Type 2 Diabetes Susceptibility in the Greek-Cypriot Population: Replication of Associations with TCF7L2, FTO, HHEX, SLC30A8 and IGF2BP2 Polymorphisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. DNA Extraction
2.3. SNP Selection and Genotyping
2.4. Statistical Analyses
3. Results
3.1. Study Participants
3.2. Association Studies—Statistical Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dayeh, T.A.; Olsson, A.H.; Volkov, P.; Almgren, P.; Ronn, T.; Ling, C. Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia 2013, 56, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Sanghera, D.K.; Blackett, P.R. Type 2 Diabetes Genetics: Beyond GWAS. J. Diabetes Metab. 2012, 3. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Vinay, D.G.; Rafiq, S.; Kranthikumar, M.V.; Janipalli, C.S.; Giambartolomei, C.; Evans, D.M.; Mani, K.R.; Sandeep, M.N.; Taylor, A.E.; et al. Association analysis of 31 common polymorphisms with type 2 diabetes and its related traits in indian sib pairs. Diabetologia 2012, 55, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Chopra, R.; Manvati, S.; Singh, Y.P.; Kaul, N.; Behura, A.; Mahajan, A.; Sehajpal, P.; Gupta, S.; Dhar, M.K.; et al. Replication of Type 2 Diabetes Candidate Genes Variations in Three Geographically Unrelated Indian Population Groups. PLoS ONE 2013, 8, e58881. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.; Elbers, C.C.; Guo, Y.; Peter, I.; Gaunt, T.R.; Mega, J.L.; Lanktree, M.B.; Tare, A.; Castillo, B.A.; Li, Y.R.; et al. Large-Scale Gene-Centric Meta-Analysis across 39 Studies Identifies Type 2 Diabetes Loci. Am. J. Hum. Genet. 2012, 90, 410–425. [Google Scholar] [CrossRef] [PubMed]
- Ayub, Q.; Moutsianas, L.; Chen, Y.; Panoutsopoulou, K.; Colonna, V.; Pagani, L.; Prokopenko, I.; Ritchie, G.R.; Tyler-Smith, C.; McCarthy, M.I.; et al. Revisiting the Thrifty Gene Hypothesis via 65 Loci Associated with Susceptibility to Type 2 Diabetes. Am. J. Hum. Genet. 2014, 94, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Ali, O. Genetics of type 2 diabetes. World J. Diabetes 2013, 4, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Basile, K.J.; Johnson, M.E.; Xia, Q.; Grant, S.F. Genetic Susceptibility to Type 2 Diabetes and Obesity: Follow-Up of Findings from Genome-Wide Association Studies. Int. J. Endocrinol. 2014, 2014, 769671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Su, Z. Genetic Variants of Retinoic Acid Receptor-Related Orphan Receptor Alpha Determine Susceptibility to Type 2 Diabetes Mellitus in Han Chinese. Genes 2016, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Mohlke, K.L.; Boehnke, M. Recent advances in understanding the genetic architecture of type 2 diabetes. Hum. Mol. Genet. 2015, 24, R85–R92. [Google Scholar] [CrossRef] [PubMed]
- Phani, N.M.; Adhikari, P.; Nagri, S.K.; D'Souza, S.C.; Satyamoorthy, K.; Rai, P.S. Replication and Relevance of Multiple Susceptibility Loci Discovered from Genome Wide Association Studies for Type 2 Diabetes in an Indian Population. PLoS ONE 2016, 11, e0157364. [Google Scholar] [CrossRef] [PubMed]
- Almawi, W.Y.; Nemr, R.; Keleshian, S.H.; Echtay, A.; Saldanha, F.L.; AlDoseri, F.A.; Racoubian, E. A replication study of 19 GWAS-validated type 2 diabetes at-risk variants in the Lebanese population. Diabetes Res. Clin. Pract. 2013, 102, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhang, R.; Wang, C.; Wang, J.; Ma, X.; Lu, J.; Qin, W.; Hou, X.; Bao, Y.; Xiang, K.; et al. PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 Are Associated with Type 2 Diabetes in a Chinese Population. PLoS ONE 2009, 4, e7643. [Google Scholar] [CrossRef] [PubMed]
- Matsuba, R.; Sakai, K.; Imamura, M.; Tanaka, Y.; Iwata, M.; Hirose, H.; Kaku, K.; Maegawa, H.; Watada, H.; Tobe, K.; et al. Replication Study in a Japanese Population to Evaluate the Association between 10 SNP Loci, Identified in European Genome-Wide Association Studies, and Type 2 Diabetes. PLoS ONE 2015, 10, e0126363. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.C. Genetics of Type 2 Diabetes in African Americans. Curr. Diab. Rep. 2015, 15, 74. [Google Scholar] [CrossRef] [PubMed]
- Kato, N. Insights into the genetic basis of type 2 diabetes. J. Diabetes Investig. 2013, 4, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Demographic report 2014, statistical service of Cyprus. Available online: http://www.mof.gov.cy/mof/cystat/statistics.nsf/all/2b7ccdc7c637c864c225807b0032830d/$file/demographic_report-2014-271115.pdf?openelement (accessed on 1 March 2016).
- Baysal, E.; Indrak, K.; Bozkurt, G.; Berkalp, A.; Aritkan, E.; Old, J.M.; Ioannou, P.; Angastiniotis, M.; Droushiotou, A.; Yuregir, G.T.; et al. The β-thalassaemia mutations in the population of Cyprus. Br. J. Haematol. 1992, 81, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Hadjisavvas, A.; Loizidou, M.A.; Middleton, N.; Michael, T.; Papachristoforou, R.; Kakouri, E.; Daniel, M.; Papadopoulos, P.; Malas, S.; Marcou, Y.; et al. An investigation of breast cancer risk factors in Cyprus: A case control study. BMC Cancer 2010, 10, 447. [Google Scholar] [CrossRef] [PubMed]
- Loizou, T.; Pouloukas, S.; Tountas, C.; Thanopoulou, A.; Karamanos, V. An epidemiologic study on the prevalence of diabetes, glucose intolerance, and metabolic syndrome in the adult population of the Republic of Cyprus. Diabetes Care 2006, 29, 1714–1715. [Google Scholar] [CrossRef] [PubMed]
- International diabetes atlas, the sixth edition, international diabetes federation 2013. Available online: www.idf.org/diabetesatlas (accessed on 15 September 2014).
- Zeggini, E.; Weedon, M.N.; Lindgren, C.M.; Frayling, T.M.; Elliott, K.S.; Lango, H.; Timpson, N.J.; Perry, J.R.; Rayner, N.W.; Freathy, R.M.; et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007, 316, 1336–1341. [Google Scholar] [CrossRef] [PubMed]
- Zeggini, E.; Scott, L.J.; Saxena, R.; Voight, B.F.; Marchini, J.L.; Hu, T.; de Bakker, P.I.; Abecasis, G.R.; Almgren, P.; Andersen, G.; et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 2008, 40, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J.; Mohlke, K.L.; Bonnycastle, L.L.; Willer, C.J.; Li, Y.; Duren, W.L.; Erdos, M.R.; Stringham, H.M.; Chines, P.S.; Jackson, A.U.; et al. A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants. Science 2007, 316, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, M.S.; Weedon, M.N.; Fawcett, K.A.; Wasson, J.; Debenham, S.L.; Daly, A.; Lango, H.; Frayling, T.M.; Neumann, R.J.; Sherva, R.; et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat. Genet. 2007, 39, 951–953. [Google Scholar] [CrossRef] [PubMed]
- Voight, B.F.; Scott, L.J.; Steinthorsdottir, V.; Morris, A.P.; Dina, C.; Welch, R.P.; Zeggini, E.; Huth, C.; Aulchenko, Y.S.; Thorleifsson, G.; et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 2010, 42, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.; Voight, B.F.; Lyssenko, V.; Burtt, N.P.; de Bakker, P.I.; Chen, H.; Roix, J.J.; Kathiresan, S.; Hirschhorn, J.N.; Daly, M.J.; et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316, 1331–1336. [Google Scholar] [PubMed]
- Prokopenko, I.; Langenberg, C.; Florez, J.C.; Saxena, R.; Soranzo, N.; Thorleifsson, G.; Loos, R.J.; Manning, A.K.; Jackson, A.U.; Aulchenko, Y.; et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 2009, 41, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasuda, K.; Miyake, K.; Horikawa, Y.; Hara, K.; Osawa, H.; Furuta, H.; Hirota, Y.; Mori, H.; Jonsson, A.; Sato, Y.; et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 2008, 40, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Winckler, W.; Weedon, M.N.; Graham, R.R.; McCarroll, S.A.; Purcell, S.; Almgren, P.; Tuomi, T.; Gaudet, D.; Bostrom, K.B.; Walker, M.; et al. Evaluation of Common Variants in the Six Known Maturity-Onset Diabetes of the Young (MODY) Genes for Association With Type 2 Diabetes. Diabetes 2007, 56, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Wigginton, J.E.; Cutler, D.J.; Abecasis, G.R. A Note on Exact Tests of Hardy-Weinberg Equilibrium. Am. J. Hum. Genet. 2005, 76, 887–893. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A language and environment for statistical computing. R foundation for statistical computing: Vienna, Austria, 2011. Available online: http://www.R-project.Org (accessed on 5 March 2014).
- Purcell, S. Plink (v1.07). Available online: http://pngu.mgh.harvard.edu/purcell/plink/ (accessed on 12 January 2014).
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Swen, J.J.; Baak-Pablo, R.F.; Guchelaar, H.J.; van der Straaten, T. Alternative methods to a TaqMan assay to detect a tri-allelic single nucleotide polymorphism rs757210 in the HNF1β gene. Clin. Chem. Lab. Med. 2012, 50, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Holmkvist, J.; Almgren, P.; Lyssenko, V.; Lindgren, C.M.; Eriksson, K.F.; Isomaa, B.; Tuomi, T.; Nilsson, P.; Groop, L. Common Variants in Maturity-Onset Diabetes of the Young Genes and Future Risk of Type 2 Diabetes. Diabetes 2008, 57, 1738–1744. [Google Scholar] [CrossRef] [PubMed]
- Sladek, R.; Rocheleau, G.; Rung, J.; Dina, C.; Shen, L.; Serre, D.; Boutin, P.; Vincent, D.; Belisle, A.; Hadjadj, S.; et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Waters, K.M.; Stram, D.O.; Hassanein, M.T.; Le Marchand, L.; Wilkens, L.R.; Maskarinec, G.; Monroe, K.R.; Kolonel, L.N.; Altshuler, D.; Henderson, B.E.; et al. Consistent Association of Type 2 Diabetes Risk Variants Found in Europeans in Diverse Racial and Ethnic groups. PLoS Genet. 2010, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loizidou, M.A.; Hadjisavvas, A.; Ioannidis, J.P.; Kyriacou, K. Replication of genome-wide discovered breast cancer risk loci in the Cypriot population. Breast Cancer Res.Treat. 2011, 128, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Novembre, J.; Johnson, T.; Bryc, K.; Kutalik, Z.; Boyko, A.R.; Auton, A.; Indap, A.; King, K.S.; Bergmann, S.; Nelson, M.R.; et al. Genes mirror geography within Europe. Nature 2008, 456, 98–101. [Google Scholar] [PubMed]
- Voskarides, K.; Mazieres, S.; Hadjipanagi, D.; Di Cristofaro, J.; Ignatiou, A.; Stefanou, C.; King, R.J.; Underhill, P.A.; Chiaroni, J.; Deltas, C. Y-chromosome phylogeographic analysis of the Greek-Cypriot population reveals elements consistent with Neolithic and Bronze age settlements. Investig. Genet. 2016, 7, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omori, S.; Tanaka, Y.; Takahashi, A.; Hirose, H.; Kashiwagi, A.; Kaku, K.; Kawamori, R.; Nakamura, Y.; Maeda, S. Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 With Susceptibility to Type 2 Diabetes in a Japanese Population. Diabetes 2008, 57, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Rong, R.; Hanson, R.L.; Ortiz, D.; Wiedrich, C.; Kobes, S.; Knowler, W.C.; Bogardus, C.; Baier, L.J. Association analysis of variation in/near FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, LOC387761, and CDKN2B with type 2 diabetes and related quantitative traits in Pima Indians. Diabetes 2009, 58, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Kalnina, I.; Zaharenko, L.; Vaivade, I.; Rovite, V.; Nikitina-Zake, L.; Peculis, R.; Fridmanis, D.; Geldnere, K.; Jacobsson, J.A.; Almen, M.S.; et al. Polymorphisms in FTO and near TMEM18 associate with type 2 diabetes and predispose to younger age at diagnosis of diabetes. Gene 2013, 527, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Rizvi, S.; Mahdi, F. Association of Genetic polymorphism of PPARγ-2, ACE, MTHFR, FABP-2 and FTO genes in risk prediction of type 2 diabetes mellitus. J. Biomed. Sci. 2013, 20, 80. [Google Scholar] [CrossRef] [PubMed]
- Silbernagel, G.; Renner, W.; Grammer, T.B.; Hugl, S.R.; Bertram, J.; Kleber, M.E.; Hoffmann, M.M.; Winkelmann, B.R.; Marz, W.; Boehm, B.O. Association of TCF7L2SNPs with age at onset of type 2 diabetes and proinsulin/insulin ratio but not with glucagon-like peptide 1. Diabetes Metab. Res. Rev. 2011, 27, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Tangjittipokin, W.; Chongjarean, N.; Plengvidhya, N.; Homsanit, M.; Yenchitsomanus, P.T. Transcription factor 7-like 2 (TCF7L2) variations associated with earlier age-onset of type 2 diabetes in Thai patients. J. Genet. 2012, 91, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Nemr, R.; Echtay, A.; Dashti, E.A.; Almawi, A.W.; Al-Busaidi, A.S.; Keleshian, S.H.; Irani-Hakime, N.; Almawi, W.Y. Strong Association of Common Variants in the IGF2BP2 Gene with Type 2 Diabetes in Lebanese Arabs. Diabetes Res. Clin. Pract. 2012, 96, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Nemr, R.; Turki, A.; Echtay, A.; Al-Zaben, G.S.; Daher, H.S.; Irani-Hakime, N.A.; Keleshian, S.H.; Almawi, W.Y. Transcription factor-7-like 2 gene variants are strongly associated with type 2 diabetes in Lebanese subjects. Diabetes Res. Clin. Pract. 2012, 98, e23–e27. [Google Scholar] [CrossRef] [PubMed]
- Ghassibe-Sabbagh, M.; Haber, M.; Salloum, A.K.; Al-Sarraj, Y.; Akle, Y.; Hirbli, K.; Romanos, J.; Mouzaya, F.; Gauguier, D.; Platt, D.E.; et al. T2DM GWAS in the Lebanese population confirms the role of TCF7L2 and CDKAL1 in disease susceptibility. Sci. Rep. 2014, 4, 7351. [Google Scholar] [CrossRef] [PubMed]
- Goulielmos, G.N.; Samonis, G.; Apergi, M.; Christofaki, M.; Valachis, A.; Zervou, M.I.; Kofteridis, D.P. C1q but not mannose-binding lectin (Mbl-2) gene polymorphisms are associated with type 2 diabetes in the genetically homogeneous population of the island of Crete in Greece. Hum. Immunol. 2013, 74, 878–881. [Google Scholar] [CrossRef] [PubMed]
- Papaoikonomou, S.; Tentolouris, N.; Tousoulis, D.; Papadodiannis, D.; Miliou, A.; Papageorgiou, N.; Hatzis, G.; Stefanadis, C. The association of the 174G>C polymorphism of interleukin 6 gene with diabetic nephropathy in patients with type 2 diabetes mellitus. J. Diabetes Complicat. 2013, 27, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Pappa, K.I.; Gazouli, M.; Economou, K.; Daskalakis, G.; Anastasiou, E.; Anagnou, N.P.; Antsaklis, A. Gestational diabetes mellitus shares polymorphisms of genes associated with insulin resistance and type 2 diabetes in the Greek population. Gynecol. Endocrinol. 2011, 27, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Arslan, E.; Acik, L.; Gunaltili, G.; Ayvaz, G.; Altinova, A.E.; Arslan, M. The effect of calpain-10 gene polymorphism on the development of type 2 diabetes mellitus in a Turkish population. Endokrynol. Pol. 2014, 65, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Demirci, H.; Yurtcu, E.; Ergun, M.A.; Yazici, A.C.; Karasu, C.; Yetkin, I. Calpain 10 SNP-44 gene polymorphism affects susceptibility to type 2 diabetes mellitus and diabetic-related conditions. Genet. Test. 2008, 12, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Orkunoglu Suer, F.E.; Mergen, H.; Bolu, E.; Ozata, M. Molecular scanning for mutations in the insulin receptor substrate-1 (IRS-1) gene in Turkish with type 2 diabetes mellitus. Endocr. J. 2005, 52, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Gonen, M.S.; Arikoglu, H.; Erkoc Kaya, D.; Ozdemir, H.; Ipekci, S.H.; Arslan, A.; Kayis, S.A.; Gogebakan, B. Effects of single nucleotide polymorphisms in K(ATP) channel genes on type 2 diabetes in a Τurkish population. Arch. Med. Res. 2012, 43, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Arikoglu, H.; Ozdemir, H.; Kaya, D.E.; Ipekci, S.H.; Arslan, A.; Kayis, S.A.; Gonen, M.S. The Adiponectin variants contribute to the genetic background of type 2 diabetes in Τurkish population. Gene 2014, 534, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Settin, A.; El-Baz, R.; Ismaeel, A.; Tolba, W.; Allah, W.A. Association of ACE and MTHFR genetic polymorphisms with type 2 diabetes mellitus: Susceptibility and complications. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Alsaid, A.; El-Missiry, M.; Hatata el, S.; Tarabay, M.; Settin, A. Association of IL-4-590 C>T and IL-13-1112 C>T Gene Polymorphisms with the Susceptibility to Type 2 Diabetes Mellitus. Dis. Markers 2013, 35, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Amer, M.A.; Ghattas, M.H.; Abo-Elmatty, D.M.; Abou-El-Ela, S.H. Evaluation of glutathione S-transferase P1 genetic variants affecting type-2 diabetes susceptibility and glycemic control. Arch. Med. Sci. 2012, 8, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Ruchat, S.M.; Elks, C.E.; Loos, R.J.; Vohl, M.C.; Weisnagel, S.J.; Rankinen, T.; Bouchard, C.; Perusse, L. Association between insulin secretion, insulin sensitivity and type 2 diabetes susceptibility variants identified in genome-wide association studies. Acta Diabetol. 2009, 46, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.H.; Liu, N.J.; Yang, Z.; Tao, X.M.; Du, Y.P.; Wang, X.C.; Lu, B.; Zhang, Z.Y.; Hu, R.M.; Wen, J. IGF2BP2 and obesity interaction analysis for type 2 diabetes mellitus in Chinese Han population. Eur. J. Med. Res. 2014, 19, 40. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.T.; Dayeh, T.A.; Kirkpatrick, C.L.; Taneera, J.; Kumar, R.; Groop, L.; Wollheim, C.B.; Nitert, M.D.; Ling, C. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1C) levels in human pancreatic islets. Diabetologia 2011, 54, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.T.; Dayeh, T.A.; Volkov, P.A.; Kirkpatrick, C.L.; Malmgren, S.; Jing, X.; Renstrom, E.; Wollheim, C.B.; Nitert, M.D.; Ling, C. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol. Endocrinol. 2012, 26, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Volkmar, M.; Dedeurwaerder, S.; Cunha, D.A.; Ndlovu, M.N.; Defrance, M.; Deplus, R.; Calonne, E.; Volkmar, U.; Igoillo-Esteve, M.; Naamane, N.; et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J. 2012, 31, 1405–1426. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.W. Gene x environment interactions in type 2 diabetes. Curr. Diab. Rep. 2011, 11, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Dayeh, T.; Volkov, P.; Salo, S.; Hall, E.; Nilsson, E.; Olsson, A.H.; Kirkpatrick, C.L.; Wollheim, C.B.; Eliasson, L.; Ronn, T.; et al. Genome-Wide DNA Methylation Analysis of Human Pancreatic Islets from Type 2 Diabetic and Non-Diabetic Donors Identifies Candidate Genes That Influence Insulin Secretion. PLoS Genet. 2014, 10, e1004160. [Google Scholar] [CrossRef] [PubMed]
Trait | T2D Patients | Controls | t-Test p-Value |
---|---|---|---|
Number | 528 | 490 | n/a |
Sex (male/female) | 321/207 | 263/227 | n/a |
Age at interview (years, mean ± SD) | 63.73 ± 10.50 | 59.14 ± 11.91 | 1.1 × 10−10 |
Age at diagnosis (years, mean ± SD) | 52.08 ± 11.01 | n/a | n/a |
BMI (kg/m2 ± SD) | 30.02 ± 4.95 | 26.75 ± 4.03 | 1.3 × 10−25 |
Glucose (mg/dL ± SD) | 149.63 ± 48.37 | 89.11 ± 9.11 | 1.1 × 10−120 |
HbA1c (%) (DCCT ± SD) | 0.17 ± 0.90 | n/a | n/a |
HDL-C (mg/dL ± SD) | 43.35 ± 12.23 | 51.52 ± 14.91 | 2.0 × 10−19 |
LDL-C (mg/dL ± SD) | 102.39 ± 31.18 | 136 ± 34.29 | 7.3 × 10−50 |
TC (mg/dL ± SD) | 176.11 ± 40.42 | 208.68 ± 40.47 | 2.9 × 10−33 |
TG (mg/dL ± SD) | 149.66 ± 86.11 | 118.73 ± 64.46 | 5.8 × 10−10 |
SNP | Nearest Gene(s) | Chromosome | Reference | Non Risk/Risk Allele a | RAF b | OR b (95% CI) | Frequency c | OR c (95% CI) | p-Value d |
---|---|---|---|---|---|---|---|---|---|
Published Results | Current Analysis | ||||||||
rs10923931 | NOTCH2 | 1p12 | [23] | G/T | 0.11 | 1.13 (1.08–1.17) | 0.06 | 1.09 (0.73–1.64) | 0.68 |
rs7578597 | THADA | 2p21 | [23] | C/T | 0.90 | 1.15 (1.10–1.20) | 0.94 | 0.75 (0.49–1.15) | 0.19 |
rs4607103 | ADAMTS9 | 3p14.1 | [23] | T/C | 0.76 | 1.09 (1.06–1.12) | 0.59 | 0.89 (0.73–1.1) | 0.29 |
rs4402960 | IGF2BP2 | 3q27.2 | [24] | G/T | 0.30 | 1.14 (1.11–1.18) | 0.27 | 1.24 (1.01–1.53) | 0.04 |
rs1801282 | PPARG | 3p25.2 | [24] | G/C | 0.82 | 1.14 (1.08–1.20) | 0.95 | 1.33 (0.82–2.16) | 0.25 |
rs10010131e | WFS1 | 4p16.1 | [25] | A/G | 0.60 | 1.16 (1.05–1.28) | 0.66 | 1.2 (0.97–1.49) | 0.09 |
rs4457053 | ZBED3 | 5q13.3 | [26] | A/G | 0.26 | 1.08 (1.06–1.11) | 0.31 | 0.96 (0.77–1.19) | 0.69 |
rs10946398 | CDKAL1 | 6p22 | [22] | A/C | 0.32 | 1.16 (1.10–1.22) | 0.32 | 1.21 (0.99–1.49) | 0.07 |
rs864745 | JAZF1 | 7p15.1 | [23] | G/A | 0.50 | 1.10 (1.07–1.13) | 0.55 | 0.82 (0.67–1) | 0.05 |
rs13266634 | SLC30A8 | 8q24.11 | [24] | T/C | 0.61 | 1.12 (1.07–1.16) | 0.69 | 1.31 (1.05–1.63) | 0.02 |
rs10811661 | CDKN2A | 9p21 | [27] | C/T | 0.83 | 1.20 (1.12–1.28) | 0.79 | 1.13 (0.87–1.46) | 0.35 |
rs12779790f | CDC123, CAMK1D | 10p13 | [23] | A/G | 0.18 | 1.11 (1.07–1.14) | - | - | - |
rs5015480 | HHEX | 10q23.33 | [22] | T/C | 0.57 | 1.13 (1.07–1.19) | 0.53 | 1.38 (1.13–1.69) | 0.002 |
rs7901695 | TCF7L2 | 10q25.2 | [22] | T/C | 0.27 | 1.37 (1.25–1.49) | 0.41 | 1.35 (1.1–1.64) | 0.003 |
rs10830963 | MTNR1B | 11q14.3 | [28] | C/G | 0.27 | 1.09 (1.05–1.12) | 0.25 | 1.13 (0.9–1.41) | 0.29 |
rs5219 | KCNJ11 | 11p15.1 | [24] | C/T | 0.46 | 1.14 (1.10–1.19) | 0.33 | 0.95 (0.77–1.19) | 0.67 |
rs2237892 | KCNQ1 | 11p15.5 | [29] | T/C | 0.61 | 1.45 (1.34–1.47) | 0.96 | 1.25 (0.7–2.23) | 0.44 |
rs7961581 | TSPAN8, LGR5 | 12q21.1 | [23] | T/C | 0.27 | 1.09 (1.06–1.12) | 0.41 | 1.02 (0.83–1.26) | 0.84 |
rs8042680 | PRC1 | 15q26.1 | [26] | C/A | 0.33 | 1.07 (1.05–1.09) | 0.45 | 1.09 (0.88–1.33) | 0.43 |
rs8050136 | FTO | 16q12.2 | [22] | C/A | 0.41 | 1.23 (1.18–1.32) | 0.41 | 1.33 (1.08–1.63) | 0.006 |
rs757210f | HNF1B | 17q12 | [30] | G + C/A | 0.38 | 1.12 (1.07–1.18) | - | - | - |
SNP | Gene | Beta | Standard Error | p-Value |
---|---|---|---|---|
rs10923931 | NOTCH2 | 0.48 | 1.38 | 0.729 |
rs7578597 | THADA | −3.81 | 1.38 | 0.006 |
rs4607103 | ADAMTS9 | −0.98 | 0.71 | 0.172 |
rs4402960 | IGF2BP2 | −0.64 | 0.73 | 0.376 |
rs1801282 | PPARG | −1.97 | 1.81 | 0.277 |
rs10010131 | WFS1 | −0.54 | 0.75 | 0.473 |
rs4457053 | ZBED3 | −0.41 | 0.77 | 0.595 |
rs10946398 | CDKAL1 | −0.31 | 0.72 | 0.671 |
rs864745 | JAZF1 | −0.34 | 0.70 | 0.632 |
rs13266634 | SLC30A8 | 0.25 | 0.80 | 0.753 |
rs10811661 | CDKN2A | 0.47 | 0.95 | 0.620 |
rs5015480 | HHEX | 0.26 | 0.71 | 0.713 |
rs7901695 | TCF7L2 | −1.91 | 0.67 | 0.005 |
rs10830963 | MTNR1B | −0.22 | 0.77 | 0.774 |
rs5219 | KCNJ11 | −0.25 | 0.77 | 0.743 |
rs2237892 | KCNQ1 | −0.55 | 2.08 | 0.792 |
rs7961581 | TSPAN8, LGR5 | 0.33 | 0.73 | 0.655 |
rs8042680 | PRC1 | −0.66 | 0.74 | 0.376 |
rs8050136 | FTO | −0.60 | 0.70 | 0.393 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Votsi, C.; Toufexis, C.; Michailidou, K.; Antoniades, A.; Skordis, N.; Karaolis, M.; Pattichis, C.S.; Christodoulou, K. Type 2 Diabetes Susceptibility in the Greek-Cypriot Population: Replication of Associations with TCF7L2, FTO, HHEX, SLC30A8 and IGF2BP2 Polymorphisms. Genes 2017, 8, 16. https://doi.org/10.3390/genes8010016
Votsi C, Toufexis C, Michailidou K, Antoniades A, Skordis N, Karaolis M, Pattichis CS, Christodoulou K. Type 2 Diabetes Susceptibility in the Greek-Cypriot Population: Replication of Associations with TCF7L2, FTO, HHEX, SLC30A8 and IGF2BP2 Polymorphisms. Genes. 2017; 8(1):16. https://doi.org/10.3390/genes8010016
Chicago/Turabian StyleVotsi, Christina, Costas Toufexis, Kyriaki Michailidou, Athos Antoniades, Nicos Skordis, Minas Karaolis, Constantinos S. Pattichis, and Kyproula Christodoulou. 2017. "Type 2 Diabetes Susceptibility in the Greek-Cypriot Population: Replication of Associations with TCF7L2, FTO, HHEX, SLC30A8 and IGF2BP2 Polymorphisms" Genes 8, no. 1: 16. https://doi.org/10.3390/genes8010016
APA StyleVotsi, C., Toufexis, C., Michailidou, K., Antoniades, A., Skordis, N., Karaolis, M., Pattichis, C. S., & Christodoulou, K. (2017). Type 2 Diabetes Susceptibility in the Greek-Cypriot Population: Replication of Associations with TCF7L2, FTO, HHEX, SLC30A8 and IGF2BP2 Polymorphisms. Genes, 8(1), 16. https://doi.org/10.3390/genes8010016