Gene Silencing in Crustaceans: From Basic Research to Biotechnologies
Abstract
:1. Gene Silencing is Gaining Momentum in Crustaceans
2. Understanding the Functionality of Novel Crustacean Genes through Gene Silencing
2.1. Genes Related to Biomineralization
Field of Research | RNAi administration method | Model Organinsm | Order | Year | Authors | Title |
---|---|---|---|---|---|---|
Biominerology | dsRNA injection | Cherax quadricarinatus | Decapoda | 2008 | Shechter et al. | A gastrolith protein serving a dual role in the formation of an amorphous mineral containing extracellular matrix |
Biominerology | dsRNA injection | Cherax quadricarinatus | Decapoda | 2010 | Glazer et al. | A protein involved in the assembly of an extracellular calcium storage matrix |
Development/differentiation | dsRNA injection | Artemia franciscana | Anostraca | 2006 | Copf et al. | Knockdown of spalt function by RNAi causes de-repression of Hox genes and homeotic transformations in the crustacean Artemia franciscana |
Development/differentiation | Chemicaly modified siRNA oligo injection | Parhyale Ultrabithorax | Amphipoda | 2009 | Liubicich et al. | Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology |
Development/differentiation | dsRNA injection | Daphnia magna | Cladocera | 2011 | Kato et al. | Development of an RNA interference method in the cladoceran crustacean Daphnia magna |
Development/differentiation | dsRNA injection | Litopenaeus vannamei | Decapoda | 2008 | Hui et al. | Characterization of the putative farnesoic acid O-methyltransferase (LvFAMeT) cDNA from white shrimp, Litopenaeus vannamei: Evidence for its role in molting |
Metabolism | dsRNA injection | Litopenaeus vannamei | Decapoda | 2010 | Soñanez-Organis et al. | Silencing of the hypoxia inducible factor 1 -HIF-1- obliterates the effects of hypoxia on glucose and lactate concentrations in a tissue-specific manner in the shrimp Litopenaeus vannamei |
Growth | dsRNA injection | Penaeus monodon | Decapoda | 2011 | De Santis et al. | Growing backwards: an inverted role for the shrimp ortholog of vertebrate myostatin and GDF11 |
Metabolism | dsRNA injection | Procambarus clarkia | Decapoda | 2011 | White et al. | Characterization of sarcoplasmic calcium binding protein (SCP) variants from freshwater crayfish Procambarus clarkii |
Metabolism | dsRNA injection | Litopenaeus schmitti | Decapoda | 2006 | Lugo et al. | Molecular cloning and characterization of the crustacean hyperglycemic hormone cDNA from Litopenaeus schmitti |
Reproduction | dsRNA injection | Metapenaeus ensis | Decapoda | 2007 | Tiu and Chan | The use of recombinant protein and RNA interference approaches to study the reproductive functions of a gonad-stimulating hormone from the shrimp Metapenaeus ensis |
Molt | dsRNA injection | Cherax quadricarinatus | Decapoda | 2012 | Pamuru et al. | Stimulation of molt by RNA interference of the molt-inhibiting hormone in the crayfish Cherax quadricarinatus |
Osmo-regulation | dsRNA injection | Litopenaeus vannamei | Decapoda | 2007 | Tiu et al. | The LvCHH-ITP gene of the shrimp (Litopenaeus vannamei) produces a widely expressed putative ion transport peptide (LvITP) for osmo-regulation |
Reproduction | dsRNA in tissue culture | Penaeus monodon | Decapoda | 2008 | Treerattrakool et al. | Molecular characterization of gonad-inhibiting hormone of Penaeus monodon and elucidation of its inhibitory role in vitellogenin expression by RNA interference |
Reproduction | dsRNA injection | Penaeus monodon | Decapoda | 2011 | Treerattrakool et al. | Induction of Ovarian Maturation and Spawning in Penaeus monodon Broodstock by Double-Stranded RNA |
Reproduction | Feeding with dsRNA enriched Artemia | Penaeus monodon | Decapoda | 2013 | Treerattrakool et al. | Silencing of gonad-inhibiting hormone gene expression in Penaeus monodon by feeding with GIH dsRNA enriched Artemia |
Reproduction | dsRNA injection | Penaeus monodon | Decapoda | 2011 | Sathapondecha et al. | Potential roles of transglutaminase and thioredoxin in the release of gonad-stimulating factor in Penaeus monodon: Implication from differential expression in the brain during ovarian maturation cycle |
Growth | dsRNA injection | Macrobrachium rosenbergii | Decapoda | 2013 | Sharabi et al. | Dual function of a putative epidermal growth factor receptor in the decapod crustacean Macrobrachium rosenbergii |
Reproduction | dsRNA injection | Penaeus monodon | Decapoda | 2008 | Tiu et al. | From hepatopancreas to ovary: molecular characterization of a shrimp vitellogenin receptor involved in the processing of vitellogenin |
Molt | dsRNA injection | Fenneropenaeus chinensis | Decapoda | 2009 | Priya et al. | Molecular characterization and effect of RNA interference of retinoid X receptor (RXR) on E75 and chitinase gene expression in Chinese shrimp Fenneropenaeuschinensis |
Molt | dsRNA injection | Fenneropenaeus chinensis | Decapoda | 2010 | Priya et al. | Molecular characterization of an ecdysone inducible gene E75 of Chinese shrimp Fenneropenaeus chinensis and elucidation of its role in molting by RNA interference |
Organ regeneration | dsRNA injection | Uca pugilator | Decapoda | 2013 | Das and Durica | Ecdysteroid receptor signaling disruption obstructs blastemal cell proliferation during limb regeneration in the fiddler crab, Uca pugilator |
Reproduction | dsRNA injection | Carcinus maenas | Decapoda | 2011 | Nagaraju et al. | Molecular cloning and sequence of retinoid X receptor in the green crab Carcinus maenas: a possible role in female reproduction |
Sexual differentiation | dsRNA injection | Daphnia magna | Cladocera | 2011 | Kato et al. | Environmental sex determination in the branchiopod crustacean Daphnia magna: deep conservation of a Doublesex gene in the sex-determining pathway |
Sexual differentiation | dsRNA injection | Cherax quadricarinatus | Decapoda | 2012 | Rosen et al. | A sexual shift induced by silencing of a single insulin-like gene in crayfish: ovarian upregulation and testicular degeneration |
Sexual differentiation | dsRNA injection | Macrobrachium rosenbergii | Decapoda | 2009 | Ventura et al. | Temporal silencing of an androgenic gland-specific insulin-like gene affecting phenotypic gender differences and spermatogenesis |
Sexual differentiation | dsRNA injection | Macrobrachium rosenbergii | Decapoda | 2012 | Ventura et al. | Timing sexual differentiation full functional sex seversal achieved through silencing of a single insulin like gene in the prawn Macrobrachium rosenbergii |
RNAi | dsRNA injection | Penaeus monodon | Decapoda | 2008 | Dechklar et al. | Characterization of Argonaute cDNA from Penaeus monodon and implication of its role in RNA interference |
RNAi | dsRNA injection | Marsupenaeus japonicus | Decapoda | 2012 | Wang et al. | TRBP and eIF6 Homologue in Marsupenaeus japonicus Play Crucial Roles in Antiviral Response |
2.2. Genes Related to Development, Differentiation and Metabolism
2.3. Genes Encoding Eyestalk Neuropeptides
2.4. Receptor-Encoding Genes
2.5. Genes Related to Sexual Differentiation
2.6. Genes Related to RNAi Machinery
3. Study of the Crustacean Innate Immune System Using RNAi
3.1. Crustacean Innate Immune System Study through RNAi
Delivery method | Model Organinsm | Order | Year | Authors | Title |
---|---|---|---|---|---|
Injection, electroporation and transfection of DNA with promoter and antisense | Litopenaeus vannamei | Decapoda | 2005 | Sun et al. | Evaluation of methods for DNA delivery into shrimp zygotes of Penaeus (Litopenaeus) vannamei |
Transfection of DNA with promoter and antisense | Litopenaeus vannamei | Decapoda | 2005 | Lu and Sun | Viral resistance in shrimp that express an antisense Taura syndrome virus coat protein gene |
Chitosan nanoparticles | Macrobrachium rosenbergii | Decapoda | 2008 | Anas et al. | Chitosan as a wall material for a microencapsulated delivery system for Macrobrachium rosenbergii (de Man) larvae |
Oral delivery of dsRNA expressing bacteria | Penaeus monodon | Decapoda | 2008 | Sarathi et al. | Oral Administration of Bacterially Expressed VP28dsRNA to Protect Penaeus monodon from White Spot Syndrome Virus |
Oral delivery of dsRNA expressing bacteria enriched Artemia | Penaeus monodon | Decapoda | 2013 | Treerattrakool et al. | Silencing of gonad-inhibiting hormone gene expression in Penaeus monodon by feeding with GIH dsRNA enriched Artemia |
Field of Research | RNAi administration method | Model Organinsm | Order | Year | Authors | Title | |
---|---|---|---|---|---|---|---|
Anti bacterial | dsRNA injection | Pacifastacus leniusculus | Decapoda | 2007 | Liu et al. | Phenoloxidase is an important component of the defense against Aeromonas hydrophila infection in a crustacean, Pacifastacus leniusculus | |
Anti bacterial | siRNA injection | Marsupenaeus japonicus | Decapoda | 2008 | Zong et al. | Regulation of phagocytosis against bacterium by RabGTPase in shrimp Marsupenaeus japonicus | |
Anti bacterial and anti viral | dsRNA injection | Litopenaeus vannamei | Decapoda | 2008 | De la Vega et al. | Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF): A broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection | |
Anti bacterial, antiviral and coagulation | dsRNA injection | Marsupeneus japonicus | Decapoda | 2008 | Maningas et al. | Essential function of transglutaminase and clotting protein in shrimp immunity | |
Anti bacterial | dsRNA injection | Marsupeneus japonicus | Decapoda | 2009 | Fagutao et al. | Increased bacterial load in shrimp hemolymph in the absence of prophenoloxidase | |
Anti bacterial | dsRNA injection | Penaeus monodon | Decapoda | 2009 | Amparyup et al. | Two prophenoloxidases are important for the survival of Vibrio harveyi challenged shrimp Penaeus monodon | |
Anti bacterial and anti fungal | dsRNA injection | Litopenaeus vannamei | Decapoda | 2009 | Shockey et al. | The role of crustins in Litopenaeus vannamei in response to infection with shrimp pathogens: An in vivo approach | |
Anti viral | siRNA injection | Penaeus monodon | Decapoda | 2005 | Westenberg et al. | siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus | |
Anti viral | Injection, electroporation and transfection of DNA with promoter and antisense | Litopenaeus vannamei | Decapoda | 2005 | Sun et al. | Evaluation of methods for DNA delivery into shrimp zygotes of Penaeus (Litopenaeus) vannamei | |
Anti viral | Transfection of DNA with promoter and antisense | Litopenaeus vannamei | Decapoda | 2005 | Lu and Sun | Viral resistance in shrimp that express an antisense Taura syndrome virus coat protein gene | |
Anti viral | dsRNA injection | Penaeus monodon | Decapoda | 2006 | Assavalapsakul et al. | Identification and characterization of a Penaeus monodon lymphoid cell-expressed receptor for the yellow head virus | |
Anti viral | siRNA injection | Marsupenaeus japonicus | Decapoda | 2007 | Xu et al. | Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA | |
Anti viral | dsRNA injection | Marsupenaeus japonicus | Decapoda | 2007 | Li et al. | β-integrin mediates WSSV infection | |
Anti viral | siRNA injection | Marsupenaeus japonicus | Decapoda | 2007 | Wu et al. | Antiviral phagocytosis is regulated by a novel Rab-dependent complex in shrimp Penaeus japonicus | |
Anti viral | siRNA injection | Marsupenaeus japonicus | Decapoda | 2008 | Xu et al. | Novel function of QM protein of shrimp (Penaeus japonicus) in regulation of phenol oxidase activity by interaction with hemocyanin | |
Anti viral | siRNA injection | Marsupenaeus japonicus | Decapoda | 2008 | Wang et al. | Requirement for shrimp caspase in apoptosis against virus infection | |
Anti viral | dsRNA injection | Penaeus monodon | Decapoda | 2008 | Ongvarrasopone et al. | Suppression of PmRab7 by dsRNA inhibits WSSV or YHV infection in shrimp | |
Anti viral | dsRNA injection | Penaeus monodon | Decapoda | 2008 | Su et al. | A key gene of the RNA interference pathway in the black tiger shrimp, Penaeus monodon: Identification and functional characterisation of Dicer-1 | |
Anti viral | dsRNA injection | Litopenaeus vannamei | Decapoda | 2008 | Rijiravanich et al. | Knocking down caspase-3 by RNAi reduces mortality in Pacific white shrimp Penaeus (Litopenaeus) vannamei challenged with a low dose of white-spot syndrome virus | |
Anti viral | Oral delivery of dsRNA expressing bacteria | Penaeus monodon | Decapoda | 2008 | Sarathi et al. | Oral administration of bacterially expressed VP28 dsRNA to protect Penaeus monodon from White Spot Syndrome Virus | |
Anti viral | siRNA and dsRNA injection | Litopenaeus vannamei | Decapoda | 2010 | Labreuche et al. | Non-specific activation of antiviral immunity and induction of RNA interference may engage the same pathway in the Pacific white leg shrimp Litopenaeus vannamei | |
Anti viral | dsRNA injection | Penaeus monodon | Decapoda | 2011 | Woramongkolchai et al. | The possible role of penaeidin5 from the black tiger shrimp, Penaeus monodon, in protection against viral infection | |
Anti viral | Review on the study of innate immune system in crustaceans using RNAi | 2011 | Hirono et al. | Uncovering the mechanisms of shrimp innate immune response by RNA interference | |||
Anti viral | Review on RNAi in crustaceans with emphasis of antiviral capabilities | 2012 | La Fauce and Owens | RNA interference with special reference to combating viruses of crustacea | |||
Anti viral | dsRNA injection Litopenaeus vannamei Decapoda | 2013 | Lin et al. | Characterization of white shrimp Litopenaeus vannamei integrin b and its role in immunomodulation by dsRNA-mediated gene silencing |
3.2. Anti Viral-Related Administration Methods
3.3. Oral Administered Silencing of a Systemic Gene
4. The First Case of a Biotechnological Use of Gene Silencing in the Aquaculture Industry (Crustacean Monosex Culture)
4.1. Sexual Dimorphism and Monosex Culture of Prawns
4.2. The Androgenic Gland and Its Secretion
4.3. RNAi Based Biotechnology for All-Male Culture
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
- Dorsett, Y.; Tuschl, T. siRNAs: Applications in functional genomics and potential as therapeutics. Nat. Rev. Drug Discov. 2004, 3, 318–329. [Google Scholar] [CrossRef]
- Fire, A.Z.; Mello, C.C. The Nobel Prize in Physiology or Medicine 2006. Available online: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2006/ (accessed on 26 January 2013).
- Agrawal, N.; Dasaradhi, P.V.N.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA interference: Biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 2003, 67, 657–685. [Google Scholar] [CrossRef]
- Qi, Y.J.; Hannon, G.J. Uncovering RNAi mechanisms in plants: Biochemistry enters the foray. FEBS Lett. 2005, 579, 5899–5903. [Google Scholar] [CrossRef]
- Watson, J.M.; Fusaro, A.F.; Wang, M.B.; Waterhouse, P.M. RNA silencing platforms in plants. FEBS Lett. 2005, 579, 5982–5987. [Google Scholar] [CrossRef]
- Lu, Y.; Sun, P.S. Viral resistance in shrimp that express an antisense Taura syndrome virus coat protein gene. Antivir. Res. 2005, 67, 141–146. [Google Scholar] [CrossRef]
- Sun, P.S.; Venzon, N.C., Jr.; Calderon, F.R.O.; Esaki, D.M. Evaluation of methods for DNA delivery into shrimp zygotes of Penaeus (Litopenaeus) vannamei. Aquaculture 2005, 243, 19–26. [Google Scholar] [CrossRef]
- Söderhäll, I.; Kim, Y.-A.; Jiravanichpaisal, P.; Lee, S.-Y.; Söderhäll, K. An ancient role for a Prokineticin domain in invertebrate hematopoiesis. J. Immunol. 2005, 174, 6153–6160. [Google Scholar]
- Robalino, J.; Browdy, C.L.; Prior, S.; Metz, A.; Parnell, P.; Gross, P.; Warr, G. Induction of antiviral immunity by double-stranded RNA in a marine invertebrate. J. Virol. 2004, 78, 10442–10448. [Google Scholar] [CrossRef]
- Robalino, J.; Bartlett, T.; Shepard, E.; Prior, S.; Jaramillo, G.; Scura, E.; Chapman, R.W.; Gross, P.S.; Browdy, C.L.; Warr, G.W. Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: Convergence of RNA interference and innate immunity in the invertebrate antiviral response? J. Virol. 2005, 79, 13561–13571. [Google Scholar] [CrossRef]
- Kim, S.-S.; Garg, H.; Joshi, A.; Manjunath, N. Strategies for targeted nonviral delivery of siRNAs in vivo. Trends Mol. Med. 2009, 15, 491–500. [Google Scholar] [CrossRef]
- Ahyong, S.T.; Lowry, J.K.; Alonso, M.; Bamber, R.N.; Boxshall, G.A.; Castro, P.; Gerken, S.; Karaman, G.S.; Goy, J.W.; Jones, D.S.; et al. Subphylum Crustacea Brünnich, 1772. In Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness; Zhang, Z.Q., Ed.; Magnolia Press: Auckland, New Zealand, 2011; pp. 165–191. [Google Scholar]
- LeBlanc, G.A. Crustacean endocrine toxicology: A review. Ecotoxicology 2007, 16, 61–81. [Google Scholar] [CrossRef]
- Stillman, J.H. Acclimation capacity underlies susceptibility to climate change. Science 2003, 301, 65. [Google Scholar] [CrossRef]
- Ventura, T.; Sagi, A. The insulin-like androgenic gland hormone in crustaceans: From a single gene silencing to a wide array of sexual manipulation-based biotechnologies. Biotechnol. Adv. 2012, 30, 1543–1550. [Google Scholar] [CrossRef]
- Gherardi, F.; Aquiloni, L.; Diéguez-Uribeondo, J.; Tricarico, E. Managing invasive crayfish: Is there a hope? Aquat. Sci. 2011, 73, 185–200. [Google Scholar] [CrossRef]
- Glenner, H.; Thomsen, P.F.; Hebsgaard, M.B.; Sørensen, M.V.; Willerslev, E. The origin of insects. Science 2006, 314, 1883–1884. [Google Scholar] [CrossRef]
- Lukhtanov, V.; Kuznetsova, V. What genes and chromosomes say about the origin and evolution of insects and other arthropods. Russ. J. Genet. 2010, 46, 1115–1121. [Google Scholar] [CrossRef]
- Sorgeloos, P.; Dhert, P.; Candreva, P. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 2001, 200, 147–159. [Google Scholar] [CrossRef]
- Colbourne, J.K.; Pfrender, M.E.; Gilbert, D.; Thomas, W.K.; Tucker, A.; Oakley, T.H.; Tokishita, S.; Aerts, A.; Arnold, G.J.; Basu, M.K.; et al. The ecoresponsive genome of Daphnia pulex. Science 2011, 331, 555–561. [Google Scholar] [CrossRef]
- Kamath, R.S.; Ahringer, J. Genome-Wide RNAi screening in Caenorhabditis elegans. Methods 2003, 30, 313–321. [Google Scholar] [CrossRef]
- Aigner, A. Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo. J. Biomed. Biotechnol. 2006, 2006. ArticleID 71659. [Google Scholar] [CrossRef]
- Luquet, G.; Marin, F. Biomineralisations in crustaceans: Storage strategies. C. R. Palevol. 2004, 3, 515–534. [Google Scholar] [CrossRef]
- Travis, D.F. The deposition of skeletal structures in the Crustacea. 1. The histology of the gastrolith skeletal tissue complex and the gastrolith in the crayfish, Orconectes (cambaus) verilis Hagen—Decapoda. Biol. Bull. 1960, 16, 137–149. [Google Scholar] [CrossRef]
- Travis, D.F.; Friberg, U. The deposition of skeletal structures in the crustacea. Vi. Microradiographic studies of the exoskeleton of the crayfish Orconectes virilis hagen. J. Ultrastruct. Res. 1963, 59, 285–301. [Google Scholar] [CrossRef]
- Shechter, A.; Glazer, L.; Cheled, S.; Mor, E.; Weil, S.; Berman, A.; Bentov, S.; Aflalo, E.D.; Khalaila, I.; Sagi, A. A gastrolith protein serving a dual role in the formation of an amorphous mineral containing extracellular matrix. Proc. Natl. Acad. Sci. USA 2008, 105, 7129–7134. [Google Scholar] [CrossRef]
- Glazer, L.; Shechter, A.; Tom, M.; Yudkovski, Y.; Weil, S.; Aflalo, E.D.; Pamuru, R.R.; Khalaila, I.; Bentov, S.; Berman, A.; et al. A protein involved in the assembly of an extracellular calcium storage matrix. J. Biol. Chem. 2010, 258, 12831–12839. [Google Scholar]
- Hughes, C.L.; Kaufman, T.C. Hox genes and the evolution of the arthropod body plan. Evol. Dev. 2002, 4, 459–499. [Google Scholar] [CrossRef]
- Copf, T.; Rabet, N.; Averof, M. Knockdown of spalt function by RNAi causes de-repression of Hox genes and homeotic transformations in the crustacean Artemia franciscana. Dev. Biol. 2006, 298, 87–94. [Google Scholar] [CrossRef]
- Liubicich, D.M.; Serano, J.M.; Pavlopoulos, A.; Kontarakis, Z.; Protas, M.E.; Kwan, E.; Chatterjee, S.; Tran, K.D.; Averof, M.; Patel, N.H.; et al. Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology. Proc. Natl. Acad. Sci. USA 2009, 106, 13892–13896. [Google Scholar] [CrossRef]
- Kato, Y.; Shiga, Y.; Kobayashi, K.; Tokishita, S.-I.; Yamagata, H.; Iguchi, T.; Watanabe, H. Development of an RNA interference method in the cladoceran crustacean Daphnia magna. Dev. Genes Evol. 2011, 220, 337–345. [Google Scholar] [CrossRef]
- Ventura, T.; Manor, R.; Aflalo, E.D.; Chalifa-Caspi, V.; Weil, S.; Sharabi, O.; Sagi, A. Post-Embryonic transcriptomes of the prawn Macrobrachium rosenbergii: Multigenic succession through metamorphosis. PLoS One 2013, 8, e55322. [Google Scholar]
- Laufer, H.; Borst, D.; Baker, F.C.; Reuter, C.C.; Tsai, L.W.; Schooley, D.A.; Carrasco, C.; Sinkus, M. Identification of a juvenile hormone-like compound in a crustacean. Science 1987, 235, 202–205. [Google Scholar]
- Hui, J.H.L.; Tobe, S.S.; Chan, S.-M. Characterization of the putative farnesoic acid O-methyltransferase (LvFAMeT) cDNA from white shrimp, Litopenaeus vannamei: Evidence for its role in molting. Peptides 2008, 29, 252–260. [Google Scholar] [CrossRef]
- Sonanez-Organis, J.G.; Peregrino-Uriarte, A.B.; Gomez-Jimenez, S.; Lopez-Zavala, A.; Forman, H.J.; Yepiz-Plascencia, G. Molecular characterization of hypoxia inducible factor-1 (HIF-1) from the white shrimp Litopenaeus vannamei and tissue-specific expression under hypoxia. Comp. Biochem. Phys. C 2009, 150, 395–405. [Google Scholar]
- Soñanez-Organis, J.G.; Racotta, I.S.; Yepiz-Plascencia, G. Silencing of the hypoxia inducible factor 1 -HIF-1- obliterates the effects of hypoxia on glucose and lactate concentrations in a tissue-specific manner in the shrimp Litopenaeus vannamei. J. Exp. Mar. Biol. Ecol. 2010, 393, 51–58. [Google Scholar] [CrossRef]
- De Santis, C.; Wade, N.M.; Jerry, D.R.; Preston, N.P.; Glencross, B.D.; Sellars, M.J. Growing backwards: An inverted role for the shrimp ortholog of vertebrate myostatin and GDF11. J. Exp. Biol. 2011, 214, 2671–2677. [Google Scholar] [CrossRef]
- Hermann, A.; Cox, J.A. Sarcoplasmic calcium-binding protein. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1995, 111, 337–345. [Google Scholar] [CrossRef]
- White, A.J.; Northcutt, M.J.; Rohrback, S.E.; Carpenter, R.O.; Niehaus-Sauter, M.M.; Gao, Y.P.; Wheatly, M.G.; Gillen, C.M. Characterization of sarcoplasmic calcium binding protein (SCP) variants from freshwater crayfish Procambarus clarkii. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011, 160, 8–14. [Google Scholar] [CrossRef]
- Keller, R. Crustacean neuropeptides: Structures, functions and comparative aspects. Experientia 1992, 48, 439–448. [Google Scholar] [CrossRef]
- Webster, S.G. Measurement of crustacean hyperglycaemic hormone levels in the edible crab Cancer pagurus during emersion stress. J. Exp. Biol. 1996, 199, 1579–1585. [Google Scholar]
- Lugo, J.M.; Morera, Y.; Rodríguez, T.; Huberman, A.; Ramos, L.; Estrada, M.P. Molecular cloning and characterization of the crustacean hyperglycemic hormone cDNA from Litopenaeus schmitti. FEBS J. 2006, 273, 5669–5677. [Google Scholar] [CrossRef]
- Tiu, S.H.-K.; Chan, S.-M. The use of recombinant protein and RNA interference approaches to study the reproductive functions of a gonad-stimulating hormone from the shrimp Metapenaeus ensis. FEBS J. 2007, 274, 4385–4395. [Google Scholar] [CrossRef]
- Webster, S.G.; Keller, R.; Dircksen, H. The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction. Gen. Comp. Endocrinol. 2012, 175, 217–233. [Google Scholar] [CrossRef]
- Pamuru, R.R.; Rosen, O.; Manor, R.; Chung, J.S.; Zmora, N.; Glazer, L.; Aflalo, E.D.; Weil, S.; Tamone, S.L.; Sagi, A. Stimulation of molt by RNA interference of the molt-inhibiting hormone in the crayfish Cherax quadricarinatus. Gen. Comp. Endocrinol. 2012, 178, 227–236. [Google Scholar] [CrossRef]
- Tiu, S.H.K.; He, J.-G.; Chan, S.-M. The LvCHH-ITP gene of the shrimp (Litopenaeus vannamei) produces a widely expressed putative ion transport peptide (LvITP) for osmo-regulation. Gene 2007, 396, 226–235. [Google Scholar] [CrossRef]
- Treerattrakool, S.; Panyim, S.; Chan, S.-M.; Withyachumnarnkul, B.; Udomkit, A. Molecular characterization of gonad-inhibiting hormone of Penaeus monodon and elucidation of its inhibitory role in vitellogenin expression by RNA interference. FEBS J. 2008, 275, 970–980. [Google Scholar] [CrossRef]
- Treerattrakool, S.; Panyim, S.; Udomkit, A. Induction of ovarian maturation and spawning in Penaeus monodon broodstock by double-stranded RNA. Mar. Biotechnol. 2011, 13, 163–169. [Google Scholar] [CrossRef]
- Treerattrakool, S.; Chartthai, C.; Phromma-in, N.; Panyim, S.; Udomkit, A. Silencing of gonad-inhibiting hormone gene expression in Penaeus monodon by feeding with GIH dsRNA enriched Artemia. Aquaculture 2013, 404, 116–121. [Google Scholar]
- Sathapondecha, P.; Treerattrakool, S.; Panyim, S.; Udomkit, A. Potential roles of transglutaminase and thioredoxin in the release of gonad-stimulating factor in Penaeus monodon: Implication from differential expression in the brain during ovarian maturation cycle. Mar. Genom. 2011, 4, 279–285. [Google Scholar] [CrossRef]
- Sharabi, O.; Ventura, T.; Manor, R.; Aflalo, E.D.; Sagi, A. Epidermal growth factor receptor in the prawn Macrobrachium rosenbergii: Function and putative signaling cascade. Endocrinology 2013, 154, 3188–3196. [Google Scholar] [CrossRef]
- Tiu, S.H.K.; Benzie, J.; Chan, S.-M. From hepatopancreas to ovary: Molecular characterization of a shrimp vitellogenin receptor involved in the processing of vitellogenin. Biol. Reprod. 2008, 79, 66–74. [Google Scholar] [CrossRef]
- Das, S.; Durica, D.S. Ecdysteroid receptor signaling disruption obstructs blastemal cell proliferation during limb regeneration in the fiddler crab, Uca pugilator. Mol. Cell. Endocrinol. 2013, 365, 249–259. [Google Scholar] [CrossRef]
- Priya, T.A.J.; Li, F.; Zhang, J.; Wang, B.; Zhao, C.; Xiang, J. Molecular characterization and effect of RNA interference of retinoid X receptor (RXR) on E75 and chitinase gene expression in Chinese shrimp Fenneropenaeus chinensis. Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. 2009, 153, 121–129. [Google Scholar] [CrossRef]
- Freeman, M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 1996, 87, 651–660. [Google Scholar] [CrossRef]
- Kono, M.; Wilder, M.N.; Matsui, T.; Furukawa, K.; Koga, D.; Aida, K. Chitinolytic enzyme activities in the hepatopancreas, tail fan and hemolymph of kuruma prawn Penaeus Japonicus during the molt cycle. Fish. Sci. 1995, 61, 727–728. [Google Scholar] [CrossRef]
- Priya, T.A.J.; Li, F.; Zhang, J.; Yang, C.; Xiang, J. Molecular characterization of an ecdysone inducible gene E75 of Chinese shrimp Fenneropenaeus chinensis and elucidation of its role in molting by RNA interference. Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. 2010, 156, 149–157. [Google Scholar] [CrossRef]
- Nagaraju, G.P.C.; Rajitha, B.; Borst, D.W. Molecular cloning and sequence of retinoid X receptor in the green crab Carcinus maenas: A possible role in female reproduction. J. Endocrinol. 2011, 210, 379–390. [Google Scholar] [CrossRef]
- Kato, Y.; Kobayashi, K.; Watanabe, H.; Iguchi, T. Environmental sex determination in the branchiopod crustacean Daphnia magna: Deep conservation of a Doublesex gene in the sex-determining pathway. PLoS Genet. 2011, 7, e1001345. [Google Scholar] [CrossRef] [Green Version]
- Charniaux-Cotton, H. Androgenic gland of crustaceans. Gen. Comp. Endocrinol. 1962, 1, 241–247. [Google Scholar] [CrossRef]
- Rosen, O.; Manor, R.; Weil, S.; Gafni, O.; Linial, A.; Aflalo, E.D.; Ventura, T.; Sagi, A. A sexual shift induced by silencing of a single insulin-like gene in crayfish: Ovarian upregulation and testicular degeneration. PLoS One 2010, 5, e15281. [Google Scholar]
- Ventura, T.; Manor, R.; Aflalo, E.D.; Weil, S.; Raviv, S.; Glazer, L.; Sagi, A. Temporal silencing of an androgenic gland-specific insulin-like gene affecting phenotypical gender differences and spermatogenesis. Endocrinology 2009, 150, 1278–1286. [Google Scholar]
- Ventura, T.; Manor, R.; Aflalo, E.D.; Weil, S.; Rosen, O.; Sagi, A. Timing sexual differentiation: Full functional sex reversal achieved through silencing of a single insulin-like gene in the prawn, Macrobrachium rosenbergii. Biol. Reprod. 2012, 86, 90–96. [Google Scholar] [CrossRef]
- Chen, Y.H.; Jia, X.T.; Zhao, L.; Li, C.Z.; Zhang, S.A.; Chen, Y.G.; Weng, S.P.; He, J.G. Identification and functional characterization of Dicer2 and five single VWC domain proteins of Litopenaeus vannamei. Dev. Comp. Immunol. 2011, 35, 661–671. [Google Scholar] [CrossRef]
- Dechklar, M.; Udomkit, A.; Panyim, S. Characterization of Argonaute cDNA from Penaeus monodon and implication of its role in RNA interference. Biochem. Biophys. Res. Commun. 2008, 367, 768–774. [Google Scholar] [CrossRef]
- Labreuche, Y.; Veloso, A.; de la Vega, E.; Gross, P.S.; Chapman, R.W.; Browdy, C.L.; Warr, G.W. Non-Specific activation of antiviral immunity and induction of RNA interference may engage the same pathway in the Pacific white leg shrimp Litopenaeus vannamei. Dev. Comp. Immunol. 2010, 34, 1209–1218. [Google Scholar] [CrossRef]
- Su, J.S.; Oanh, D.T.H.; Lyons, R.E.; Leeton, L.; van Hulten, M.C.W.; Tan, S.H.; Song, L.; Rajendran, K.V.; Walker, P.J. A key gene of the RNA interference pathway in the black tiger shrimp, Penaeus monodon: Identification and functional characterisation of Dicer-1. Fish. Shellfish Immunol. 2008, 24, 223–233. [Google Scholar] [CrossRef]
- Wang, S.; Chen, A.J.; Shi, L.J.; Zhao, X.F.; Wang, J.X. TRBP and eIF6 homologue in Marsupenaeus japonicus play crucial roles in antiviral response. PLoS One 2012, 7, e30057. [Google Scholar]
- Yao, X.M.; Wang, L.L.; Song, L.S.; Zhang, H.A.; Dong, C.H.; Zhang, Y.; Qiu, L.M.; Shi, Y.H.; Jianmin, Z.M.; Bi, Y.K. A Dicer-1 gene from white shrimp Litopenaeus vannamei: Expression pattern in the processes of immune response and larval development. Fish. Shellfish Immunol. 2010, 29, 565–570. [Google Scholar] [CrossRef]
- Shabalina, S.A.; Koonin, E.V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 2008, 23, 578–587. [Google Scholar] [CrossRef]
- Stentiford, G.D.; Bonami, J.R.; Alday-Sanz, V. A critical review of susceptibility of crustaceans to Taura syndrome, Yellowhead disease and White Spot Disease and implications of inclusion of these diseases in European legislation. Aquaculture 2009, 291, 1–17. [Google Scholar] [CrossRef]
- Hirono, I.; Fagutao, F.F.; Kondo, H.; Aoki, T. Uncovering the mechanisms of shrimp innate immune response by RNA interference. Mar. Biotechnol. 2011, 13, 622–628. [Google Scholar] [CrossRef]
- La Fauce, K.; Owens, L. RNA interference with special reference to combating viruses of crustacea. Indian J. Virol. 2012, 23, 226–243. [Google Scholar] [CrossRef]
- Heinrichs, A. RISC assessment. Nat. Rev. Mol. Cell. Biol. 2004, 5, 334. [Google Scholar] [CrossRef]
- De la Vega, E.; O’Leary, N.A.; Shockey, J.E.; Robalino, J.; Payne, C.; Browdy, C.L.; Warr, G.W.; Gross, P.S. Anti-Lipopolysaccharide factor in Litopenaeus vannamei (LvALF): A broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection. Mol. Immunol. 2008, 45, 1916–1925. [Google Scholar] [CrossRef]
- Shockey, J.E.; O’Leary, N.A.; de la Vega, E.; Browdy, C.L.; Baatz, J.E.; Gross, P.S. The role of crustins in Litopenaeus vannamei in response to infection with shrimp pathogens: An in vivo approach. Dev. Comp. Immunol. 2009, 33, 668–673. [Google Scholar] [CrossRef]
- Woramongkolchai, N.; Supungul, P.; Tassanakajon, A. The possible role of penaeidin5 from the black tiger shrimp, Penaeus monodon, in protection against viral infection. Dev. Comp. Immunol. 2011, 35, 530–536. [Google Scholar] [CrossRef]
- Vazquez, L.; Alpuche, J.; Maldonado, G.; Agundis, C.; Pereyra-Morales, A.; Zenteno, E. Review: Immunity mechanisms in crustaceans. Innate Immun. 2009, 15, 179–188. [Google Scholar] [CrossRef]
- Maningas, M.B.B.; Kondo, H.; Hirono, I.; Saito-Taki, T.; Aoki, T. Essential function of transglutaminase and clotting protein in shrimp immunity. Mol. Immunol. 2008, 45, 1269–1275. [Google Scholar] [CrossRef]
- Portera, A.G.; Jänicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell. Death Differ. 1999, 6, 99–104. [Google Scholar]
- Wang, L.; Zhi, B.; Wu, W.; Zhang, X. Requirement for shrimp caspase in apoptosis against virus infection. Dev. Comp. Immunol. 2008, 32, 706–715. [Google Scholar] [CrossRef]
- Rijiravanich, A.; Browdy, C.L.; Withyachumnarnkul, B. Knocking down caspase-3 by RNAi reduces mortality in Pacific white shrimp Penaeus (Litopenaeus) vannamei challenged with a low dose of white-spot syndrome virus. Fish. Shellfish Immunol. 2008, 24, 308–313. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chen, J.-C.; Chen, Y.-Y.; Liu, C.-H.; Cheng, W.; Hsu, C.-H.; Tsui, W.-C. Characterization of white shrimp Litopenaeus vannamei integrin β and its role in immunomodulation by dsRNA-mediated gene silencing. Dev. Comp. Immunol. 2013, 40, 167–179. [Google Scholar] [CrossRef]
- Zong, R.; Wu, W.; Xu, J.; Zhang, X. Regulation of phagocytosis against bacterium by Rab GTPase in shrimp Marsupenaeus japonicus. Fish. Shellfish Immunol. 2008, 25, 258–263. [Google Scholar] [CrossRef]
- Wu, W.; Zong, R.; Xu, J.; Zhang, X. Antiviral phagocytosis is regulated by a novel Rab-dependent complex in shrimp Penaeus japonicus. J. Proteome Res. 2007, 7, 424–431. [Google Scholar]
- Ongvarrasopone, C.; Chanasakulniyom, M.; Sritunyalucksana, K.; Panyim, S. Suppression of PmRab7 by dsRNA inhibits WSSV or YHV infection in shrimp. Mar. Biotechnol. 2008, 10, 374–381. [Google Scholar] [CrossRef]
- Assavalapsakul, W.; Smith, D.R.; Panyim, S. Identification and characterization of a Penaeus monodon lymphoid cell-expressed receptor for the yellow head virus. J. Virol. 2006, 80, 262–269. [Google Scholar] [CrossRef]
- Johansson, M.W.; Soderhall, K. Cellular immunity in crustaceans and the proPO system. Parasitol. Today 1989, 5, 171–176. [Google Scholar] [CrossRef]
- Fagutao, F.F.; Koyama, T.; Kaizu, A.; Saito-Taki, T.; Kondo, H.; Aoki, T.; Hirono, I. Increased bacterial load in shrimp hemolymph in the absence of prophenoloxidase. FEBS J. 2009, 276, 5298–5306. [Google Scholar] [CrossRef]
- Amparyup, P.; Charoensapsri, W.; Tassanakajon, A. Two prophenoloxidases are important for the survival of Vibrio harveyi challenged shrimp Penaeus monodon. Dev. Comp. Immunol. 2009, 33, 247–256. [Google Scholar] [CrossRef]
- Liu, H.; Jiravanichpaisal, P.; Cerenius, L.; Lee, B.L.; Söderhäll, I.; Söderhäll, K. Phenoloxidase is an important component of the defense against Aeromonas hydrophila infection in a crustacean, Pacifastacus leniusculus. J. Biol. Chem. 2007, 282, 33593–33598. [Google Scholar]
- Xu, J.; Wu, S.; Zhang, X. Novel function of QM protein of shrimp (Penaeus japonicus) in regulation of phenol oxidase activity by interaction with hemocyanin. Cell. Physiol. Biochem. 2008, 21, 473–480. [Google Scholar] [CrossRef]
- Li, D.-F.; Zhang, M.-C.; Yang, H.-J.; Zhu, Y.-B.; Xu, X. β-Integrin mediates WSSV infection. Virology 2007, 368, 122–132. [Google Scholar] [CrossRef]
- Musthaq, S.S.; Kwang, J. Oral vaccination of baculovirus-expressed VP28 displays enhanced protection against white spot syndrome virus in Penaeus monodon. PLoS One 2011, 6, e26428. [Google Scholar]
- Rajeshkumar, S.; Venkatesan, C.; Sarathi, M.; Sarathbabu, V.; Thomas, J.; Anver Basha, K.; Sahul Hameed, A.S. Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish. Shellfish Immunol. 2009, 26, 429–437. [Google Scholar] [CrossRef]
- Sarathi, M.; Simon, M.C.; Venkatesan, C.; Hameed, A.S.S. Oral administration of bacterially expressed VP28dsRNA to protect Penaeus monodon from white spot syndrome virus. Mar. Biotechnol. 2008, 10, 242–249. [Google Scholar] [CrossRef]
- Anas, A.; Philip, R.; Singh, I.S.B. Chitosan as a wall material for a microencapsulated delivery system for Macrobrachium rosenbergii (de Man) larvae. Aquac. Res. 2008, 39, 885–890. [Google Scholar] [CrossRef]
- Sellars, M.J.; Rao, M.; Arnold, S.J.; Wade, N.M.; Cowley, J.A. Penaeus monodon is protected against gill-associated virus by muscle injection but not oral delivery of bacterially expressed dsRNAs. Dis. Aquat. Org. 2011, 95, 19–30. [Google Scholar] [CrossRef]
- Xu, J.; Han, F.; Zhang, X. Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antivir. Res. 2007, 73, 126–131. [Google Scholar] [CrossRef]
- Westenberg, M.; Heinhuis, B.; Zuidema, D.; Vlak, J.M. siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus. Virus Res. 2005, 114, 133–139. [Google Scholar]
- Hartnoll, R.G. Growth. In The Biology of Crustacea; Bliss, D.E., Ed.; Academic Press: New York, NY, USA, 1982; pp. 111–197. [Google Scholar]
- Botsford, L.W. Models of Growth. In Crustacean Issues: Factors in Adult Growth; Wenner, A.M., Balkema, A.A., Eds.; A.A. Balkema Publishers: Boston, MA, USA, 1985; Volume 3, pp. 171–188. [Google Scholar]
- Aiken, D.E.; Waddy, S.L. The growth-process in crayfish. Rev. Aquat. Sci. 1992, 6, 335–381. [Google Scholar]
- Curtis, M.C.; Jones, C.M. Observations on monosex culture of redclaw crayfish Cherax quadricarinatus von Martens (Decapoda: Parastacidae) in earthen ponds. J. World Aquac. Soc. 1995, 26, 154–159. [Google Scholar] [CrossRef]
- Sagi, A.; Milstein, A.; Eran, Y.; Joseph, D.; Khalaila, I.; Abdu, U.; Harpaz, S.; Karplus, I. Culture of the Australian redclaw crayfish (Cherax quadricarinatus) in Israel, II. second growout season of overwintered populations. Isr. J. Aquac. Bamidgeh 1997, 49, 222–229. [Google Scholar]
- Kuris, A.M.; Ra’anan, Z.; Sagi, A.; Cohen, D. Morphotypic differentiation of male Malaysian giant prawn, Macrobrachium rosenbergii. J. Crustac. Biol. 1987, 7, 219–237. [Google Scholar] [CrossRef]
- Sagi, A.; Ra’anan, Z.; Cohen, D.; Wax, Y. Production of Macrobrachium rosenbergii in monosex population: Yield characteristics under intensive monoculture conditions in cages. Aquaculture 1986, 51, 265–275. [Google Scholar] [CrossRef]
- Nair, C.M.; Salin, K.R.; Raju, M.S.; Sebastian, M. Economic analysis of monosex culture of giant freshwater prawn (Macrobrachium rosenbergii de Man): A case study. Aquac. Res. 2006, 37, 949–954. [Google Scholar] [CrossRef]
- Sagi, A.; Aflalo, E.D. The androgenic gland and monosex culture in prawns—A biotechnological perspective. Aquac. Res. 2005, 36, 231–237. [Google Scholar] [CrossRef]
- Charniaux-Cotton, H. Decouverte chez un Crustace Amphipode (Orchestia gammarella) d’une glande endocrine responsible de la differenciation des caracteres sexuels primaires et secondaires males. C. R. Acad. Sci. Paris 1954, 239, 780–782. [Google Scholar]
- Okumura, T.; Hara, M. Androgenic gland cell structure and spermatogenesis during the molt cycle and correlation to morphotypic differentiation in the giant freshwater prawn, Macrobrachium rosenbergii. Zool. Sci. 2004, 21, 621–628. [Google Scholar] [CrossRef]
- Sagi, A.; Cohen, D. Growth, maturation and progeny of sex-reversed Macrobrachium rosenbergii males. World Aquac. 1990, 21, 87–90. [Google Scholar]
- Sagi, A.; Snir, E.; Khalaila, I. Sexual differentiation in decapod crustaceans: Role of the androgenic gland. Invertebr. Reprod. Dev. 1997, 31, 55–61. [Google Scholar] [CrossRef]
- Touir, A. Donnees nouvelles concernant l'endocrinologie sexuelle des Crustaces Decapodes Natantia hermaphrodites et gonochoriques. II. Maintien des gonies et evolution des gametogeneses in vivo et in vitro. C. R. Acad. Sci. 1977, 284, 2515–2518. [Google Scholar]
- Taketomi, Y.; Murata, M.; Miyawaki, M. Androgenic gland and secondary sexual characters in the crayfish Procambarus clarkii. J. Crustac. Biol. 1990, 10, 492–497. [Google Scholar] [CrossRef]
- Manor, R.; Aflalo, E.D.; Segall, C.; Weil, S.; Azulay, D.; Ventura, T.; Sagi, A. Androgenic gland implantation promotes growth and inhibits vitellogenesis in Cherax quadricarinatus females held in individual compartments. Invertebr. Reprod. Dev. 2004, 45, 151–159. [Google Scholar] [CrossRef]
- Cui, Z.X.; Liu, H.; Lo, T.S.; Chu, K.H. Inhibitory effects of the androgenic gland on ovarian development in the mud crab Scylla paramamosain. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2005, 140, 343–348. [Google Scholar] [CrossRef]
- King, D.S. Fine structure of the androgenic gland of the crab, Pachygrapsus crassipes. Gen. Comp. Endocrinol. 1964, 4, 533–544. [Google Scholar] [CrossRef]
- Awari, S.A.; Kiran, D. Histological and histochemical study of androgenic gland of Macrobrachium rosenbergii (de Man). J. Aquac. Trop. 1999, 14, 101–112. [Google Scholar]
- Sun, P.S.; Weatherby, T.M.; Dunlap, M.F.; Arakaki, K.L.; Zacarias, D.T.; Malecha, S.R. Developmental changes in structure and polypeptide profile of the androgenic gland of the freshwater prawn Macrobrachium rosenbergii. Aquac. Int. 2000, 8, 327–334. [Google Scholar] [CrossRef]
- Martin, G.; Sorokine, O.; Moniatte, M.; Bulet, P.; Hetru, C.; van Dorsselaer, A. The structure of a glycosylated protein hormone responsible for sex determination in the isopod, Armadillidium vulgare. Eur. J. Biochem. 1999, 262, 727–736. [Google Scholar] [CrossRef]
- Okuno, A.; Hasegawa, Y.; Ohira, T.; Katakura, Y.; Nagasawa, H. Characterization and cDNA cloning of androgenic gland hormone of the terrestrial isopod Armadillidium vulgare. Biochem. Biophys. Res. Commun. 1999, 264, 419–423. [Google Scholar] [CrossRef]
- Manor, R.; Weil, S.; Oren, S.; Glazer, L.; Aflalo, E.D.; Ventura, T.; Chalifa-Caspi, V.; Lapidot, M.; Sagi, A. Insulin and gender: An insulin-like gene expressed exclusively in the androgenic gland of the male crayfish. Gen. Comp. Endocrinol. 2007, 150, 326–336. [Google Scholar] [CrossRef]
- Chung, J.S.; Manor, R.; Sagi, A. Cloning of an insulin-like androgenic gland factor (IAG) from the blue crab, Callinectes sapidus: Implications for eyestalk regulation of IAG expression. Gen. Comp. Endocrinol. 2011, 173, 4–10. [Google Scholar] [CrossRef]
- Mareddy, V.R.; Rosen, O.; Thaggard, H.B.; Manor, R.; Kuballa, A.V.; Aflalo, E.D.; Sagi, A.; Paterson, B.; Elizur, A. Isolation and characterization of the complete cDNA sequence encoding a putative insulin-like peptide from the androgenic gland of Penaeus monodon. Aquaculture 2011, 318, 364–370. [Google Scholar] [CrossRef]
- Ventura, T.; Aflalo, E.D.; Weil, S.; Kashkush, K.; Sagi, A. Isolation and characterization of a female-specific DNA marker in the giant freshwater prawn Macrobrachium rosenbergii. Heredity 2011, 107, 456–461. [Google Scholar]
- Stein, A.J.; Rodriguez-Cerezo, E. International trade and the global pipeline of new GM crops. Nat. Biotechnol. 2010, 28, 23–25. [Google Scholar] [Green Version]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sagi, A.; Manor, R.; Ventura, T. Gene Silencing in Crustaceans: From Basic Research to Biotechnologies. Genes 2013, 4, 620-645. https://doi.org/10.3390/genes4040620
Sagi A, Manor R, Ventura T. Gene Silencing in Crustaceans: From Basic Research to Biotechnologies. Genes. 2013; 4(4):620-645. https://doi.org/10.3390/genes4040620
Chicago/Turabian StyleSagi, Amir, Rivka Manor, and Tomer Ventura. 2013. "Gene Silencing in Crustaceans: From Basic Research to Biotechnologies" Genes 4, no. 4: 620-645. https://doi.org/10.3390/genes4040620
APA StyleSagi, A., Manor, R., & Ventura, T. (2013). Gene Silencing in Crustaceans: From Basic Research to Biotechnologies. Genes, 4(4), 620-645. https://doi.org/10.3390/genes4040620