Cord Blood DNA Methylation Biomarkers for Predicting Neurodevelopmental Outcomes
Abstract
:1. Introduction
1.1. Neurodevelopment
1.2. Current Predictors of Neurodevelopmental Outcome
2. Epigenetics
2.1. DNA Methylation
2.2. Tissue Specificity
3. DNA Methylation Biomarkers of Neurodevelopment Outcome
3.1. Targeted versus Genome Wide Approach in Practise
3.2. Stress Exposure in Early Life
3.3. Prenatal Exposure to Natural Disasters
3.4. Maternal Depression and Anxiety in Pregnancy
3.5. Exposure to Maltreatment in Early Childhood
3.6. Exposure to Toxic Heavy Metals
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
APIB | Assessment of Preterm Infants Behavior |
BPD | borderline personality disorder |
HPA | hypothalamic pituitary adrenal |
MRI | magnetic resonance imaging |
NNNS | Neonatal Intensive Care Network Neurobehavioral Scale |
References
- Rice, D.; Barone, S., Jr. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ. Health Perspect. 2000, 108, 511–533. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, A.L.; Quinn, P.D.; Tsukayama, E. What leaves behind: The roles of IQ and self-control in predicting standardized achievement test scores and report card grades. J. Educ. Psychol. 2012, 104, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Delaney, L.; Smith, J.P. Childhood health: Trends and consequences over the life course. Future Child. 2012, 22, 43–63. [Google Scholar] [CrossRef] [PubMed]
- Pitcher, J.B.; Robertson, A.L.; Cockington, R.A.; Moore, V.M. Prenatal growth and early postnatal influences on adult motor cortical excitability. Pediatrics 2009, 124, e128–e136. [Google Scholar] [CrossRef] [PubMed]
- Ismail, F.Y.; Fatemi, A.; Johnston, M.V. Cerebral plasticity: Windows of opportunity in the developing brain. Eur. J. Paediatr. Neurol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.; Inder, T. Magnetic resonance imaging—Insights into brain injury and outcomes in premature infants. J. Commun. Disord. 2009, 42, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, M.; Barnes, P.D.; Keller, K.; Constantinou, J.C.; Fleisher, B.E.; Hintz, S.R.; Ariagno, R.L. Neonatal brain magnetic resonance imaging before discharge is better than serial cranial ultrasound in predicting cerebral palsy in very low birth weight preterm infants. Pediatrics 2004, 114, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Bosanquet, M.; Copeland, L.; Ware, R.; Boyd, R. A systematic review of tests to predict cerebral palsy in young children. Dev. Med. Child Neurol. 2013, 55, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Cioni, G.; Einspieler, C.; Roversi, M.F.; Bos, A.F.; Paolicelli, P.B.; Ranzi, A.; Prechtl, H.F. Cramped synchronized general movements in preterm infants as an early marker for cerebral palsy. Arch. Pediatr. Adolesc. Med. 2002, 156, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Lister, R.; Mukamel, E.A. Turning over DNA methylation in the mind. Front. Neurosci. 2015. [Google Scholar] [CrossRef] [PubMed]
- Lister, R.; Mukamel, E.A.; Nery, J.R.; Urich, M.; Puddifoot, C.A.; Johnson, N.D.; Lucero, J.; Huang, Y.; Dwork, A.J.; Schultz, M.D.; et al. Global epigenomic reconfiguration during mammalian brain development. Science 2013. [Google Scholar] [CrossRef] [PubMed]
- Almouzni, G.; Cedar, H. Maintenance of epigenetic information. Cold Spring Harb. Perspect. Biol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.; Pan, K.; Linnekamp, J.F.; Medema, J.P.; Kandimalla, R. DNA methylation based biomarkers in colorectal cancer: A systematic review. Biochim. Biophys. Acta 2016, 1866, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Zheleznyakova, G.Y.; Cao, H.; Schioth, H.B. BDNF DNA methylation changes as a biomarker of psychiatric disorders: Literature review and open access database analysis. Behav. Brain Funct. 2016. [Google Scholar] [CrossRef] [PubMed]
- Terry, M.B.; McDonald, J.A.; Wu, H.C.; Eng, S.; Santella, R.M. Epigenetic biomarkers of breast cancer risk: Across the breast cancer prevention continuum. Adv. Exp. Med. Biol. 2016, 882, 33–68. [Google Scholar] [PubMed]
- Gao, X.; Jia, M.; Zhang, Y.; Breitling, L.P.; Brenner, H. DNA methylation changes of whole blood cells in response to active smoking exposure in adults: A systematic review of DNA methylation studies. Clin. Epigenet. 2015. [Google Scholar] [CrossRef] [PubMed]
- Ladd-Acosta, C. Epigenetic signatures as biomarkers of exposure. Curr. Environ. Health Rep. 2015, 2, 117–125. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, T.M.; Markunas, C.A. DNA methylation and microRNA-based biomarkers for risk of type 2 diabetes. Curr. Diabetes Rev. 2016, 12, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Mikeska, T.; Craig, J.M. DNA methylation biomarkers: Cancer and beyond. Genes 2014, 5, 821–864. [Google Scholar] [CrossRef] [PubMed]
- Gapp, K.; Woldemichael, B.T.; Bohacek, J.; Mansuy, I.M. Epigenetic regulation in neurodevelopment and neurodegenerative diseases. Neuroscience 2014, 264, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.; Zimmermann, C.A.; Spengler, D. Molecular epigenetic switches in neurodevelopment in health and disease. Front. Behav. Neurosci. 2015. [Google Scholar] [CrossRef] [PubMed]
- Lesseur, C.; Paquette, A.G.; Marsit, C.J. Epigenetic regulation of infant neurobehavioral outcomes. Med. Epigenet. 2014, 2, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, J.F.; Ubeda, F. Diseases associated with genomic imprinting. Prog. Mol. Biol. Transl. Sci. 2011, 101, 401–445. [Google Scholar] [PubMed]
- Khakpour, G.; Pooladi, A.; Izadi, P.; Noruzinia, M.; Tavakkoly Bazzaz, J. DNA methylation as a promising landscape: A simple blood test for breast cancer prediction. Tumor Biol. 2015, 36, 4905–4912. [Google Scholar] [CrossRef] [PubMed]
- Weaver, I.C.; Cervoni, N.; Champagne, F.A.; D’Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M.; Meaney, M.J. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004, 7, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Hannon, E.; Lunnon, K.; Schalkwyk, L.; Mill, J. Interindividual methylomic variation across blood, cortex, and cerebellum: Implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics 2015, 10, 1024–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponsonby, A.L.; Symeonides, C.; Vuillermin, P.; Mueller, J.; Sly, P.D.; Saffery, R. Epigenetic regulation of neurodevelopmental genes in response to in utero exposure to phthalate plastic chemicals: How can we delineate causal effects? Neurotoxicology 2016, 55, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Turecki, G.; Meaney, M.J. Effects of the social environment and stress on glucocorticoid receptor gene methylation: A systematic review. Biol. Psychiatry 2016, 79, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.L.; Zhou, F.C. Environmental alterations of epigenetics prior to the birth. Int. Rev. Neurobiol. 2014, 115, 1–49. [Google Scholar] [PubMed]
- Cardenas, A.; Houseman, E.A.; Baccarelli, A.A.; Quamruzzaman, Q.; Rahman, M.; Mostofa, G.; Wright, R.O.; Christiani, D.C.; Kile, M.L. In utero arsenic exposure and epigenome-wide associations in placenta, umbilical artery, and human umbilical vein endothelial cells. Epigenetics 2015, 10, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Kundakovic, M.; Gudsnuk, K.; Herbstman, J.B.; Tang, D.; Perera, F.P.; Champagne, F.A. DNA methylation of BDNF as a biomarker of early-life adversity. Proc. Natl. Acad. Sci. USA 2015, 112, 6807–6813. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Diorio, J.; Tannenbaum, B.; Caldji, C.; Francis, D.; Freedman, A.; Sharma, S.; Pearson, D.; Plotsky, P.M.; Meaney, M.J. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 1997, 277, 1659–1662. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, E.C.; Kundakovic, M.; Ramchandani, P.G.; Murphy, S.E.; Champagne, F.A. Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics 2015, 10, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Devlin, A.M.; Brain, U.; Austin, J.; Oberlander, T.F. Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLoS ONE 2010, 5, e12201. [Google Scholar] [CrossRef] [PubMed]
- Oberlander, T.F.; Weinberg, J.; Papsdorf, M.; Grunau, R.; Misri, S.; Devlin, A.M. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 2008, 3, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Lillycrop, K.A.; Costello, P.M.; Teh, A.L.; Murray, R.J.; Clarke-Harris, R.; Barton, S.J.; Garratt, E.S.; Ngo, S.; Sheppard, A.M.; Wong, J.; et al. Association between perinatal methylation of the neuronal differentiation regulator HES1 and later childhood neurocognitive function and behaviour. Int. J. Epidemiol. 2015, 44, 1263–1276. [Google Scholar] [CrossRef] [PubMed]
- Mansell, T.; Vuillermin, P.; Ponsonby, A.L.; Collier, F.; Saffery, R.; Ryan, J. Maternal mental well-being during pregnancy and glucocorticoid receptor gene promoter methylation in the neonate. Dev. Psychopathol. 2016, 28, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Mansell, T.; Novakovic, B.; Meyer, B.; Rzehak, P.; Vuillermin, P.; Ponsonby, A.L.; Collier, F.; Burgner, D.; Saffery, R.; Ryan, J.; et al. The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood. Transl. Psychiatry 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, A.; Koestler, D.C.; Houseman, E.A.; Jackson, B.P.; Kile, M.L.; Karagas, M.R.; Marsit, C.J. Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero. Epigenetics 2015, 10, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Bakulski, K.M.; Lee, H.; Feinberg, J.I.; Wells, E.M.; Brown, S.; Herbstman, J.B.; Witter, F.R.; Halden, R.U.; Caldwell, K.; Mortensen, M.E.; et al. Prenatal mercury concentration is associated with changes in DNA methylation at TCEANC2 in newborns. Int. J. Epidemiol. 2015, 44, 1249–1262. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.C.; Semenova, V.; Darrah, T.; Vengosh, A.; Huang, Z.; King, K.; Nye, M.D.; Fry, R.; Skaar, D.; Maguire, R.; et al. Maternal cadmium, iron and zinc levels, DNA methylation and birth weight. BMC Pharmacol. Toxicol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Sanders, A.P.; Smeester, L.; Rojas, D.; DeBussycher, T.; Wu, M.C.; Wright, F.A.; Zhou, Y.H.; Laine, J.E.; Rager, J.E.; Swamy, G.K.; et al. Cadmium exposure and the epigenome: Exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics 2014, 9, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Kippler, M.; Engstrom, K.; Mlakar, S.J.; Bottai, M.; Ahmed, S.; Hossain, M.B.; Raqib, R.; Vahter, M.; Broberg, K. Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight. Epigenetics 2013, 8, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Rojas, D.; Rager, J.E.; Smeester, L.; Bailey, K.A.; Drobna, Z.; Rubio-Andrade, M.; Styblo, M.; Garcia-Vargas, G.; Fry, R.C. Prenatal arsenic exposure and the epigenome: Identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol. Sci. 2015, 143, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Broberg, K.; Ahmed, S.; Engstrom, K.; Hossain, M.B.; Jurkovic Mlakar, S.; Bottai, M.; Grander, M.; Raqib, R.; Vahter, M. Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. J. Dev. Orig. Health Dis. 2014, 5, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Kile, M.L.; Houseman, E.A.; Baccarelli, A.A.; Quamruzzaman, Q.; Rahman, M.; Mostofa, G.; Cardenas, A.; Wright, R.O.; Christiani, D.C. Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics 2014, 9, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Koestler, D.C.; Avissar-Whiting, M.; Houseman, E.A.; Karagas, M.R.; Marsit, C.J. Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero. Environ. Health Perspect. 2013, 121, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Pilsner, J.R.; Hall, M.N.; Liu, X.; Ilievski, V.; Slavkovich, V.; Levy, D.; Factor-Litvak, P.; Yunus, M.; Rahman, M.; Graziano, J.H.; et al. Influence of prenatal arsenic exposure and newborn sex on global methylation of cord blood DNA. PLoS ONE 2012, 7, e37147. [Google Scholar] [CrossRef] [PubMed]
- Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 2009, 10, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Welberg, L.A.; Seckl, J.R.; Holmes, M.C. Inhibition of 11beta-hydroxysteroid dehydrogenase, the foeto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur. J. Neurosci. 2000, 12, 1047–1054. [Google Scholar] [CrossRef]
- Uno, H.; Eisele, S.; Sakai, A.; Shelton, S.; Baker, E.; Dejesus, O. Neurotoxicity of glucocorticoids in the primate brain. Horm. Behav. 1994, 28, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Buitelaar, J.K.; Huizink, A.C.; Mulder, E.J.; de Medina, P.G.; Visser, G.H. Prenatal stress and cognitive development and temperament in infants. Neurobiol. Aging 2003, 24, S53–S60. [Google Scholar] [CrossRef]
- Van den Bergh, B.R.; Mennes, M.; Oosterlaan, J.; Stevens, V.; Stiers, P.; Marcoen, A.; Lagae, L. High antenatal maternal anxiety is related to impulsivity during performance on cognitive tasks in 14- and 15-year-olds. Neurosci. Biobehav. Rev. 2005, 29, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Glover, V. Maternal depression, anxiety and stress during pregnancy and child outcome; what needs to be done. Best Pract. Res. Clin. Obstet. Gynaecol. 2014, 28, 25–35. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.J.; Bugge Jensen, A.; Freeman, L.; Khalife, N.; O’Connor, T.G.; Glover, V. Maternal prenatal anxiety and downregulation of placental 11βHSD2. Psychoneuroendocrinology 2012, 37, 818–826. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; O’Connor, T.G.; Glover, V. Prenatal stress and neurodevelopment of the child: Focus on the hpa axis and role of the placenta. Dev. Neurosci. 2009, 31, 285–292. [Google Scholar] [PubMed]
- Jensen Pena, C.; Monk, C.; Champagne, F.A. Epigenetic effects of prenatal stress on 11beta-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLoS ONE 2012, 7, e39791. [Google Scholar] [CrossRef] [PubMed]
- Marsit, C.J.; Maccani, M.A.; Padbury, J.F.; Lester, B.M. Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS ONE 2012, 7, e33794. [Google Scholar] [CrossRef] [PubMed]
- Stephens, B.E.; Liu, J.; Lester, B.; Lagasse, L.; Shankaran, S.; Bada, H.; Bauer, C.; Das, A.; Higgins, R. Neurobehavioral assessment predicts motor outcome in preterm infants. J. Pediatr. 2010, 156, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Bann, C.; Lester, B.; Tronick, E.; Das, A.; Lagasse, L.; Bauer, C.; Shankaran, S.; Bada, H. Neonatal neurobehavior predicts medical and behavioral outcome. Pediatrics 2010, 125, e90–e98. [Google Scholar] [CrossRef] [PubMed]
- Crudo, A.; Petropoulos, S.; Suderman, M.; Moisiadis, V.G.; Kostaki, A.; Hallett, M.; Szyf, M.; Matthews, S.G. Effects of antenatal synthetic glucocorticoid on glucocorticoid receptor binding, DNA methylation, and genome-wide mRNA levels in the fetal male hippocampus. Endocrinology 2013, 154, 4170–4181. [Google Scholar] [CrossRef] [PubMed]
- Laplante, D.P.; Brunet, A.; King, S. The effects of maternal stress and illness during pregnancy on infant temperament: Project ice storm. Pediatr. Res. 2015, 79, 107–113. [Google Scholar] [CrossRef] [PubMed]
- King, S.; Dancause, K.; Turcotte-Tremblay, A.M.; Veru, F.; Laplante, D.P. Using natural disasters to study the effects of prenatal maternal stress on child health and development. Birth Defects Res. C Embryo Today 2012, 96, 273–288. [Google Scholar] [CrossRef] [PubMed]
- Laplante, D.P.; Barr, R.G.; Brunet, A.; Galbaud du Fort, G.; Meaney, M.L.; Saucier, J.F.; Zelazo, P.R.; King, S. Stress during pregnancy affects general intellectual and language functioning in human toddlers. Pediatr. Res. 2004, 56, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Laplante, D.P.; Brunet, A.; Schmitz, N.; Ciampi, A.; King, S. Project ice storm: Prenatal maternal stress affects cognitive and linguistic functioning in 5 1/2-year-old children. J. Am. Acad. Child Adolesc. Psychiatry 2008, 47, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Cao-Lei, L.; Massart, R.; Suderman, M.J.; Machnes, Z.; Elgbeili, G.; Laplante, D.P.; Szyf, M.; King, S. DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: Project ice storm. PLoS ONE 2014, 9, e107653. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, T.G.; Monk, C.; Fitelson, E.M. Practitioner review: Maternal mood in pregnancy and child development—Implications for child psychology and psychiatry. J. Child Psychol. Psychiatry 2014, 55, 99–111. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, T.G.; Heron, J.; Golding, J.; Beveridge, M.; Glover, V. Maternal antenatal anxiety and children’s behavioural/emotional problems at 4 years. Report from the avon longitudinal study of parents and children. Br. J. Psychiatry 2002, 180, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Del Cerro, M.C.; Perez-Laso, C.; Ortega, E.; Martin, J.L.; Gomez, F.; Perez-Izquierdo, M.A.; Segovia, S. Maternal care counteracts behavioral effects of prenatal environmental stress in female rats. Behav. Brain Res. 2010, 208, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, V.; Lamarque, S.; Le Moal, M.; Piazza, P.V.; Abrous, D.N. Postnatal stimulation of the pups counteracts prenatal stress-induced deficits in hippocampal neurogenesis. Biol. Psychiatry 2006, 59, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Murgatroyd, C.; Quinn, J.P.; Sharp, H.M.; Pickles, A.; Hill, J. Effects of prenatal and postnatal depression, and maternal stroking, at the glucocorticoid receptor gene. Transl. Psychiatry 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Sharp, H.; Pickles, A.; Meaney, M.; Marshall, K.; Tibu, F.; Hill, J. Frequency of infant stroking reported by mothers moderates the effect of prenatal depression on infant behavioural and physiological outcomes. PLoS ONE 2012, 7, e45446. [Google Scholar] [CrossRef] [PubMed]
- Sharp, H.; Hill, J.; Hellier, J.; Pickles, A. Maternal antenatal anxiety, postnatal stroking and emotional problems in children: Outcomes predicted from pre- and postnatal programming hypotheses. Psychol. Med. 2015, 45, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Conradt, E.; Lester, B.M.; Appleton, A.A.; Armstrong, D.A.; Marsit, C.J. The roles of DNA methylation of NR3C1 and 11βHSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics 2013, 8, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Radtke, K.M.; Schauer, M.; Gunter, H.M.; Ruf-Leuschner, M.; Sill, J.; Meyer, A.; Elbert, T. Epigenetic modifications of the glucocorticoid receptor gene are associated with the vulnerability to psychopathology in childhood maltreatment. Transl. Psychiatry 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Suderman, M.; Borghol, N.; Pappas, J.J.; Pinto Pereira, S.M.; Pembrey, M.; Hertzman, C.; Power, C.; Szyf, M. Childhood abuse is associated with methylation of multiple loci in adult DNA. BMC Med. Genom. 2014, 7. [Google Scholar] [CrossRef] [PubMed]
- Enns, M.W.; Cox, B.J.; Clara, I. Parental bonding and adult psychopathology: Results from the US national comorbidity survey. Psychol. Med 2002, 32, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Unternaehrer, E.; Meyer, A.H.; Burkhardt, S.C.; Dempster, E.; Staehli, S.; Theill, N.; Lieb, R.; Meinlschmidt, G. Childhood maternal care is associated with DNA methylation of the genes for brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) in peripheral blood cells in adult men and women. Stress 2015, 18, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Yonkers, K.A.; Wisner, K.L.; Stewart, D.E.; Oberlander, T.F.; Dell, D.L.; Stotland, N.; Ramin, S.; Chaudron, L.; Lockwood, C. The management of depression during pregnancy: A report from the american psychiatric association and the american college of obstetricians and gynecologists. Obstet. Gynecol. 2009, 114, 703–713. [Google Scholar] [CrossRef] [PubMed]
- South Australia Maternal & Neonatal Clinical Network. Clinical Guideline: Use of Psychotropic Medicine, 3rd ed.Department of Health, Ed.; Government of South Australia: Adelaide, Australia, 2014.
- National Institute for Health and Care Excellence. Antenatal and Postnatal Mental Health: Clinical Management and Service Guidance; National Collaborating Centre for Mental Health, Ed.; The British Psychological Society and the Royal College of Psychiatrists: Leicester, UK, 2014. [Google Scholar]
- Non, A.L.; Binder, A.M.; Kubzansky, L.D.; Michels, K.B. Genome-wide DNA methylation in neonates exposed to maternal depression, anxiety, or SSRI medication during pregnancy. Epigenetics 2014, 9, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, J.W.; Smith, A.K.; Brennan, P.A.; Conneely, K.N.; Kilaru, V.; Knight, B.T.; Newport, D.J.; Cubells, J.F.; Stowe, Z.N. DNA methylation in neonates born to women receiving psychiatric care. Epigenetics 2012, 7, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Roth, T.L.; Lubin, F.D.; Funk, A.J.; Sweatt, J.D. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol. Psychiatry 2009, 65, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, P.; Cases, O.; Maroteaux, L. The developmental role of serotonin: News from mouse molecular genetics. Nat. Rev. Neurosci. 2003, 4, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Philibert, R.; Madan, A.; Andersen, A.; Cadoret, R.; Packer, H.; Sandhu, H. Serotonin transporter mRNA levels are associated with the methylation of an upstream cpg island. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.; Widom, C.S.; Browne, K.; Fergusson, D.; Webb, E.; Janson, S. Burden and consequences of child maltreatment in high-income countries. Lancet 2009, 373, 68–81. [Google Scholar] [CrossRef]
- Labonte, B.; Yerko, V.; Gross, J.; Mechawar, N.; Meaney, M.J.; Szyf, M.; Turecki, G. Differential glucocorticoid receptor exon 1(b), 1(c), and 1(h) expression and methylation in suicide completers with a history of childhood abuse. Biol. Psychiatry 2012, 72, 41–48. [Google Scholar] [CrossRef] [PubMed]
- McGowan, P.O.; Sasaki, A.; D’Alessio, A.C.; Dymov, S.; Labonte, B.; Szyf, M.; Turecki, G.; Meaney, M.J. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 2009, 12, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Dammann, G.; Teschler, S.; Haag, T.; Altmuller, F.; Tuczek, F.; Dammann, R.H. Increased DNA methylation of neuropsychiatric genes occurs in borderline personality disorder. Epigenetics 2011, 6, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Kinnally, E.L.; Capitanio, J.P.; Leibel, R.; Deng, L.; LeDuc, C.; Haghighi, F.; Mann, J.J. Epigenetic regulation of serotonin transporter expression and behavior in infant rhesus macaques. Genes Brain Behav. 2010, 9, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Engert, V.; Buss, C.; Khalili-Mahani, N.; Wadiwalla, M.; Dedovic, K.; Pruessner, J.C. Investigating the association between early life parental care and stress responsivity in adulthood. Dev. Neuropsychol. 2010, 35, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Jurewicz, J.; Polanska, K.; Hanke, W. Chemical exposure early in life and the neurodevelopment of children—An overview of current epidemiological evidence. Ann. Agric. Environ. Med. 2013, 20, 465–486. [Google Scholar] [PubMed]
- Ray, P.D.; Yosim, A.; Fry, R.C. Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: Strategies and challenges. Front. Genet. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Green, B.B.; Karagas, M.R.; Punshon, T.; Jackson, B.P.; Robbins, D.J.; Houseman, E.A.; Marsit, C.J. Epigenome-wide assessment of DNA methylation in the placenta and arsenic exposure in the new hampshire birth cohort study (USA). Environ. Health Perspect. 2016, 124, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
Reference | Sample Size | Method | Gene/s Exhibiting Difference in DNA Methylation | Adverse Early Life Exposure | Child Neurodevelopmental Outcome |
---|---|---|---|---|---|
[34] | 82 | Targeted | SLC6A4 | Maternal depression (second trimester) | - |
[35] | 82 | Targeted | NR3C1 | Prenatal depression and anxiety | Altered stress response (age 3 months) |
[36] | 175 | Promoters of 25,000 genes (n = 24), Targeted (n = 175) | HES1 | - | IQ (age 4 years) |
[36] | 200 | Targeted | HES1 | - | Cognitive flexibility, executive function, memory (age 7 years) |
[36] | 108 | Targeted | HES1 | - | Externalizing behavior (age 1 year) |
[37] | 481 | Targeted | NR3C1 | Maternal depression and anxiety | - |
[38] | 576 | Targeted | IGF2 and H19 | Maternal anxiety | - |
[39] | 138 | Illumina Infinium Methylation450K array | No changes | Mercury exposure | - |
No changes | Arsenic exposures | - | |||
[40] | 85 | Targeted | ANGPT2 and PRPF18 | Mercury exposure | - |
[41] | 319 | Targeted | PEG3 | Cadmium exposure | - |
[42] | 17 | Methylated CpG island recovery assay | 61 genes | Cadmium exposure | - |
[43] | 127 | Illumina Infinium Methylation450K array | No changes | Cadmium exposure | - |
[44] | 38 | Illumina Infinium Methylation450K array | 2919 genes | Arsenic exposure | - |
[45] | 127 | Illumina Infinium Methylation450K array | 3 CpG sites associated with arsenic (males only) | Arsenic exposure | - |
[46] | 44 | Illumina Infinium Methylation450K array | Genome wide DNA methylation levels associated with arsenic exposure | Arsenic exposure | - |
[47] | 134 | Illumina Infinium Methylation450K array | No changes | Arsenic exposure | - |
[48] | 101 | [3H]-methyl-incorporation assay, Alu, LINE-1 and LUMA. | Non-significant changes | Arsenic exposure | - |
Reference | Species | Method | Tissue | Gene/s Exhibiting Difference in DNA Methylation | Adverse Early life Exposure | Child Outcome |
---|---|---|---|---|---|---|
[25] | Rat | Targeted | Hippocampus | Nr3c1 | Low maternal grooming | Increased anxiety like behaviors |
[33] | Human n = 57 | Targeted | Buccal swabs (at age 2 months) | BDNF | Maternal depression | - |
[58] | Human n = 185 | Targeted | Placenta | HSD11B2 | - | Poor quality of movement (age < 4 days) |
[66] | Human n = 36 | Illumina Infinium Methylation450K array | Saliva (age 8 years) | SCG5 and LTA | Maternal stress | - |
Peripheral blood T cells (age 13 years) | Over 1600 CpG sites | |||||
[72] | Human n = 181 | Targeted | Saliva (age 14 months) | NR3C1 | Postnatal depression in absence of prenatal depression | - |
[74] | Human n = 482 | Targeted | Placenta | NR3C1 | Prenatal depression | Increased lethargy, increased hypotonia, decreased self-regulation (age < 4 days) |
HSD11B2 | Maternal anxiety | Increased hypotonia (age < 4 days) | ||||
[75] | Human n = 46 | Targeted | Peripheral blood (age 11–21 years) | NR3C1 | Childhood maltreatment | Borderline personality symptoms |
[76] | Human n = 40 | Methylated DNA immunoprecipitation | Peripheral blood (men, 45 years) | >900 gene promoter regions | Childhood abuse (first 16 years of life) | Depression symptoms |
[77] | Rhesus macaques | Targeted | Peripheral blood mononuclear cells | SLC6A4 | Maternal deprivation | Increased activity during social isolation |
[78] | Human n = 85 | Targeted | Whole blood (adults) | BDNF and oxytocin receptor | Poor maternal care first 16 years | - |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodyl, N.A.; Roberts, C.T.; Bianco-Miotto, T. Cord Blood DNA Methylation Biomarkers for Predicting Neurodevelopmental Outcomes. Genes 2016, 7, 117. https://doi.org/10.3390/genes7120117
Hodyl NA, Roberts CT, Bianco-Miotto T. Cord Blood DNA Methylation Biomarkers for Predicting Neurodevelopmental Outcomes. Genes. 2016; 7(12):117. https://doi.org/10.3390/genes7120117
Chicago/Turabian StyleHodyl, Nicolette A., Claire T. Roberts, and Tina Bianco-Miotto. 2016. "Cord Blood DNA Methylation Biomarkers for Predicting Neurodevelopmental Outcomes" Genes 7, no. 12: 117. https://doi.org/10.3390/genes7120117
APA StyleHodyl, N. A., Roberts, C. T., & Bianco-Miotto, T. (2016). Cord Blood DNA Methylation Biomarkers for Predicting Neurodevelopmental Outcomes. Genes, 7(12), 117. https://doi.org/10.3390/genes7120117