The Impact of Genetic Polymorphisms on the Clinical Efficacy of Azole Antifungals
Abstract
1. Introduction
2. Mechanisms of Action and Pharmacokinetics of Azole Antifungals
3. CYP2C19 Polymorphisms and Voriconazole
4. Genetic Variability of Other Azole Antifungals
5. Clinical Outcomes and Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rani, N.; Sharma, A.; Gupta, G.; Singh, R. Imidazoles as potential antifungal agents: A review. Mini Rev. Med. Chem. 2013, 13, 1626–1655. [Google Scholar] [CrossRef]
- Sinawe, H.; Casadesus, D. Ketoconazole. In StatPearls; StatPearls Publishing: Petersburg, FL, USA, 2023. [Google Scholar]
- Zonios, D.I.; Bennett, J.E. Update on azole antifungals. Semin. Respir. Crit. Care Med. 2008, 29, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Peyton, L.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: A review. Drugs Today 2015, 51, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Ashbee, H.; Gilleece, M. Has the era of individualised medicine arrived for antifungals? A review of antifungal pharmacogenomics. Bone Marrow Transplant. 2012, 47, 881–894. [Google Scholar] [CrossRef]
- El-Garhy, O.H. An overview of the azoles of interest. Int. J. Curr. Pharm. Res. 2015, 7, 1–6. [Google Scholar]
- Podgorski, M.N.; Coleman, T.; Giang, P.D.; Wang, C.R.; Bruning, J.B.; Bernhardt, P.V.; De Voss, J.J.; Bell, S.G. To be, or not to be, an inhibitor: A comparison of azole interactions with and oxidation by a cytochrome P450 enzyme. Inorg. Chem. 2021, 61, 236–245. [Google Scholar] [CrossRef] [PubMed]
- García-García, I.; Borobia, A.M. Current approaches and future strategies for the implementation of pharmacogenomics in the clinical use of azole antifungal drugs. Expert Opin. Drug Metab. Toxicol. 2021, 17, 509–514. [Google Scholar] [CrossRef]
- McDonnell, A.M.; Dang, C.H. Basic review of the cytochrome p450 system. J. Adv. Pract. Oncol. 2013, 4, 263. [Google Scholar]
- Reynald, R.L.; Sansen, S.; Stout, C.D.; Johnson, E.F. Structural characterization of human cytochrome P450 2C19: Active site differences between P450s 2C8, 2C9, and 2C19. J. Biol. Chem. 2012, 287, 44581–44591. [Google Scholar] [CrossRef]
- Martínez-Matías, N.; Rodríguez-Medina, J.R. Fundamental concepts of azole compounds and triazole antifungals: A beginner’s review. Puerto Rico Health Sci. J. 2018, 37, 135–142. [Google Scholar]
- Azanza, J.R.; Mensa, J.; Barberán, J.; Vázquez, L.; de Oteyza, J.P.; Kwon, M.; Yáñez, L.; Aguado, J.M.; Gracian, A.C.; Solano, C.; et al. Recommendations on the use of azole antifungals in hematology-oncology patients. Rev. Española Quimioter. 2023, 36, 236. [Google Scholar] [CrossRef]
- Das, S.; Chakraborty, P.; Kumar, I.; Roy, S.; Ghosh, B.; Mete, R.; Agarwal, S.; Sharma, M.; Bose, A.; Mondal, S. Comparative clinical superiority of SUBA itraconazole with safety evaluation in the light of pharmacokinetic and pharmacodynamics investigation in healthy Indian human volunteers. Toxicol. Anal. Clin. 2025, 37, 308–320. [Google Scholar] [CrossRef]
- Scholz, I.; Oberwittler, H.; Riedel, K.; Burhenne, J.; Weiss, J.; Haefeli, W.E.; Mikus, G. Pharmacokinetics, metabolism and bioavailability of the triazole antifungal agent voriconazole in relation to CYP2C19 genotype. Br. J. Clin. Pharmacol. 2009, 68, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Pfizer. VFEND® (voriconazole) Tablets, for Oral Suspension, for Injection [Package Insert]. U.S. Food and Drug Administration Website. 2019. Available online: https://labeling.pfizer.com/ShowLabeling.aspx?id=12292 (accessed on 25 August 2025).
- Li, X.; Frechen, S.; Moj, D.; Lehr, T.; Taubert, M.; Hsin, C.-H.; Mikus, G.; Neuvonen, P.J.; Olkkola, K.T.; Saari, T.I.; et al. A physiologically based pharmacokinetic model of voriconazole integrating time-dependent inhibition of CYP3A4, genetic polymorphisms of CYP2C19 and predictions of drug–drug Interactions. Clin. Pharmacokinet. 2020, 59, 781–808. [Google Scholar] [CrossRef]
- Levine, M.T.; Chandrasekar, P.H. Adverse effects of voriconazole: Over a decade of use. Clin. Transplant. 2016, 30, 1377–1386. [Google Scholar] [CrossRef]
- Moriyama, B.; Obeng, A.O.; Barbarino, J.; Penzak, S.R.; Henning, S.A.; Scott, S.A.; Agundez, J.; Wingard, J.R.; McLeod, H.L.; Klein, T.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clin. Pharmacol. Ther. 2017, 102, 45–51. [Google Scholar] [CrossRef]
- Biswas, M.; Shobana, J.; Jinda, P.; Sukasem, C. Azole antifungals and inter-individual differences in drug metabolism: The role of pharmacogenomics and precision medicine. Expert Opin. Drug Metab. Toxicol. 2023, 19, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ng, P.; Hamandi, B.; Husain, S.; Lefebvre, M.J.; Battistella, M. Effect of therapeutic drug monitoring and cytochrome P450 2C19 genotyping on clinical outcomes of voriconazole: A systematic review. Ann. Pharmacother. 2021, 55, 509–529. [Google Scholar] [CrossRef]
- Nett, J.E.; Andes, D.R. Antifungal agents: Spectrum of activity, pharmacology, and clinical indications. Infect. Dis. Clin. 2016, 30, 51–83. [Google Scholar]
- Niwa, T.; Shiraga, T.; Takagi, A. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol. Pharm. Bull. 2005, 28, 1805–1808. [Google Scholar] [CrossRef]
- Meech, R.; Mackenzie, P.I. Structure and function of uridine diphosphate glucuronosyltransferases. Clin. Exp. Pharmacol. Physiol. 1997, 24, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Bourcier, K.; Hyland, R.; Kempshall, S.; Jones, R.; Maximilien, J.; Irvine, N.; Jones, B. Investigation into UDP-glucuronosyltransferase (UGT) enzyme kinetics of imidazole-and triazole-containing antifungal drugs in human liver microsomes and recombinant UGT enzymes. Drug Metab. Dispos. 2010, 38, 923–929. [Google Scholar] [CrossRef]
- Van Daele, R.; Wauters, J.; Lagrou, K.; Deenoz, R.; Hayette, M.-P.; Gijsen, M.; Brüggemann, R.J.; Debaveye, Y.; Spriet, I. Pharmacokinetic variability and target attainment of fluconazole in critically ill patients. Microorganisms 2021, 9, 2068. [Google Scholar] [CrossRef]
- Barbarino, J.M.; Obeng, A.O.; Klein, T.E.; Altman, R.B. PharmGKB summary: Voriconazole pathway, pharmacokinetics. Pharmacogenetics Genom. 2017, 27, 201–209. [Google Scholar] [CrossRef]
- Brammer, K.W.; Coakley, A.J.; Jezequel, S.G.; Tarbit, M.H. The disposition and metabolism of [14C] fluconazole in humans. Drug Metab. Dispos. 1991, 19, 764–767. [Google Scholar] [CrossRef]
- Suh, H.J.; Yoon, S.H.; Yu, K.-S.; Cho, J.-Y.; Park, S.-I.; Lee, E.; Lee, J.-O.; Koh, Y.; Song, K.-H.; Choe, P.G.; et al. The genetic polymorphism UGT1A4* 3 is associated with low posaconazole plasma concentrations in hematological malignancy patients receiving the oral suspension. Antimicrob. Agents Chemother. 2018, 62, e02230-17. [Google Scholar] [CrossRef]
- Domínguez-Gil Hurlé, A.; Sánchez Navarro, A.; García Sánchez, M. Therapeutic drug monitoring of itraconazole and the relevance of pharmacokinetic interactions. Clin. Microbiol. Infect. 2006, 12, 97–106. [Google Scholar] [CrossRef]
- Kurn, H.; Wadhwa, R. Itraconazole. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://pubmed.ncbi.nlm.nih.gov/32491797/ (accessed on 25 August 2025).
- Yang, E.; Yu, K.S.; Lee, S. Prediction of gastric pH-mediated drug exposure using physiologically-based pharmacokinetic modeling: A case study of itraconazole. CPT Pharmacomet. Syst. Pharmacol. 2023, 12, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Posaconazole [Package Insert], Merck, 11/2015. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/022003s018s020,0205053s002s004,0205596s001s003lbl.pdf (accessed on 25 August 2025).
- Sharma, A.; Goel, A. Mucormycosis: Risk factors, diagnosis, treatments, and challenges during COVID-19 pandemic. Folia Microbiol. 2022, 67, 363–387. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, B.G.; Bakker, M.; van der Elst, K.C.M.; Sturkenboom, M.G.G.; Veringa, A.; Span, L.F.R.; Alffenaar, J.-W.C. Therapeutic drug monitoring of posaconazole: An update. Curr. Fungal Infect. Rep. 2016, 10, 51–61. [Google Scholar] [CrossRef]
- Chen, L.; Krekels, E.H.J.; Verweij, P.E.; Buil, J.B.; Knibbe, C.A.J.; Brüggemann, R.J.M. Pharmacokinetics and pharmacodynamics of posaconazole. Drugs 2020, 80, 671–695. [Google Scholar] [CrossRef]
- Courtney, R.; Sansone, A.; Statkevich, P.; Martinho, M.; Richards, W.; Laughlin, M. Pharmacokinetics (PK) of posaconazole in subjects with varying degrees of renal insufficiency. Clin. Pharmacol. Ther. 2003, 73, 45. [Google Scholar] [CrossRef]
- Sansone-Parsons, A.; Krishna, G.; Simon, J.; Soni, P.; Kantesaria, B.; Herron, J.; Stoltz, R. Effects of age, gender, and race/ethnicity on the pharmacokinetics of posaconazole in healthy volunteers. Antimicrob. Agents Chemother. 2007, 51, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Batista, M.V.; Ussetti, M.P.; Jiang, Y.; Neofytos, D.; Cortez, A.C.; Feriani, D.; Schmidt-Filho, J.; França-Silva, I.L.A.; Raad, I.; Hachem, R. Comparing the real-world use of isavuconazole to other anti-fungal therapy for invasive fungal infections in patients with and without underlying disparities: A multi-center retrospective study. J. Fungi 2023, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.T.; Dimondi, V.; Johnson, S.W.; Jones, T.M.; Drew, R.H. Role of isavuconazole in the treatment of invasive fungal infections. Ther. Clin. Risk Manag. 2016, 12, 1197–1206. [Google Scholar] [CrossRef]
- Wilby, K.J. A review of the clinical pharmacokinetics and pharmacodynamics of isavuconazole. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Maertens, J.A.; Raad, I.I.; Marr, K.A.; Patterson, T.F.; Kontoyiannis, D.P.; Cornely, O.A.; Bow, E.J.; Rahav, G.; Neofytos, D.; Aoun, M.; et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): A phase 3, randomised-controlled, non-inferiority trial. Lancet 2016, 387, 760–769. [Google Scholar] [CrossRef]
- Pfaller, M.A. Antifungal drug resistance: Mechanisms, epidemiology, and consequences for treatment. Am. J. Med. 2012, 125, S3–S13. [Google Scholar] [CrossRef]
- Hoy, S.M. Oteseconazole: First approval. Drugs 2022, 82, 1017–1023. [Google Scholar] [CrossRef]
- Hoenigl, M.; Arastehfar, A.; Arendrup, M.C.; Brüggemann, R.; Carvalho, A.; Chiller, T.; Chen, S.; Egger, M.; Feys, S.; Gangneux, J.-P.; et al. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin. Microbiol. Rev. 2024, 37, e0007423. [Google Scholar] [CrossRef]
- Miller, M.A.; Lee, Y.M. Applying pharmacogenomics to antifungal selection and dosing: Are we there yet? Curr. Fungal Infect. Rep. 2020, 14, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.K.; Quilitz, R.E.; Komrokji, R.S.; Kubal, T.E.; Lancet, J.E.; Pasikhova, Y.; Qin, D.; So, W.; Caceres, G.; Kelly, K.; et al. Prospective CYP2C19-guided voriconazole prophylaxis in patients with neutropenic acute myeloid leukemia reduces the incidence of subtherapeutic antifungal plasma concentrations. Clin. Pharmacol. Ther. 2020, 107, 563–570. [Google Scholar] [CrossRef] [PubMed]
CYP2C19 Phenotype | Probability of Attainment of Therapeutic Concentration with Standard Dosing | Therapeutic Recommendations | Classification of Recommendations a |
---|---|---|---|
CYP2C19 ultrarapid metabolizer (*17/*17) | Low probability | Choose an alternative agent that is not dependent on CYP2C19 metabolism as a primary therapy in lieu of voriconazole. Such agents include isavuconazole, liposomal amphotericin B, and posaconazole. b | Moderate c |
CYP2C19 rapid metabolizer (*1/*17) | Modest probability | Choose an alternative agent that is not dependent on CYP2C19 metabolism as a primary therapy in lieu of voriconazole. Such agents include isavuconazole, liposomal amphotericin B, and posaconazole. b | Moderate |
CYP2C19 normal metabolizer | High probability | Initiate therapy with recommended standard-of-care dosing. b | Strong |
CYP2C19 intermediate metabolizer | Modest probability | Initiate therapy with recommended standard-of-care dosing. b Higher dose-adjusted trough concentrations compared with normal metabolizers may increase the probability of adverse events. | Moderate |
CYP2C19 poor metabolizer | Low probability | Choose an alternative agent that is not dependent on CYP2C19 metabolism as a primary therapy in lieu of voriconazole. Such agents include isavuconazole, liposomal amphotericin B, and posaconazole. b In the event that voriconazole is considered to be the most appropriate agent, based on all clinical implications, voriconazole should be administered preferably at a lower-than-standard dosage with careful TDM. | Moderate |
Metabolic Pathways | Genetic Polymorphisms | TDM Monitoring Recommended | |
---|---|---|---|
Voriconazole | Approximately 75% of metabolism is mediated through the CYP enzymes in the liver, while 25% occurs through flavin-containing monooxygenase [26]. | CYP2C19, CYP3A4; see Table 1 for details | Yes |
Fluconazole | Approximately 80% of the administered dose appears in the urine as unchanged drug. About 11% of the dose is excreted in the urine as metabolites (a glucuronide conjugate of unchanged fluconazole and a fluconazole N-oxide) [27]. | UGT2B7, CYP2C9, 2C19, and, to a lesser extent, C3A4 | No |
Posaconazole | Limited metabolism by phase 2 biotransformations via UGT enzyme pathways. | UGT1A4*3 allele polymorphisms [28] | Yes |
Isavuconazole | Cytochrome P450 enzymes CYP3A4 and CYP3A5. Subsequent minor metabolism by UGT. | CYP3A5 allele polymorphisms | No |
Itraconazole | Cytochrome P450 enzyme CYP3A4. Metabolites are excreted in both urine (approximately 40%) and bile (approximately 55%). | CYP3A4, CYP2C9, or CYP2C19 [29] | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singam, H.; Mossad, S. The Impact of Genetic Polymorphisms on the Clinical Efficacy of Azole Antifungals. Genes 2025, 16, 1058. https://doi.org/10.3390/genes16091058
Singam H, Mossad S. The Impact of Genetic Polymorphisms on the Clinical Efficacy of Azole Antifungals. Genes. 2025; 16(9):1058. https://doi.org/10.3390/genes16091058
Chicago/Turabian StyleSingam, Hareesh, and Sherif Mossad. 2025. "The Impact of Genetic Polymorphisms on the Clinical Efficacy of Azole Antifungals" Genes 16, no. 9: 1058. https://doi.org/10.3390/genes16091058
APA StyleSingam, H., & Mossad, S. (2025). The Impact of Genetic Polymorphisms on the Clinical Efficacy of Azole Antifungals. Genes, 16(9), 1058. https://doi.org/10.3390/genes16091058