Novel Insights into Antiviral Gene Regulation of Red Swamp Crayfish, Procambarus clarkii, Infected with White Spot Syndrome Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design and Sample Collection
2.2. RNA Isolation and Sequencing
2.3. De Novo Assembly and Annotation
2.4. Differentially Expressed Analysis
2.5. Quantitative Real-Time PCR
3. Results
3.1. Sequencing, Assembly, and Annotation
3.2. Gene Regulation Patterns of P. clarkii after White Spot Syndrome Virus Infection
3.3. Functional Categorization of Differentially Expressed Genes
3.4. Glycosaminoglycan Biosynthesis Enhanced for Antiviral Response
3.5. Validation of the Differentially Expressed Genes
4. Discussion
4.1. Immune Related Gene Enhanced in Resistant Crayfish after WSSV Infection
4.2. Glycosaminoglycan Biosynthesis Involved in Antiviral Response of Crayfish
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Barbaresi, S.; Santini, G.; Tricarico, E.; Gherardi, F. Ranging behaviour of the invasive crayfish, Procambarus clarkii (Girard). J. Nat. His. 2004, 38, 2821–2832. [Google Scholar] [CrossRef]
- Li, Y.; Guo, X.; Cao, X.; Deng, W.; Luo, W.; Wang, W. Population genetic structure and post-establishment dispersal patterns of the red swamp crayfish Procambarus Clarkii in China. PLoS ONE 2012, 7, e40652. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, X.; Chen, L.; Bai, X.; Wei, X.; Zhou, X.; Huang, S.; Wang, W. Inferring invasion history of red swamp crayfish (Procambarus clarkii) in China from mitochondrial control region and nuclear intron sequences. Int. J. Mol. Sci. 2015, 16, 14623–14639. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Fu, L.; Xu, Y.; Kil, Z.; Xu, Z. Improvement in a simple method for isolating white spot syndrome virus (WSSV) from the crayfish Procambarus clarkii. Aquaculture 2007, 262, 532–534. [Google Scholar] [CrossRef]
- Dong, X.; Li, Z.; Wang, X.; Zhou, M.; Lin, L.; Zhou, Y.; Li, J. Characteristics of Vibrio parahaemolyticus isolates obtained from crayfish (Procambarus clarkii) in freshwater. Int. J. Food Microbiol. 2016, 238, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Li, Y.; Ding, Z.; Xiu, Y.; Wu, T.; Du, J.; Li, W.; Zhu, H.; Ren, Q.; Gu, W.; et al. Transcriptome-wide identification and characterization of the Procambarus clarkii microRNAs potentially related to immunity against Spiroplasma eriocheiris infection. Fish Shellfish Immunol. 2013, 35, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.J.; Chisholm, J.R.S.; Brown, J.; Kemp, G.D. Developmental aspects of antibacterial immunity in crustaceans. Dev. Comp. Immunol. 2000, 24, S20–S21. [Google Scholar]
- Escobedo-Bonilla, C.M.; Alday-Sanz, V.; Wille, M.; Sorgeloos, P.; Pensaert, M.B.; Nauwynck, H.J. A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. J. Fish Dis. 2008, 31, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Van Hulten, M.C.W.; Witteveldt, J.; Snippe, M.; Vlak, J.M. White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology 2001, 285, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Jiravanichpaisal, P.; Soderhall, K.; Soderhall, I. Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish Shellfish Immunol. 2004, 17, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Wang, Y.; Fryer, J.L.; Yu, K.; Fukuda, H.; Meng, Q. White spot syndrome virus infection of cultured shrimp in China. J. Aquat. Anim. Health 1998, 10, 405–410. [Google Scholar] [CrossRef]
- Iwanaga, S.; Lee, B.L. Recent advances in the innate immunity of invertebrate animals. BMB Rep. 2005, 38, 128–150. [Google Scholar] [CrossRef]
- Lee, S.Y.; Soderhall, K. Early events in crustacean innate immunity. Fish Shellfish Immunol. 2002, 12, 421–437. [Google Scholar] [PubMed]
- Maeda, M.; Itami, T.; Mizuki, E.; Tanaka, R.; Yoshizu, Y.; Doi, K.; Yasunaga-Aoki, C.; Takahashi, Y.; Kawarabata, T. Red swamp crawfish (Procambarus clarkii): An alternative experimental host in the study of white spot syndrome virus. Acta Virol. 2000, 44, 371–374. [Google Scholar] [PubMed]
- Zhu, F.; Du, H.; Miao, Z.; Quan, H.; Xu, Z. Protection of Procambarus clarkii against white spot syndrome virus using inactivated WSSV. Fish Shellfish Immunol. 2009, 26, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Li, W.; Xu, Z.; Kil, Z. Effect of hyperthermia on the replication of white spot syndrome virus (WSSV) in Procambarus clarkii. Dis. Aquat. Org. 2006, 71, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Xu, Z.; Wu, X.; Li, W.; Dai, W. Increased resistance to white spot syndrome virus in Procambarus clarkii by injection of envelope protein VP28 expressed using recombinant baculovirus. Aquaculture 2006, 260, 39–43. [Google Scholar] [CrossRef]
- Taffoni, C.; Pujol, N. Mechanisms of innate immunity in C. elegans epidermis. Tissue Barriers 2015, 3, e1078432. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Jin, Y.; Ren, D. In-depth comparative transcriptome analysis of intestines of red swamp crayfish, Procambarus clarkii, infected with WSSV. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Du, Z. Comparative transcriptome analysis reveals three potential antiviral signaling pathways in lymph organ tissue of the red swamp crayfish, Procambarus clarkii. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Manfrin, C.; Tom, M.; De Moro, G.; Gerdol, M.; Giulianini, P.G.; Pallavicini, A. The eyestalk transcriptome of red swamp crayfish Procambarus clarkii. Gene 2015, 557, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Babraham Bioinformatics-FastQC, A quality control tool for high throughput sequence data. Available online: http://www.Bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 8 March 2016).
- Patel, R.K.; Jain, M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE 2012, 7, e30619. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 130–644. [Google Scholar] [CrossRef] [PubMed]
- Pertea, G.; Huang, X.Q.; Liang, F.; Antonescu, V.; Sultana, R.; Karamycheva, S.; Lee, Y.; White, J.; Cheung, F.; Parvizi, B.; et al. TIGR Gene Indices clustering tools (TGICL): A software system for fast clustering of large EST datasets. Bioinformatics 2003, 19, 651–652. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 392, W316–W322. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Lu, C. Identification of differentially expressed genes in haemocytes of the crayfish (Procambarus clarkii) infected with white spot syndrome virus by suppression subtractive hybridization and cDNA microarrays. Fish Shellfish Immunol. 2009, 26, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Du, J.; Ou, J.; Li, W.; Wu, T.; Xiu, Y.; Meng, Q.; Ren, Q.; Gu, W.; Xue, H.; et al. Classification of circulating hemocytes from the red swamp crayfish Procambarus clarkii and their susceptibility to the novel pathogen Spiroplasma eriocheiris in vitro. Aquaculture 2012, 356, 371–380. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Wang, X.; Wang, L.; Mu, Y.; Wang, J. A C-type lectin with an immunoglobulin-like domain promotes phagocytosis of hemocytes in crayfish Procambarus clarkii. Sci. Rep. 2016, 6, 29924. [Google Scholar] [CrossRef] [PubMed]
- Soderhall, K.; Cerenius, L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 1998, 10, 23–28. [Google Scholar] [CrossRef]
- Johansson, M.W.; Söderhäll, K. Exocytosis of the prophenoloxidase activating system from crayfish haemocytes. J. Comp. Physiol. B 1985, 156, 175–181. [Google Scholar] [CrossRef]
- Cerenius, L.; Soderhall, K. The prophenoloxidase-activating system in invertebrates. Immunol. Rev. 2004, 198, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; She, L.; Wu, M.; Wang, Y.; Ji, S.; Yang, K.; Wang, W. Prophenoloxidase response to white spot syndrome virus infection in the red swamp crayfish (Procambarus clarkii). Pak. Vet. J. 2015, 35, 420–425. [Google Scholar]
- Lanz, H.; Hernandez, S.; Garrido-Guerrero, E.; Tsutsumi, V.; Arechiga, H. Prophenoloxidase system activation in the crayfish Procambarus clarki. Dev. Comp. Immunol. 1993, 17, 399–406. [Google Scholar] [CrossRef]
- Cerenius, L.; Bangyeekhun, E.; Keyser, P.; Soderhall, I.; Soderhall, K. Host prophenoloxidase expression in freshwater crayfish is linked to increased resistance to the crayfish plague fungus, Aphanomyces astaci. Cell. Microbiol. 2003, 5, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Ai, H.; Huang, Y.; Li, S.; Weng, S.; Yu, X.; He, J. Characterization of a prophenoloxidase from hemocytes of the shrimp Litopenaeus vannamei that is downregulated by white spot syndrome virus. Fish Shellfish Immunol. 2008, 25, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Sookruksawong, S.; Sun, F.; Liu, Z.; Tassanakajon, A. RNA-Seq analysis reveals genes associated with resistance to Taura syndrome virus (TSV) in the Pacific white shrimp Litopenaeus vannamei. Dev. Comp. Immunol. 2013, 41, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. Glycosaminoglycan (GAG) Biosynthesis and GAG-Binding Proteins. Prog. Mol. Biol. Transl. Sci. 2010, 93, 1–17. [Google Scholar] [PubMed]
- Prabhakar, V.; Sasisekharan, R. The Biosynthesis and Catabolism of Galactosaminoglycans. Adv. Pharmacol. 2006, 53, 69–115. [Google Scholar] [PubMed]
- Mikami, T.; Kitagawa, H. Biosynthesis and function of chondroitin sulfate. BBA Gen. Subj. 2013, 1830, 4719–4733. [Google Scholar] [CrossRef] [PubMed]
- Silbert, J.E.; Sugumaran, G. Biosynthesis of chondroitin/dermatan sulfate. Iubmb Life 2002, 54, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Bergefall, K.; Trybala, E.; Johansson, M.; Uyama, T.; Naito, S.; Yamada, S.; Kitagawa, H.; Sugahara, K.; Bergstrom, T. Chondroitin sulfate characterized by the E-disaccharide unit is a potent inhibitor of herpes simplex virus infectivity and provides the virus binding sites on gro2C cells. J. Biol. Chem. 2005, 280, 32193–32199. [Google Scholar] [CrossRef] [PubMed]
- Uyama, T.; Ishida, M.; Izumikawa, T.; Trybala, E.; Tufaro, F.; Bergstrom, T.; Sugahara, K.; Kitagawa, H. Chondroitin 4-O-sulfotransferase-1 regulates E disaccharide expression of chondroitin sulfate required for herpes simplex virus infectivity. J. Biol. Chem. 2006, 281, 38668–38674. [Google Scholar] [CrossRef] [PubMed]
Group | Sample | Raw Reads | Clean Reads | Clean Bases (Gb) | Valid Ratio (base) | GC Content (%) |
---|---|---|---|---|---|---|
GC | G1_E22 | 85,792,014 | 84,216,344 | 9.80 | 98.11% | 46.00 |
G1_E23 | 83,021,208 | 81,364,944 | 9.47 | 97.95% | 46.00 | |
G1_E25 | 95,650,310 | 93,818,350 | 10.92 | 98.03% | 46.00 | |
GR | G2_E31 | 76,276,920 | 74,917,080 | 8.72 | 98.16% | 44.00 |
G2_E39 | 80,384,048 | 78,772,012 | 9.17 | 97.94% | 45.00 | |
G2_E40 | 67,638,948 | 66,384,842 | 7.72 | 98.09% | 44.50 | |
GS | G3_E6 | 81,888,888 | 80,253,434 | 9.34 | 97.95% | 44.00 |
G3_E8 | 67,330,090 | 65,977,146 | 7.68 | 97.93% | 43.50 | |
G3_E11 | 72,882,090 | 71,117,604 | 8.27 | 97.52% | 45.00 |
Unigene | Fold Change (GS/GR) | Log2FC | Annotation | FDR |
---|---|---|---|---|
CL41502Contig1 | 9.4600 | 3.2426 | C-type lectin-2 (Litopenaeus vannamei) | 0.0298 |
CL19887Contig1 | 4.9525 | 2.3081 | C-type lectin 4 (Litopenaeus vannamei) | 0.0071 |
CL8034Contig1 | 3.7954 | 1.9243 | innexin inx2 (Homarus gammarus) | 0.0015 |
CL46545Contig1 | 0.2819 | −1.8267 | serine proteinase inhibitor (Procambarus clarkii) | 0.0028 |
CL29567Contig1 | 0.2568 | −1.9611 | serine protease (Scylla paramamosain) | 0.0024 |
CL26397Contig1 | 0.2136 | −2.2273 | serine proteinase-like protein 1 (Pacifastacus leniusculus) | 0.0006 |
comp98966_c2_seq4_1 | 0.1704 | −2.5531 | Serine/threonine protein kinase | 0.0416 |
CL3961Contig1 | 0.3847 | −1.3783 | MAP kinase-interacting serine/threonine-protein kinase 1 (Daphnia magna) | 0.0191 |
comp120608_c2_seq2_2 | 0.3304 | −1.5976 | mitogen-activated protein kinase p38 (Scylla paramamosain) | 0.0080 |
CL31899Contig1 | 0.2222 | −2.1703 | peroxinectin (Pacifastacus leniusculus) | 0.0042 |
CL15404Contig1 | 0.3836 | −1.3821 | integrin (Pacifastacus leniusculus) | 0.0319 |
CL31391Contig1 | 0.2081 | −2.2647 | prophenoloxidase (Pacifastacus leniusculus) | 0.0115 |
CL29721Contig1 | 0.0551 | −4.1813 | DnaJ domain protein (Trichuris suis) | 0.0081 |
CL42408Contig1 | 0.1135 | −3.1388 | heat shock protein (Cherax destructor) | 0.0473 |
CL47461Contig1 | 0.0701 | −3.8347 | heat shock protein 21 (Macrobrachium rosenbergii) | 8.53 × 10−6 |
CL44350Contig1 | 0.1803 | −2.4717 | insulin-like growth factor binding protein 7-like protein (Cherax quadricarinatus) | 0.0002 |
CL45485Contig1 | 0.1612 | −2.6327 | serpin8 (Litopenaeus vannamei) | 0.0044 |
comp104708_c1_seq2_1 | 0.4205 | −1.2497 | ubiquitin (Pygocentrus nattereri) | 0.0284 |
comp125239_c0_seq4_2 | 0.1409 | −2.8269 | aserpin | 0.0012 |
comp94348_c1_seq1_3 | 0.2895 | −1.7884 | ferritin 3 (Eriocheir sinensis) | 0.0267 |
CL3118Contig1 | 2.5278 | 1.3379 | chitinase (Pandalopsis japonica) | 0.0238 |
Unigene ID | Gene Name | Gene Description | log2FC (GS vs.GC) | log2FC (GR vs.GC) | KO Entry |
---|---|---|---|---|---|
CL11558Contig1 | csgalnact2 | Chondroitin sulfate N-acetylgalactosaminyltransferase 1 | −3.06 | 3.15 | K00746 |
CL41630Contig1 | csgalnact1 | chondroitin sulfate N-acetylgalactosaminyltransferase 2 | −4.33 | 4.12 | K00746 |
CL47518Contig1 | chst11 | Carbohydrate sulfotransferase 11 | −4.41 | 5.05 | K01017 |
CL6249Contig1 | chst13 | Carbohydrate sulfotransferase 13 | NA | 3.80 | K01017 |
CL8068Contig1 | chst14 | carbohydrate sulfotransferase 14 | −2.84 | 2.81 | K01017 |
CL45134Contig1 | chst15 | Carbohydrate sulfotransferase 15 | −2.45 | NA | K08106 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, S.; Li, Y.; Shi, L.; Zhang, L. Novel Insights into Antiviral Gene Regulation of Red Swamp Crayfish, Procambarus clarkii, Infected with White Spot Syndrome Virus. Genes 2017, 8, 320. https://doi.org/10.3390/genes8110320
Yi S, Li Y, Shi L, Zhang L. Novel Insights into Antiviral Gene Regulation of Red Swamp Crayfish, Procambarus clarkii, Infected with White Spot Syndrome Virus. Genes. 2017; 8(11):320. https://doi.org/10.3390/genes8110320
Chicago/Turabian StyleYi, Shaokui, Yanhe Li, Linlin Shi, and Long Zhang. 2017. "Novel Insights into Antiviral Gene Regulation of Red Swamp Crayfish, Procambarus clarkii, Infected with White Spot Syndrome Virus" Genes 8, no. 11: 320. https://doi.org/10.3390/genes8110320
APA StyleYi, S., Li, Y., Shi, L., & Zhang, L. (2017). Novel Insights into Antiviral Gene Regulation of Red Swamp Crayfish, Procambarus clarkii, Infected with White Spot Syndrome Virus. Genes, 8(11), 320. https://doi.org/10.3390/genes8110320