; Ji, R.; Ye, X. Screening and Stability Analysis of Reference Genes in Pastor roseus. Genes 2025, 16, 1056. https://doi.org/10.3390/genes16091056
Sun X, Li R, Wang X, Hu H, Yang K, Wu J, Lin J, Ji R, Ye X. Screening and Stability Analysis of Reference Genes in Pastor roseus. Genes. 2025; 16(9):1056. https://doi.org/10.3390/genes16091056
Chicago/Turabian StyleSun, Xixiu, Ran Li, Xiaojie Wang, Hongxia Hu, Kun Yang, Jianguo Wu, Jun Lin, Rong Ji, and Xiaofang Ye. 2025. "Screening and Stability Analysis of Reference Genes in Pastor roseus" Genes 16, no. 9: 1056. https://doi.org/10.3390/genes16091056
APA StyleSun, X., Li, R., Wang, X., Hu, H., Yang, K., Wu, J., Lin, J., Ji, R., & Ye, X. (2025). Screening and Stability Analysis of Reference Genes in Pastor roseus. Genes, 16(9), 1056. https://doi.org/10.3390/genes16091056