Origin DNA Melting—An Essential Process with Divergent Mechanisms
Abstract
:1. Review of Bacterial Replication Initiator DnaA
2. DnaA-Orisome Structure
3. DNA Conformation
4. Initiator Mechanism
5. Large T-Antigen and E1 Helicases
6. Structure of LTag and the Core Ori
7. Mechanisms of Melting with LTag
8. Structure of the E1 Double Hexamer and Double Trimer
9. Mechanisms of Melting with E1
10. MCM2-7 Helicase
11. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Leonard, A.; Grimwade, J. The orisome: Structure and function. Front. Microbiol. 2015, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ryan, V.T.; Grimwade, J.; Camara, J.E.; Crooke, E.; Leonard, A. Escherichia coli prereplication complex assembly is regulated by dynamic interplay among Fis, IHF and DnaA. Mol. Microbiol. 2004, 51, 1347–1359. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Vora, M.; Czerwonka, C.; Rozgaja, T.; Grimwade, J.; Leonard, A. Building the bacterial orisome: High affinity DnaA recognition plays a role in setting the conformation of oriC DNA. Mol. Microbiol. 2014, 91, 1148–1163. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.; Vasudevan, S.; Patil, D.; Ashoura, N.; Grimwade, J.; Crooke, E. Nucleotide-induced conformational changes in Escherichia coli DnaA protein are required for bacterial ORC to pre-RC conversion at the chromosomal origin. Int. J. Mol. Sci. 2015, 16, 27897–27911. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R.S.; Funnell, B.E.; Kornberg, A. The DnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites. Cell 1984, 38, 889–900. [Google Scholar] [CrossRef]
- Periasamy, V. Co-Ordination of Replication Initiation with Transcriptional Regulation in Escherichia coli. Ph.D. Thesis, University of Buffalo, Buffalo, NY, USA, 2015. [Google Scholar]
- Stepankiw, N.; Kaidow, A.; Boye, E.; Bates, D. The right half of the Escherichia coli replication origin is not essential for viability, but facilitates multi-forked replication. Mol. Microbiol. 2009, 74, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Gille, H.; Messer, W. Localized DNA melting and structural perturbations in the origin of replication, oriC, of Escherichia coli in vitro and in vivo. EMBO J. 1991, 10, 1579–1584. [Google Scholar] [PubMed]
- González-Soltero, R.; Botello, E.; Jiménez-Sánchez, A. Initiation of heat-induced replication requires DnaA and the L-13-mer of oriC. J. Bacteriol. 2006, 188, 8294–8298. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, D.; Eddy, M. The DNA unwinding element: A novel, cis-acting component that facilitates opening of the Escherichia coli replication origin. EMBO J. 1989, 8, 4335–4344. [Google Scholar] [PubMed]
- Magnan, D.; Bates, D. Regulation of DNA replication initiation by chromosome structure. J. Bacteriol. 2015, 197, 3370–3377. [Google Scholar] [CrossRef] [PubMed]
- Richardson, T.; Harran, O.; Murray, H. The bacterial DnaA-trio replication origin element specifies single-stranded DNA initiator binding. Nature 2016, 534, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, Y.; Sakiyama, Y.; Kawakami, H.; Katayama, T. The Arg fingers of key DnaA promoters are oriented inward of the replication origin oriC and stimulate DnaA subcomplexes in the initiation complex. J. Biol. Chem. 2015, 290, 20295–20312. [Google Scholar] [CrossRef] [PubMed]
- Duderstadt, K.; Chuang, K.; Berger, J. DNA stretching by bacterial initiators promotes replication origin melting. Nature 2012, 478, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Magnan, D.; Joshi, M.; Barker, A.; Visser, B.; Bates, D. DNA replication initiation is blocked by a distant chromosome-membrane attachment. Curr. Biol. 2015, 25, 2143–2149. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Gröger, P.; Hartann, A.; Schlierf, M. Bacterial initiators form dynamic filaments on single-stranded DNA monomer by monomer. Nucleic Acids Res. 2015, 43, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Chodavarapu, S.; Felczak, M.; Yaniv, J.; Kaguni, J. Escherichia coli DnaA interacts with HU in initiation at the E. coli replication origin. Mol. Microbiol. 2008, 67, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Titolo, S.; Welchner, E.; White, P.W.; Archambault, J. Characterization of the DNA-binding properties of the origin-binding domain of simian virus 40 large T antigen by fluorescence anisotropy. J. Virol. 2003, 77, 5512–5518. [Google Scholar] [CrossRef] [PubMed]
- Bochkarev, A.; Pfuetzner, R.A.; Edwards, A.M.; Frappier, L. Single Stranded Dna-Binding Domain of Human Replication Protein A Bound to Single Stranded DNA, RpA70 Subunit, Residues 183–420. Nature 1997, 385, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Bhat, K.P.; Betous, R.; Cortez, D. High-affinity DNA-binding Domains of Replication Protein A (RPA) Direct SMARCAL1-dependent Replication Fork Remodeling. J. Biol. Chem. 2014, 290, 4110–4117. [Google Scholar] [CrossRef] [PubMed]
- Sigal, N.; Delius, H.; Kornberg, T.; Gefter, M.L.; Alberts, B. A DNA unwinding protein isolated from Escherichia coli: Its interaction with DNA and DNA polymerase. Proc. Natl. Acad. Sci. USA 1972, 69, 3537–3541. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Xu, M.; Machado, A.; Yu, X.; Rohs, R.; Chen, X. Mechanism of origin DNA recognition and assembly of an initiator-helicase complex by SV40 large tumor antigen. Cell Rep. 2013, 3, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Valle, M.; Chen, X.; Donate, L.; Fanning, E.; Carazo, J. Structural basis for the cooperative assembly of large T antigen on the origin of replication. J. Mol. Biol. 2006, 357, 1295–1305. [Google Scholar] [CrossRef] [PubMed]
- Bochkareva, E.; Martynowski, D.; Seitova, A.; Bochkarev, A. Structure of the origin-binding domain of simian virus 40 large T antigen bound to DNA. EMBO J. 2006, 25, 5961–5969. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Sanford, D.; Bullock, P.; Bachovchin, W. Solution structure of the origin DNA-binding domain of SV40 T-antigen. Nat. Struct Biol. 1996, 3, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Rohs, R.; West, S.; Sosinsky, A.; Liu, P.; Mann, R.; Honig, B. The role of DNA shape in protein-DNA recognition. Nature 2009, 461, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Erzberger, J.; Mott, M.; Berger, J. Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling. Nat. Struct. Mol. Biol. 2006, 13, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Gai, D.; Patrick, A.; Greenleaf, W.; Chen, X. The roles of the residues on the channel beta-hairpin and loop structures of simian virus 40 hexameric helicase. Proc. Natl. Acad. Sci. USA 2005, 102, 11248–11253. [Google Scholar] [CrossRef] [PubMed]
- Borowiec, J.A.; Hurwitz, J. Localized melting and structural changes in the SV40 origin of replication induced by T-antigen. EMBO J. 1988, 7, 3149–3158. [Google Scholar] [PubMed]
- Kumar, A.; Meinke, G.; Reese, D.; Moine, S.; Phelan, P.; Fradet-Turcotte, A.; Archambault, J.; Bohm, A.; Bullock, P. Model for T-antigen-dependent melting of the simian virus 40 core origin based on studies of the interaction of the beta-hairpin with DNA. J. Virol. 2007, 81, 4808–4818. [Google Scholar] [CrossRef] [PubMed]
- Lilyestrom, W.; Klein, M.; Zhang, R.; Joachimiak, A.; Chen, X. Crystal structure of SV40 large T-antigen bound to p53: Interplay between a viral oncoprotein and a cellular tumor suppressor. Genes Dev. 2006, 20, 2373–2382. [Google Scholar] [CrossRef] [PubMed]
- Gai, D.; Zhao, R.; Li, D.; Finkielstein, C.; Chen, X. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 2004, 119, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Meinke, G.; Bullock, P.; Bohm, A. Crystal structure of the simian virus 40 large T-antigen origin-binding domain. J. Virol. 2006, 80, 4304–4312. [Google Scholar] [CrossRef] [PubMed]
- Miyata, T.; Yamada, K.; Iwasaki, H.; Shinagawa, H.; Morikawa, K.; Mayanagi, K. Two different oligomeric states of the RuvB branch migration motor protein as revealed by electron microscopy. J. Struct. Biol. 2000, 131, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Enemark, E.; Joshua-Tor, L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 2006, 442, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Hacker, K.; Kenneth, J. A Hexameric Helicase Encircles One DNA Strand and Excludes the Other during DNA Unwinding. Am. Chem. Soc. 1997, 46, 14080–14087. [Google Scholar] [CrossRef] [PubMed]
- Schuck, S.; Stenlund, A. Assembly of a double hexameric helicase. Mol. Cell 2005, 20, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Syed, S.; Enemark, E.; Schuck, S.; Stenlund, A.; Ha, T.; Joshua-Tor, L. Dynamic look at DNA unwinding by a replicative helicase. Proc. Natl. Acad. Sci. USA 2014, 111, E827–E835. [Google Scholar] [CrossRef] [PubMed]
- Schuck, S.; Stenlund, A. Mechanistic analysis of local ori melting and helicase assembly by the papillomavirus E1 protein. Mol. Cell 2011, 43, 776–787. [Google Scholar] [CrossRef] [PubMed]
- Gai, D.; Chang, Y.; Chen, X. Origin DNA melting and unwinding in DNA replication. Curr. Opin. Struct. Biol. 2010, 20, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Schwacha, A.; Bell, S.P. Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol. Cell 2001, 8, 1093–1104. [Google Scholar] [CrossRef]
- Randell, J.; Bowers, J.; Rodriguez, H.; Bell, S. Sequential ATP Hydrolysis by Cdc6 and ORC Directs Loading of the MCM2–7 Helicase. Mol. Cell 2006, 21, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Yao, N.; O’Donnell, M. Evolution of replication machines. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Bochman, M.; Schwacha, A. The MCM2–7 complex has in vitro helicase activity. Mol. Cell 2008, 31, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Ilves, I.; Petojevic, T.; Pesavento, J.; Botchan, M. Activation of the MCM2–7 Helicase by Association with Cdc45 and GINS Proteins. Mol. Cell 2010, 37, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Gristwood, T.; Hodgson, B.; Trinidad, J.; Albers, S.; Bell, S. Archaeal orthologs of CDC45 and GINS form a stable complex that stimulates the helicase activity of MCM. Proc. Natl. Acad. Sci. USA 2016, 113, 13390–13395. [Google Scholar] [CrossRef] [PubMed]
- Remus, D.; Beuron, F.; Tolun, G.; Griffith, J.; Morris, E.; Diffley, J. Concerted loading of MCM2–7 double hexamers around DNA during DNA replication origin licensing. Cell 2009, 139, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Evrin, C.; Clarke, P.; Zech, J.; Lurz, R.; Sun, J.; Uhle, S.; Li, H.; Stillman, B.; Speck, C. A double-hexameric MCM2–7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc. Natl. Acad. Sci. USA 2009, 106, 20240–20245. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Yardimci, H.; Long, D.; Ho, T.; Guainazzi, A.; Bermudez, V.; Hurwitz, J.; van Oijen, A.; Schärer, O.; Walter, J. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 2011, 146, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Yardimci, H.; Loveland, A.; Habuchi, S.; van Oijen, A.; Walter, J. Uncoupling of Sister Replisomes during Eukaryotic DNA Replication. Mol. Cell 2010, 40, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Froelich, C.; Kang, S.; Epling, L.; Bell, S.; Enemark, E. A conserved MCM single-stranded DNA binding element is essential for replication initiation. eLife 2014, 3, e019993. [Google Scholar] [CrossRef] [PubMed]
- McGeoch, A.; Trakselis, M.; Laskey, R.; Bell, S.D. Organization of the archaeal MCM complex on DNA and implications for the helicase mechanism. Nat. Struct. Mol. Biol. 2005, 12, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Shi, Y.; Georgescu, R.; Yuan, Z.; Chait, B.; Li, H.; O’Donnell, M. The architecture of a eukaryotic replisome. Nat. Struct. Mol. Biol. 2015, 22, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Bai, L.; Sun, J.; Georgescu, R.; Liu, J.; O’Donnell, M.; Li, H. Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat. Struct. Mol. Biol. 2016, 23, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, L.; Costa, A. New insights inot the mechanism of DNA duplicaiton by the eukaryotic replisome. Trends Biochem. Sci. 2016, 41, 859–871. [Google Scholar] [CrossRef] [PubMed]
- Bochman, M.; Schwacha, A. The Saccharomyces cerevisiae MCM6/2 and MCM5/3 ATPase active sites contribute to the function of the putative MCM2–7 ‘gate’. Nucleic Acids Res. 2010, 38, 6078–6088. [Google Scholar] [CrossRef] [PubMed]
- Bruck, I.; Kaplan, D.L. The DBF4-CDC7 kinase promotes MCM2–7 ring opening to allow for single-stranded DNA extrusion and helicase assembly. J. Biol. Chem. 2015, 290, 1210–1221. [Google Scholar] [CrossRef] [PubMed]
- Warren, E.; Vaithiyalingam, S.; Haworth, J.; Greer, B.; Bielinsky, A.; Chazin, W.; Eichman, B. Structural basis for DNA binding by replication initiator MCM10. Structure 2008, 16, 1892–1901. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, S.; Korza, G.; Carson, J.; Liachko, I.; Tye, B. Novel DNA binding properties of the Mcm10 protein from Saccharomyces cerevisiae. J. Biol. Chem. 2009, 284, 25412–25420. [Google Scholar] [CrossRef] [PubMed]
- Bruck, I.; Kaplan, D. Origin Single-stranded DNA Releases SLD3 Protein from the MCM2–7 Complex, Allowing the GINS Tetramer to Bind the MCM2–7 Complex. J. Biol. Chem. 2011, 286, 18602–18613. [Google Scholar] [CrossRef] [PubMed]
- Kanter, D.; Kaplan, D. SLD2 binds to origin single-stranded DNA and stimulates DNA annealing. Nucleic Acids Res. 2011, 39, 2580–2592. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, N.; Bruck, I.; Smith, S.; Ning, B.; Kaplan, D. DPB11 helps control assembly of the CDC45-MCM2–7-GINS replication fork helicase. J. Biol. Chem. 2015, 290, 7586–7601. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wold, M. Replication protein A: Single-stranded DNA’s first responder: Dynamic DNA-interactions allow replication protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair. Bioessays 2014, 36, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Perez-Arnaiz, P.; Kaplan, D. An Mcm10 mutant defective in ssDNA binding shows defects in DNA replication initiation. J. Mol. Biol. 2016, 428, 4608–4625. [Google Scholar] [CrossRef] [PubMed]
- Bruck, I.; Kaplan, D. The replication initiation protein sld2 regulates helicase assembly. J. Biol. Chem. 2014, 289, 1948–1959. [Google Scholar] [CrossRef] [PubMed]
- Bruck, I.; Kaplan, D. The replication initiation protein SLD3/Treslin orchestrates the assembly of the replication fork helicase during S phase. J. Biol. Chem. 2015, 290, 27414–27424. [Google Scholar] [CrossRef] [PubMed]
- Tye, B.K. MCM proteins in DNA replication. Annu. Rev. Biochem. 1999, 68, 649–686. [Google Scholar] [CrossRef] [PubMed]
- Thu, Y.; Bielinsky, A. Enigmatic rles of Mcm10 in DNA replication. Trends Biochem. Sci. 2013, 38, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Ohlenschläger, O.; Kuhnert, A.; Schneider, A.; Haumann, S.; Bellstedt, P.; Keller, H.; Saluz, H.-P.; Hortschansky, P.; Hänel, F.; Grosse, F.; et al. The N-terminus of the human RECQL4 helicase is a homeodomain-like DNA interaction motif. Nucleic Acids Res. 2012, 40, 8309–8324. [Google Scholar] [CrossRef] [PubMed]
- Yeeles, J.; Deegan, T.; Janska, A.; Early, A.; Diffley, J. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 2015, 519, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Miyazawa-Onami, M.; Iida, T.; Araki, H. iAID: An improved auxin-inducible degron system for the construction of a ‘tight’ conditional mutant in the budding yeast Saccharomyces cerevisiae. Yeast 2015, 32, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Labib, K.; Tercero, J.A.; Diffley, J.F.X. Uninterrupted MCM2–7 function required for DNA replication fork progression. Science 2000, 288, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, M.P.; Jones, J.M.; Bruck, I.; Kaplan, D.L. Origin DNA Melting—An Essential Process with Divergent Mechanisms. Genes 2017, 8, 26. https://doi.org/10.3390/genes8010026
Martinez MP, Jones JM, Bruck I, Kaplan DL. Origin DNA Melting—An Essential Process with Divergent Mechanisms. Genes. 2017; 8(1):26. https://doi.org/10.3390/genes8010026
Chicago/Turabian StyleMartinez, Matthew P., John M. Jones, Irina Bruck, and Daniel L. Kaplan. 2017. "Origin DNA Melting—An Essential Process with Divergent Mechanisms" Genes 8, no. 1: 26. https://doi.org/10.3390/genes8010026