A Multi-Step miRNA-mRNA Regulatory Network Construction Approach Identifies Gene Signatures Associated with Endometrioid Endometrial Carcinoma
Abstract
:1. Introduction
2. Results
2.1. Endometrial Carcinoma-Related miRNAs
2.2. Initial Prediction of Endometrial Carcinoma Related Genes
2.3. Protein-Protein Interaction Analysis Identified High-Confidence Endometrial Carcinoma-Related Genes
2.4. Evaluation of 61 High-Confidence Endometrial Carcinoma-Related Genes
2.5. Validation of Interesting Endometrial Carcinoma-Related Genes
2.6. CPEB1 May Be Relevant to up-Regulated hsa-miR-183-5p in EEC Tissues
3. Discussion
4. Materials and Methods
4.1. Endometrial Carcinoma-Related miRNA Collection and Target Gene Prediction
4.2. Protein-Protein Interaction (PPI) Analysis and Network Gene Scoring
4.3. Pathway Enrichment Analysis
4.4. Patients and Clinical Samples
4.5. RNA Extraction
4.6. qRT-PCR
4.7. CPEB1 and hsa-miR-183-5p RPKM and Differential Calculation
Ethics and Consent Statement
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
EEC | endometrioid endometrial carcinoma |
PPI | protein-protein interaction |
References
- Xu, Y.Y.; Wu, H.J.; Ma, H.D.; Xu, L.P.; Huo, Y.; Yin, L.R. MicroRNA-503 suppresses proliferation and cell-cycle progression of endometrioid endometrial cancer by negatively regulating cyclin D1. FEBS J. 2013, 280, 3768–3779. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.K.; Cheung, T.H.; Huen, N.Y.; Wong, K.W.; Lo, K.W.; Yim, S.F.; Wong, Y.-M.; Pang, M.-M.; To, K.-F.; Wang, V.W.; et al. Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women. Int. J. Cancer 2009, 124, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Amant, F.; Moerman, P.; Neven, P.; Timmerman, D.; Van Limbergen, E.; Vergote, I. Endometrial cancer. Lancet 2005, 366, 491–505. [Google Scholar] [CrossRef]
- Ratner, E.S.; Tuck, D.; Richter, C.; Nallur, S.; Patel, R.M.; Schultz, V.; Hui, P.; Schwartz, P.E.; Rutherford, T.; Weidhaas, J.B. MicroRNA signatures differentiate uterine cancer tumor subtypes. Gynecol. Oncol. 2010, 118, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Boren, T.; Xiong, Y.; Hakam, A.; Wenham, R.; Apte, S.; Wei, Z.; Kamath, S.; Chen, D.T.; Dressman, H.; Lancaster, J.M. MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol. Oncol. 2008, 110, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Li, Q.; Liu, S.; Wang, F.; Xiong, Z.; Chen, J.; Chen, H.; Yang, Y.; Tan, X.; Luo, Q.; et al. Integrated microRNA and mRNA transcriptome sequencing reveals the potential roles of miRNAs in stage I endometrioid endometrial carcinoma. PLoS ONE 2014, 9, e110163. [Google Scholar]
- Devaraj, S.J. Natarajan, miRNA-mRNA network detects hub mRNAs and cancer specific miRNAs in lung cancer. In Silico Biol. 2011, 11, 281–295. [Google Scholar] [PubMed]
- Szeto, C.Y.; Lin, C.H.; Choi, S.C.; Yip, T.T.; Ngan, R.K.; Tsao, G.S.; Li Lung, M. Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA-microRNA regulatory network in nasopharyngeal carcinoma model systems. FEBS Open Bio. 2014, 4, 128–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Edwards, A.; Fan, W.; Flemington, E.K.; Zhang, K. miRNA-mRNA correlation-network modules in human prostate cancer and the differences between primary and metastatic tumor subtypes. PLoS ONE 2012, 7, e40130. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, H.; Blazes, M.S.; Wu, R.; Cho, K.R.; Bose, S.; Wang, S.I.; Li, J.; Parsons, R.; Ellenson, L.H. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. 1997, 57, 3935–3940. [Google Scholar] [PubMed]
- Risinger, J.I.; Hayes, K.; Maxwell, G.L.; Carney, M.E.; Dodge, R.K.; Barrett, J.C.; Berchuck, A. PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Clin. Cancer Res. 1998, 4, 3005–3010. [Google Scholar] [PubMed]
- Cheung, L.W.; Hennessy, B.T.; Li, J.; Yu, S.; Myers, A.P.; Djordjevic, B.; Lu, Y.; Stemke-Hale, K.; Dyer, M.D.; Zhang, F.; et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 2011, 1, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Liu, P.; Zhang, F.; Xu, E.; Symonds, L.; Ohlson, C.E.; Bronson, R.T.; Maira, S.M.; di Tomaso, E.; Li, J.; et al. A genetic mouse model of invasive endometrial cancer driven by concurrent loss of Pten and Lkb1 Is highly responsive to mTOR inhibition. Cancer Res. 2014, 74, 15–23. [Google Scholar] [CrossRef]
- Mutter, G.L.; Lin, M.C.; Fitzgerald, J.T.; Kum, J.B.; Baak, J.P.; Lees, J.A.; Weng, L.P.; Eng, C. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J. Natl. Cancer Inst. 2000, 92, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Terakawa, N.; Kanamori, Y.; Yoshida, S. Loss of PTEN expression followed by Akt phosphorylation is a poor prognostic factor for patients with endometrial cancer. Endocr. Relat. Cancer 2003, 10, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Le Gallo, M.; Bell, D.W. The emerging genomic landscape of endometrial cancer. Clin. Chem. 2014, 60, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Ying, T.H.; Tseng, C.J.; Tsai, S.J.; Hsieh, S.C.; Lee, H.Z.; Hsieh, Y.H.; Bau, D.-T. Association of p53 and CDKN1A genotypes with endometriosis. Anticancer Res. 2011, 31, 4301–4306. [Google Scholar] [PubMed]
- Roh, J.W.; Kim, J.W.; Park, N.H.; Song, Y.S.; Park, I.A.; Park, S.Y.; Kang, S.B.; Lee, H.P. p53 and p21 genetic polymorphisms and susceptibility to endometrial cancer. Gynecol. Oncol. 2004, 93, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Xiang, Y.B.; Qu, S.; Long, J.; Cai, Q.; Gao, J.; Zheng, W.; Shu, X.O. Association of genetic polymorphisms in cell-cycle control genes and susceptibility to endometrial cancer among Chinese women. Am. J. Epidemiol. 2011, 173, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Janku, F.; Lee, J.J.; Tsimberidou, A.M.; Hong, D.S.; Naing, A.; Falchook, G.S.; Fu, S.; Luthra, R.; Garrido-Laguna, I.; Kurzrock, R. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers. PLoS ONE 2011, 6, e22769. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Xue, J.; Zhang, Q.; Li, F.; Zhang, W.; Chen, H.; Huang, Y.; Zheng, F. MiR-449a functions as a tumor suppressor in endometrial cancer by targeting CDC25A. Oncol Rep. 2014, 32, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Henson, R.; Lang, M.; Wehbe, H.; Maheshwari, S.; Mendell, J.T.; Jiang, J.; Schmittgen, T.D.; Patel, T. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006, 130, 2113–2129. [Google Scholar] [CrossRef] [PubMed]
- Nahum, A.; Hirsch, K.; Danilenko, M.; Watts, C.K.; Prall, O.W.; Levy, J.; Sharoni, Y. Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27(Kip1) in the cyclin E-cdk2 complexes. Oncogene 2001, 20, 3428–3436. [Google Scholar]
- Pavlides, S.C.; Huang, K.T.; Reid, D.A.; Wu, L.; Blank, S.V.; Mittal, K.; Guo, L.; Rothenberg, E.; Rueda, B.; Cardozo, T.; et al. Inhibitors of SCF-Skp2/Cks1 E3 ligase block estrogen-induced growth stimulation and degradation of nuclear p27kip1: Therapeutic potential for endometrial cancer. Endocrinology 2013, 154, 4030–4045. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.T.; Pavlides, S.C.; Lecanda, J.; Blank, S.V.; Mittal, K.R.; Gold, L.I. Estrogen and progesterone regulate p27kip1 levels via the ubiquitin-proteasome system: pathogenic and therapeutic implications for endometrial cancer. PLoS ONE 2012, 7, e46072. [Google Scholar] [CrossRef] [PubMed]
- Bitelman, C.; Sarfstein, R.; Sarig, M.; Attias-Geva, Z.; Fishman, A.; Werner, H.; Bruchim, I. IGF1R-directed targeted therapy enhances the cytotoxic effect of chemotherapy in endometrial cancer. Cancer Lett. 2013, 335, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.J.; Hao, Q.; Zhang, H.M.; Wu, Y.Z.; Wang, J.D. Insulin-like growth factors in endometrioid adenocarcinoma: Correlation with clinico-pathological features and estrogen receptor expression. BMC Cancer 2012, 12. [Google Scholar] [CrossRef] [PubMed]
- Attias-Geva, Z.; Bentov, I.; Ludwig, D.L.; Fishman, A.; Bruchim, I.; Werner, H. Insulin-like growth factor-I receptor (IGF-IR) targeting with monoclonal antibody cixutumumab (IMC-A12) inhibits IGF-I action in endometrial cancer cells. Eur J. Cancer 2011, 47, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- Mhawech-Fauceglia, P.; Herrmann, F.R.; Rai, H.; Tchabo, N.; Lele, S.; Izevbaye, I.; Odunsi, K.; Cheney, R.T. IMP3 distinguishes uterine serous carcinoma from endometrial endometrioid adenocarcinoma. Am. J. Clin. Pathol. 2010, 133, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qiu, H.; Hu, W.; Li, S.; Yu, J. RPRD1B promotes tumor growth by accelerating the cell cycle in endometrial cancer. Oncol. Rep. 2014, 31, 1389–1395. [Google Scholar] [PubMed]
- Spurdle, A.B.; Thompson, D.J.; Ahmed, S.; Ferguson, K.; Healey, C.S.; O’Mara, T.; Walker, L.C.; Montgomery, S.B.; Dermitzakis, E.T.; Fahey, P.; et al. Genome-wide association study identifies a common variant associated with risk of endometrial cancer. Nat. Genet. 2011, 43, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Yanokura, M.; Banno, K.; Kobayashi, Y.; Kisu, I.; Ueki, A.; Ono, A.; Masuda, K.; Nomura, H.; Hirasawa, A.; Susumu, N.; et al. MicroRNA and endometrial cancer: Roles of small RNAs in human tumors and clinical applications (Review). Oncol. Lett. 2010, 1, 935–940. [Google Scholar] [PubMed]
- Tay, J.; Richter, J.D. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev. Cell 2001, 1, 201–213. [Google Scholar] [CrossRef]
- Belloc, E.; Pique, M.; Mendez, R. Sequential waves of polyadenylation and deadenylation define a translation circuit that drives meiotic progression. Biochem. Soc. Trans. 2008, 36, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, J.; Simoes-Correia, J.; Paredes, J.; Pinto, M.T.; Sousa, S.; Corso, G.; Marrelli, D.; Roviello, F.; Pereira, P.S.; Weil, D.; et al. CPEB1, a novel gene silenced in gastric cancer: A Drosophila approach. Gut 2012, 61, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.R.; In, Y.H.; Park, J.; Park, T.; Jung, K.H.; Chai, J.C.; Chung, M.K.; Lee, Y.S.; Chai, Y.G. Genome-scale DNA methylation pattern profiling of human bone marrow mesenchymal stem cells in long-term culture. Exp. Mol. Med. 2012, 44, 503–512. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrogio, A.; Nagaoka, K.; Richter, J.D. Translational control of cell growth and malignancy by the CPEBs. Nat. Rev. Cancer 2013, 13, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.M.; Richter, J.D. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev. 2008, 22, 3449–3460. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Park, G.; Lee, J.E.; Park, J.Y.; Kim, T.H.; Kim, Y.J.; Lee, S.H.; Yoo, H.; Kim, J.H.; Park, J.B. CPEB1 modulates differentiation of glioma stem cells via downregulation of HES1 and SIRT1 expression. Oncotarget 2014, 5, 6756–6769. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.J.; Korb, E.; Kundel, M.A.; Kochanek, A.R.; Kabraji, S.; McEvoy, M.; Shin, C.Y.; Wells, D.G. CPEB1 regulates beta-catenin mRNA translation and cell migration in astrocytes. Glia 2008, 56, 1401–1413. [Google Scholar] [CrossRef] [PubMed]
- Grudzien-Nogalska, E.; Reed, B.C.; Rhoads, R.E. CPEB1 promotes differentiation and suppresses EMT in mammary epithelial cells. J. Cell Sci. 2014, 127, 2326–2338. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.J.; Chao, C.H.; Xia, W.; Yang, J.Y.; Xiong, Y.; Li, C.W.; Yu, W.H.; Rehman, S.K.; Hsu, J.L.; Lee, H.H.; et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol. 2011, 13, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Ruepp, A.; Kowarsch, A.; Schmidl, D.; Buggenthin, F.; Brauner, B.; Dunger, I.; Fobo, G.; Frishman, G.; Montrone, C.; Theis, F.J. PhenomiR: A knowledgebase for microRNA expression in diseases and biological processes. Genome Biol. 2010. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhang, Q.; Deng, M.; Miao, J.; Guo, Y.; Gao, W.; Cui, Q. An analysis of human microRNA and disease associations. PLoS ONE 2008, 3, e3420. [Google Scholar] [CrossRef] [PubMed]
- Dweep, H.; Sticht, C.; Pandey, P.; Gretz, N. miRWalk-database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform. 2011, 44, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Wang, Y.; Hao, Y.; Juan, L.; Teng, M.; Zhang, X.; Li, M.; Wang, G.; Liu, Y. miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009, 37, D98–D104. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Xu, H.; Kuang, Y. Systematic enrichment analysis of microRNA expression profiling studies in endometriosis. Iran. J. Basic Med. Sci. 2015, 18, 423–429. [Google Scholar] [PubMed]
- Wang, J.; Song, S.; Xie, C.; Han, J.; Li, Y.; Shi, J.; Xin, M.; Wang, J.; Luo, T.; Meng, X.; et al. MicroRNA profiling in the left atrium in patients with non-valvular paroxysmal atrial fibrillation. BMC Cardiovasc. Disord. 2015. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Qin, S.; Ho, J.; Zhou, J.; Kreidberg, J.A. Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease. BMC Syst. Biol. 2011. [Google Scholar] [CrossRef] [PubMed]
- Thio, C.L.; Yusof, R.; Abdul-Rahman, P.S.; Karsani, S.A. Differential proteome analysis of chikungunya virus infection on host cells. PLoS ONE 2013, 8, e61444. [Google Scholar] [CrossRef] [PubMed]
- Pollier, J.; Rombauts, S.; Goossens, A. Analysis of RNA-Seq data with TopHat and Cufflinks for genome-wide expression analysis of jasmonate-treated plants and plant cultures. Methods Mol. Biol. 2013, 1011, 305–315. [Google Scholar] [PubMed]
Pathway Name(ID) | Annotated Genes Quantity | Corrected P-value | Annotated Genes |
---|---|---|---|
Signal Transduction(REACT:111102) | 23 | 1.67 × 10−13 | CASP3|CDKN1A|CDKN1B|CHUK|COL3A1|COL4A1|E2F3|E2F5|EDN1|FRS2|GRB2|IGF1R|IRS2|NGF|NRAS|PRKAR1A|PRKCE|PTEN|SDC2|THBS1|TSC1|YAP1|YWHAB |
Cell cycle(KEGG:04110) | 10 | 1.59 × 10−12 | CCNE2|CDC25A|CDKN1A|CDKN1B|E2F3|E2F5|ESPL1|SMC1A|YWHAB|YWHAG |
Prostate cancer(KEGG:05215) | 9 | 3.82 × 10−12 | CCNE2|CDKN1A|CDKN1B|CHUK|E2F3|GRB2|IGF1R|NRAS|PTEN |
Pathways in cancer(KEGG:05200) | 12 | 2.70 × 10−11 | APPL1|CASP3|CCNE2|CDKN1A|CDKN1B|CHUK|COL4A1|E2F3|GRB2|IGF1R|NRAS|PTEN |
Cell Cycle(REACT:115566) | 13 | 2.82 × 10−10 | CCNE2|CDC25A|CDKN1A|CDKN1B|DYRK1A|E2F3|E2F5|ESPL1|NUP98|RANBP2|RRM2|SMC1A|YWHAG |
Immune System(REACT:6900) | 17 | 3.00 × 10−10 | CDKN1A|CDKN1B|CHUK|FRS2|GRB2|IRS2|MAP3K1|NRAS|NUP98|PAK1|PRKAR1A|PRKCE|PTEN|RANBP2|TNFAIP3|WASL|YWHAB |
Disease(REACT:116125) | 16 | 4.79 × 10−10 | CDKN1A|CDKN1B|CHUK|E2F5|FRS2|GRB2|IRS2|NRAS|NUP98|POLR2D|PRKAR1A|PRKCE|PTEN|RANBP2|SDC2|YWHAB |
p53 signaling pathway(KEGG:04115) | 7 | 2.67 × 10−19 | CASP3|CCNE2|CDKN1A|MDM4|PTEN|RRM2|THBS1 |
Neurotrophin signaling pathway(KEGG:04722) | 8 | 5.35 × 10−19 | FRS2|GRB2|IRS2|MAP3K1|NGF|NRAS|YWHAB|YWHAG |
Oocyte meiosis(KEGG:04114) | 7 | 1.02 × 10−7 | CCNE2|CPEB1|ESPL1|IGF1R|SMC1A|YWHAB|YWHAG |
Glioma(KEGG:05214) | 6 | 1.40 × 10−7 | CDKN1A|E2F3|GRB2|IGF1R|NRAS|PTEN |
Focal adhesion(KEGG:04510) | 8 | 2.53 × 10−7 | COL1A1|COL3A1|COL4A1|GRB2|IGF1R|PAK1|PTEN|THBS1 |
Chronic myeloid leukemia(KEGG:05220) | 6 | 3.38 × 10−7 | CDKN1A|CDKN1B|CHUK|E2F3|GRB2|NRAS |
Small cell lung cancer(KEGG:05222) | 6 | 8.35 × 10−7 | CCNE2|CDKN1B|CHUK|COL4A1|E2F3|PTEN |
Melanoma(KEGG:05218) | 5 | 1.47 × 10−5 | CDKN1A|E2F3|IGF1R|NRAS|PTEN |
Extracellular matrix organization(REACT:118779) | 7 | 3.25 × 10−5 | CASP3|COL14A1|COL1A1|COL3A1|COL4A1|SDC2|THBS1 |
Developmental Biology(REACT:111045) | 8 | 3.98 × 10−5 | COL3A1|COL4A1|GRB2|MED8|NRAS|PAK1|WASL|YWHAB |
ECM-receptor interaction(KEGG:04512) | 5 | 4.34 × 10−5 | COL1A1|COL3A1|COL4A1|SDC2|THBS1 |
MAPK signaling pathway(KEGG:04010) | 7 | 4.94 × 10−5 | CASP3|CHUK|GRB2|MAP3K1|NGF|NRAS|PAK1 |
ErbB signaling pathway(KEGG:04012) | 5 | 5.14 × 10−5 | CDKN1A|CDKN1B|GRB2|NRAS|PAK1 |
Bladder cancer(KEGG:05219) | 4 | 8.68 × 10−5 | CDKN1A|E2F3|NRAS|THBS1 |
Cellular responses to stress(REACT:120956) | 6 | 2.53 × 10−4 | CBX4|CCNE2|CDKN1A|CDKN1B|E2F3|HMGA2 |
Insulin signaling pathway(KEGG:04910) | 5 | 5.15 × 10−4 | GRB2|IRS2|NRAS|PRKAR1A|TSC1 |
Protein digestion and absorption(KEGG:04974) | 4 | 0.00123 | COL14A1|COL1A1|COL3A1|COL4A1 |
Apoptosis(KEGG:04210) | 4 | 0.00179 | CASP3|CHUK|NGF|PRKAR1A |
Chemokine signaling pathway(KEGG:04062) | 5 | 0.00201 | CHUK|GRB2|NRAS|PAK1|WASL |
Fc gamma R-mediated phagocytosis(KEGG:04666) | 4 | 0.00262 | CFL2|PAK1|PRKCE|WASL |
Amoebiasis(KEGG:05146) | 4 | 0.0037 | CASP3|COL1A1|COL3A1|COL4A1 |
T cell receptor signaling pathway(KEGG:04660) | 4 | 0.00412 | CHUK|GRB2|NRAS|PAK1 |
Binding and Uptake of Ligands by Scavenger Receptors(REACT:160300) | 3 | 0.00499 | COL1A1|COL3A1|COL4A1 |
Axon guidance(KEGG:04360) | 4 | 0.00865 | CFL2|EFNB2|NRAS|PAK1 |
Extracellular matrix organization(REACT:195275) | 2 | 0.00935 | COL1A1|SDC2 |
Hepatitis C(KEGG:05160) | 4 | 0.00998 | CDKN1A|CHUK|GRB2|NRAS |
Measles(KEGG:05162) | 4 | 0.00998 | CCNE2|CDKN1B|CHUK|TNFAIP3 |
Natural killer cell mediated cytotoxicity(KEGG:04650) | 4 | 0.01177 | CASP3|GRB2|NRAS|PAK1 |
Endometrial cancer(KEGG:05213) | 3 | 0.01232 | GRB2|NRAS|PTEN |
Non-small cell lung cancer(KEGG:05223) | 3 | 0.01232 | E2F3|GRB2|NRAS |
Acute myeloid leukemia(KEGG:05221) | 3 | 0.01448 | CHUK|GRB2|NRAS |
Apoptosis(REACT:578) | 4 | 0.01603 | APPL1|CASP3|YWHAB|YWHAG |
Hemostasis(REACT:604) | 6 | 0.01944 | COL1A1|GRB2|NRAS|PRKAR1A|PRKCE|THBS1 |
Epithelial cell signaling in Helicobacter pylori infection(KEGG:05120) | 3 | 0.02448 | CASP3|CHUK|PAK1 |
Gene Expression(REACT:71) | 8 | 0.02501 | E2F5|IGF2BP1|MED8|NR3C1|POLR2D|SMC1A|YAP1|YWHAB |
Renal cell carcinoma(KEGG:05211) | 3 | 0.02783 | GRB2|NRAS|PAK1 |
B cell receptor signaling pathway(KEGG:04662) | 3 | 0.03815 | CHUK|GRB2|NRAS |
Fc epsilon RI signaling pathway(KEGG:04664) | 3 | 0.04732 | GRB2|NRAS|PRKCE |
Gene Symbol | #of PPIs Neighbor | Relationship with Endometrial Carcinoma | Reference |
---|---|---|---|
PTEN | 25 | PTEN mutation is commonly found in endometrial carcinoma.PTEN expression is a diagnostic marker and poor prognostic factor. | [12,13,14,15] |
CDKN1A(p21) | 15 | CDKN1A is a significantly mutated gene in endometrial carcinoma.Genetic polymorphisms and susceptibility to endometrial carcinoma | [16,17,18,19] |
NRAS | 15 | NRAS is a significantly mutated gene in endometrial carcinoma. | [20] |
CDC25A | 15 | Thought to be a oncogene in endometrial carcinoma | [21,22] |
CDKN1B(p27Kip1) | 14 | CDKN1A has genetic polymorphisms and susceptibility to endometrial carcinomaCDKN1A has therapeutic potential for endometrial carcinoma | [19,23,24,25] |
IGF1R | 14 | Potential therapy target of endometrioid adenocarcinoma | [26,27,28] |
ID | Genes | Matched Adjacent Endometrium | Endometria Carcinoma Tissues (Mean ± SD) | p Value |
---|---|---|---|---|
1 | CDC25A | 1 | 27.322 ± 19.981 | 0.04 |
2 | IGF1R | 1 | 4.742 ± 3.501 | 0.04 |
3 | CPEB1 | 1 | 0.417 ± 0.574 | 0.05 |
4 | GRB2 | 1 | 3.962 ± 5.03 | 0.17 |
5 | ACTA1 | 1 | 4.135 ± 4.376 | 0.14 |
6 | IRS2 | 1 | 2.771 ± 2.721 | 0.17 |
7 | CASP3 | 1 | 2.802 ± 3.935 | 0.27 |
8 | NGF | 1 | 4.546 ± 9.295 | 0.39 |
9 | YWHAB | 1 | 1.082 ± 0.618 | 0.73 |
10 | SDC2 | 1 | 1.08 ± 1.134 | 0.85 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, H.; Li, Q.; Chen, R.; Liu, S.; Lin, Q.; Xiong, Z.; Jiang, Q.; Guo, L. A Multi-Step miRNA-mRNA Regulatory Network Construction Approach Identifies Gene Signatures Associated with Endometrioid Endometrial Carcinoma. Genes 2016, 7, 26. https://doi.org/10.3390/genes7060026
Xiong H, Li Q, Chen R, Liu S, Lin Q, Xiong Z, Jiang Q, Guo L. A Multi-Step miRNA-mRNA Regulatory Network Construction Approach Identifies Gene Signatures Associated with Endometrioid Endometrial Carcinoma. Genes. 2016; 7(6):26. https://doi.org/10.3390/genes7060026
Chicago/Turabian StyleXiong, Hanzhen, Qiulian Li, Ruichao Chen, Shaoyan Liu, Qiongyan Lin, Zhongtang Xiong, Qingping Jiang, and Linlang Guo. 2016. "A Multi-Step miRNA-mRNA Regulatory Network Construction Approach Identifies Gene Signatures Associated with Endometrioid Endometrial Carcinoma" Genes 7, no. 6: 26. https://doi.org/10.3390/genes7060026
APA StyleXiong, H., Li, Q., Chen, R., Liu, S., Lin, Q., Xiong, Z., Jiang, Q., & Guo, L. (2016). A Multi-Step miRNA-mRNA Regulatory Network Construction Approach Identifies Gene Signatures Associated with Endometrioid Endometrial Carcinoma. Genes, 7(6), 26. https://doi.org/10.3390/genes7060026