Methods for Using Small Non-Coding RNAs to Improve Recombinant Protein Expression in Mammalian Cells
Abstract
:1. Introduction
2. MicroRNA Screening Tools
2.1. Utilization of Previously Identified microRNAs
2.2. Microarrays Utilization
2.3. microRNA Library Screen
2.4. Next Generation Sequencing
3. Bioinformatics Methodologies
4. Additional Non-Coding RNA
4.1. Short Hairpin RNA
4.2. Small Interfering RNA
4.3. Mitochondrial Genome-Encoded Small RNA
4.4. SINEUP RNA Levels
5. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wells, E.; Robinson, A.S. Cellular engineering for therapeutic protein production: Product quality, host modification, and process improvement. Biotechnol. J. 2017, 12, 1600105. [Google Scholar] [CrossRef] [PubMed]
- Andersen, D.C.; Krummen, L. Recombinant protein expression for therapeutic applications. Curr. Opin. Biotechnol. 2002, 13, 117–123. [Google Scholar] [CrossRef]
- Kunert, R.; Reinhart, D. Advances in recombinant antibody manufacturing. Appl. Microbiol. Biotechnol. 2016, 100, 3451–3461. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.; Spearman, M. The choice of mammalian cell host and possibilities for glycosylation engineering. Curr. Opin. Biotechnol. 2014, 30, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, Y.G.; Lee, G.M. CHO cells in biotechnology for production of recombinant proteins: Current state and further potential. Appl. Microbiol. Biotechnol. 2012, 93, 917–930. [Google Scholar] [CrossRef] [PubMed]
- Omasa, T.; Onitsuka, M.; Kim, W.D. Cell engineering and cultivation of Chinese hamster ovary (CHO) cells. Curr. Pharm. Biotechnol. 2010, 11, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Mohan, C.; Kim, Y.G.; Koo, J.; Lee, G.M. Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Biotechnol. J. 2008, 3, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Handrick, R.; Otte, K. The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol. Adv. 2015, 33, 1878–1896. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Smart, T.G. HEK293 cell line: A vehicle for the expression of recombinant proteins. J. Pharmacol. Toxicol. Methods 2005, 51, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Dumont, J.; Euwart, D.; Mei, B.; Estes, S.; Kshirsagar, R. Human cell lines for biopharmaceutical manufacturing: History, status, and future perspectives. Crit. Rev. Biotechnol. 2016, 36, 1110–1122. [Google Scholar] [CrossRef] [PubMed]
- Nettleship, J.E.; Watson, P.J.; Rahman-Huq, N.; Fairall, L.; Posner, M.G.; Upadhyay, A.; Reddivari, Y.; Chamberlain, J.M.; Kolstoe, S.E.; Bagby, S.; et al. Transient expression in HEK 293 cells: An alternative to E. Coli for the production of secreted and intracellular mammalian proteins. Methods Mol. Biol. 2015, 1258, 209–222. [Google Scholar] [PubMed]
- Silva, A.C.; Fernandes, P.; Sousa, M.F.; Alves, P.M. Scalable production of adenovirus vectors. Methods Mol. Biol. 2014, 1089, 175–196. [Google Scholar] [PubMed]
- Stepanenko, A.A.; Dmitrenko, V.V. HEK293 in cell biology and cancer research: Phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene 2015, 569, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y. Mammalian RNAi for the masses. Trends Genet. 2003, 19, 9–12. [Google Scholar] [CrossRef]
- McManus, M.T.; Sharp, P.A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 2002, 3, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, H.; Wadhwa, R.; Taira, K. World of small RNAs: From ribozymes to siRNA and miRNA. Differentiation 2004, 72, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Cora, D.; Re, A.; Caselle, M.; Bussolino, F. MicroRNA-mediated regulatory circuits: Outlook and perspectives. Phys. Biol. 2017, 14, 045001. [Google Scholar] [CrossRef] [PubMed]
- Cech, T.R.; Steitz, J.A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014, 157, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Adams, B.D.; Parsons, C.; Walker, L.; Zhang, W.C.; Slack, F.J. Targeting noncoding RNAs in disease. J. Clin. Investig. 2017, 127, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, V.; Hackl, M.; Druz, A.; Shridhar, S.; Chung, C.Y.; Heffner, K.M.; Kreil, D.P.; Betenbaugh, M.; Shiloach, J.; Barron, N.; et al. CHO microRNA engineering is growing up: Recent successes and future challenges. Biotechnol. Adv. 2013, 31, 1501–1513. [Google Scholar] [CrossRef] [PubMed]
- Baik, J.Y.; Lee, K.H. MiRNA expression in CHO: Nature knows best. Biotechnol. J. 2014, 9, 459–460. [Google Scholar] [CrossRef]
- Barron, N.; Sanchez, N.; Kelly, P.; Clynes, M. MicroRNAs: Tiny targets for engineering CHO cell phenotypes? Biotechnol. Lett. 2011, 33, 11–21. [Google Scholar] [CrossRef]
- Hackl, M.; Borth, N.; Grillari, J. MiRNAs—Pathway engineering of CHO cell factories that avoids translational burdening. Trends Biotechnol. 2012, 30, 405–406. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Katinger, H.; Grillari, J. MicroRNAs as targets for engineering of CHO cell factories. Trends Biotechnol. 2008, 26, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Gammell, P.; Barron, N.; Kumar, N.; Clynes, M. Initial identification of low temperature and culture stage induction of miRNA expression in suspension CHO-k1 cells. J. Biotechnol. 2007, 130, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.S.; Gallagher, C.; Clynes, M.; Barron, N. Conserved microRNA function as a basis for Chinese hamster ovary cell engineering. Biotechnol. Lett. 2015, 37, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.S.; Breen, L.; Gallagher, C.; Kelly, S.; Henry, M.; Lao, N.T.; Meleady, P.; O’Gorman, D.; Clynes, M.; Barron, N. Re-programming CHO cell metabolism using miR-23 tips the balance towards a highly productive phenotype. Biotechnol. J. 2015, 10, 1029–1040. [Google Scholar] [CrossRef] [PubMed]
- Koh, T.C.; Lee, Y.Y.; Chang, S.Q.; Nissom, P.M. Identification and expression analysis of miRNAs during batch culture of HEK-293 cells. J. Biotechnol. 2009, 140, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Barron, N.; Kumar, N.; Sanchez, N.; Doolan, P.; Clarke, C.; Meleady, P.; O’Sullivan, F.; Clynes, M. Engineering CHO cell growth and recombinant protein productivity by overexpression of miR-7. J. Biotechnol. 2011, 151, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Druz, A.; Chu, C.; Majors, B.; Santuary, R.; Betenbaugh, M.; Shiloach, J. A novel microRNA mmu-miR-466h affects apoptosis regulation in mammalian cells. Biotechnol. Bioeng. 2011, 108, 1651–1661. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Davis, A.; Bahr, S.; Borgschulte, T.; Achtien, K.; Kayser, K. Profiling highly conserved microRNA expression in recombinant IgG-producing and parental Chinese hamster ovary cells. Biotechnol. Prog. 2011, 27, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Maccani, A.; Hackl, M.; Leitner, C.; Steinfellner, W.; Graf, A.B.; Tatto, N.E.; Karbiener, M.; Scheideler, M.; Grillari, J.; Mattanovich, D.; et al. Identification of microRNAs specific for high producer CHO cell lines using steady-state cultivation. Appl. Microbiol. Biotechnol. 2014, 98, 7535–7548. [Google Scholar] [CrossRef] [PubMed]
- Emmerling, V.V.; Fischer, S.; Stiefel, F.; Holzmann, K.; Handrick, R.; Hesse, F.; Horer, M.; Kochanek, S.; Otte, K. Temperature-sensitive miR-483 is a conserved regulator of recombinant protein and viral vector production in mammalian cells. Biotechnol. Bioeng. 2016, 113, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Klanert, G.; Jadhav, V.; Shanmukam, V.; Diendorfer, A.; Karbiener, M.; Scheideler, M.; Bort, J.H.; Grillari, J.; Hackl, M.; Borth, N. A signature of 12 microRNAs is robustly associated with growth rate in a variety of CHO cell lines. J. Biotechnol. 2016, 235, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Strotbek, M.; Florin, L.; Koenitzer, J.; Tolstrup, A.; Kaufmann, H.; Hausser, A.; Olayioye, M.A. Stable microRNA expression enhances therapeutic antibody productivity of Chinese hamster ovary cells. Metab. Eng. 2013, 20, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Buck, T.; Wagner, A.; Ehrhart, C.; Giancaterino, J.; Mang, S.; Schad, M.; Mathias, S.; Aschrafi, A.; Handrick, R.; et al. A functional high-content miRNA screen identifies miR-30 family to boost recombinant protein production in CHO cells. Biotechnol. J. 2014, 9, 1279–1292. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Chen, Y.C.; Betenbaugh, M.J.; Martin, S.E.; Shiloach, J. MiRNA mimic screen for improved expression of functional neurotensin receptor from HEK293 cells. Biotechnol. Bioeng. 2015, 112, 1632–1643. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.J.; Reilly, D.; Martin, S.E.; Wong, A.W. Identification of a novel miRNA that increases transient protein expression in combination with valproic acid. Biotechnol. Prog. 2017, 33, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Hackl, M.; Jakobi, T.; Blom, J.; Doppmeier, D.; Brinkrolf, K.; Szczepanowski, R.; Bernhart, S.H.; Honer Zu Siederdissen, C.; Bort, J.A.; Wieser, M.; et al. Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: Identification, annotation and profiling of microRNAs as targets for cellular engineering. J. Biotechnol. 2011, 153, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, V.; Hackl, M.; Bort, J.A.; Wieser, M.; Harreither, E.; Kunert, R.; Borth, N.; Grillari, J. A screening method to assess biological effects of microRNA overexpression in Chinese hamster ovary cells. Biotechnol. Bioeng. 2012, 109, 1376–1385. [Google Scholar] [CrossRef] [PubMed]
- Loh, W.P.; Loo, B.; Zhou, L.; Zhang, P.; Lee, D.Y.; Yang, Y.; Lam, K.P. Overexpression of microRNAs enhances recombinant protein production in Chinese hamster ovary cells. Biotechnol. J. 2014, 9, 1140–1151. [Google Scholar] [CrossRef] [PubMed]
- Pfizenmaier, J.; Junghans, L.; Teleki, A.; Takors, R. Hyperosmotic stimulus study discloses benefits in ATP supply and reveals miRNA/mRNA targets to improve recombinant protein production of CHO cells. Biotechnol. J. 2016, 11, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Stiefel, F.; Fischer, S.; Sczyrba, A.; Otte, K.; Hesse, F. MiRNA profiling of high, low and non-producing CHO cells during biphasic fed-batch cultivation reveals process relevant targets for host cell engineering. J. Biotechnol. 2016, 225, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Jiang, F. MicroRNA (miRNA) profiling. Methods Mol. Biol. 2016, 1381, 151–161. [Google Scholar] [PubMed]
- Meleady, P.; Gallagher, M.; Clarke, C.; Henry, M.; Sanchez, N.; Barron, N.; Clynes, M. Impact of miR-7 over-expression on the proteome of Chinese hamster ovary cells. J. Biotechnol. 2012, 160, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, N.; Kelly, P.; Gallagher, C.; Lao, N.T.; Clarke, C.; Clynes, M.; Barron, N. CHO cell culture longevity and recombinant protein yield are enhanced by depletion of miR-7 activity via sponge decoy vectors. Biotechnol. J. 2014, 9, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Druz, A.; Betenbaugh, M.; Shiloach, J. Glucose depletion activates mmu-miR-466h-5p expression through oxidative stress and inhibition of histone deacetylation. Nucleic Acids Res. 2012, 40, 7291–7302. [Google Scholar] [CrossRef] [PubMed]
- Druz, A.; Son, Y.J.; Betenbaugh, M.; Shiloach, J. Stable inhibition of mmu-miR-466h-5p improves apoptosis resistance and protein production in CHO cells. Metab. Eng. 2013, 16, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Mathias, S.; Schaz, S.; Emmerling, V.V.; Buck, T.; Kleemann, M.; Hackl, M.; Grillari, J.; Aschrafi, A.; Handrick, R.; et al. Enhanced protein production by microRNA-30 family in CHO cells is mediated by the modulation of the ubiquitin pathway. J. Biotechnol. 2015, 212, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Handrick, R.; Aschrafi, A.; Otte, K. Unveiling the principle of microRNA-mediated redundancy in cellular pathway regulation. RNA Biol. 2015, 12, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Paul, A.J.; Wagner, A.; Mathias, S.; Geiss, M.; Schandock, F.; Domnowski, M.; Zimmermann, J.; Handrick, R.; Hesse, F.; et al. MiR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality. Biotechnol. Bioeng. 2015, 112, 2142–2153. [Google Scholar] [CrossRef] [PubMed]
- Schoellhorn, M.; Fischer, S.; Wagner, A.; Handrick, R.; Otte, K. MiR-143 targets MAPK7 in CHO cells and induces a hyperproductive phenotype to enhance production of difficult-to-express proteins. Biotechnol. Prog. 2017, 33, 1046–1058. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Marquart, K.F.; Pieper, L.A.; Fieder, J.; Gamer, M.; Gorr, I.; Schulz, P.; Bradl, H. MiRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development. Biotechnol. Bioeng. 2017, 114, 1495–1510. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, V.; Hackl, M.; Klanert, G.; Hernandez Bort, J.A.; Kunert, R.; Grillari, J.; Borth, N. Stable overexpression of miR-17 enhances recombinant protein production of CHO cells. J. Biotechnol. 2014, 175, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Loh, W.P.; Yang, Y.S.; Lam, K.P. MiR-92a enhances recombinant protein productivity in CHO cells by increasing intracellular cholesterol levels. Biotechnol. J. 2017, 12, 160048. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Kurgan, L. Comprehensive overview and assessment of computational prediction of microRNA targets in animals. Brief. Bioinform. 2015, 16, 780–794. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.; Varghese, V.K.; Kabekkodu, S.P.; Mallya, S.; Satyamoorthy, K. A compilation of web-based research tools for miRNA analysis. Brief. Funct. Genom. 2017, 16, 249–273. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.H.; Chang, N.W.; Shrestha, S.; Hsu, S.D.; Lin, Y.L.; Lee, W.H.; Yang, C.D.; Hong, H.C.; Wei, T.Y.; Tu, S.J.; et al. MiRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016, 44, D239–D247. [Google Scholar] [CrossRef] [PubMed]
- Dweep, H.; Sticht, C.; Pandey, P.; Gretz, N. MiRWalk—Database: Prediction of possible miRNA binding sites by “Walking” The genes of three genomes. J. Biomed. Inform. 2011, 44, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Griffiths-Jones, S. MiRbase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014, 42, D68–D73. [Google Scholar] [CrossRef] [PubMed]
- Enright, A.J.; John, B.; Gaul, U.; Tuschl, T.; Sander, C.; Marks, D.S. MicroRNA targets in drosophila. Genome Biol. 2003, 5, R1. [Google Scholar] [CrossRef] [PubMed]
- Kertesz, M.; Iovino, N.; Unnerstall, U.; Gaul, U.; Segal, E. The role of site accessibility in microRNA target recognition. Nat. Genet. 2007, 39, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Rehmsmeier, M.; Steffen, P.; Hochsmann, M.; Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Paraskevopoulou, M.D.; Georgakilas, G.; Kostoulas, N.; Vlachos, I.S.; Vergoulis, T.; Reczko, M.; Filippidis, C.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013, 41, W169–W173. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- Gaidatzis, D.; van Nimwegen, E.; Hausser, J.; Zavolan, M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinform. 2007, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.; Wang, X. MiRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015, 43, D146–D152. [Google Scholar] [CrossRef] [PubMed]
- Huang da, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Huang, X.; Muruganujan, A.; Tang, H.; Mills, C.; Kang, D.; Thomas, P.D. PANTHER version 11: Expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017, 45, D183–D189. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. Edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Nueda, M.J.; Ferrer, A.; Talon, M. Masigpro: A method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 2006, 22, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Eden, E.; Navon, R.; Steinfeld, I.; Lipson, D.; Yakhini, Z. GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 2009, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Blake, J.A.; Eppig, J.T.; Kadin, J.A.; Richardson, J.E.; Smith, C.L.; Bult, C.J. Mouse genome database (MGD)-2017: Community knowledge resource for the laboratory mouse. Nucleic Acids Res. 2017, 45, D723–D729. [Google Scholar] [CrossRef] [PubMed]
- Stiefel, F.; Fischer, S.; Hackl, M.; Handrick, R.; Hesse, F.; Borth, N.; Otte, K.; Grillari, J. Noncoding RNAs, post-transcriptional RNA operons and Chinese hamster ovary cells. Pharm Bioprocess 2015, 3, 227–247. [Google Scholar] [CrossRef]
- Paddison, P.J.; Caudy, A.A.; Bernstein, E.; Hannon, G.J.; Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 2002, 16, 948–958. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.W.; Wu, S.C. A novel RNA silencing vector to improve antigen expression and stability in Chinese hamster ovary cells. Vaccine 2007, 25, 4103–4111. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.C.; Hong, W.W.L.; Liu, J.H. Short hairpin RNA targeted to dihydrofolate reductase enhances the immunoglobulin g expression in gene-amplified stable Chinese hamster ovary cells. Vaccine 2008, 26, 4969–4974. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Dasaradhi, P.V.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA interference: Biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 2003, 67, 657–685. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.K.W.; Chow, M.Y.T.; Zhang, Y.; Leung, S.W.S. SiRNA versus miRNA as therapeutics for gene silencing. Mol. Ther.-Nucleic Acids 2015, 4, e252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, K.; Kuni-Kamochi, R.; Yamane-Ohnuki, N.; Wakitani, M.; Yamano, K.; Imai, H.; Kanda, Y.; Niwa, R.; Iida, S.; Uchida, K.; et al. Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol. Bioeng. 2004, 88, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.H.; Hwang, S.J.; Lee, G.M. Influence of down-regulation of caspase-3 by siRNAs on sodium-butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metab. Eng. 2005, 7, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.F.; Chuan, K.H.; Liu, S.; Loh, S.O.; Chung, B.Y.; Ong, C.C.; Song, Z. RNAi suppression of Bax and Bak enhances viability in fed-batch cultures of CHO cells. Metab. Eng. 2006, 8, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Hammond, S.; Lee, K.H. RNA interference of cofilin in Chinese hamster ovary cells improves recombinant protein productivity. Biotechnol. Bioeng. 2012, 109, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Chen, Y.C.; Buehler, E.; Mandal, S.; Mandal, A.; Betenbaugh, M.; Park, M.H.; Martin, S.; Shiloach, J. Genome-scale RNA interference screen identifies antizyme 1 (OAZ1) as a target for improvement of recombinant protein production in mammalian cells. Biotechnol. Bioeng. 2016, 113, 2403–2415. [Google Scholar] [CrossRef] [PubMed]
- Ro, S.; Ma, H.Y.; Park, C.; Ortogero, N.; Song, R.; Hennig, G.W.; Zheng, H.; Lin, Y.M.; Moro, L.; Hsieh, J.T.; et al. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res. 2013, 23, 759–774. [Google Scholar] [CrossRef] [PubMed]
- Pieper, L.A.; Strotbek, M.; Wenger, T.; Gamer, M.; Olayioye, M.A.; Hausser, A. Secretory pathway optimization of CHO producer cells by co-engineering of the mitosRNA-1978 target genes CerS2 and Tbc1D20. Metab. Eng. 2017, 40, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Zucchelli, S.; Fasolo, F.; Russo, R.; Cimatti, L.; Patrucco, L.; Takahashi, H.; Jones, M.H.; Santoro, C.; Sblattero, D.; Cotella, D.; et al. SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells. Front. Cell. Neurosci. 2015, 9, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zucchelli, S.; Patrucco, L.; Persichetti, F.; Gustincich, S.; Cotella, D. Engineering translation in mammalian cell factories to increase protein yield: The unexpected use of long non-coding SINEUP RNAs. Comput. Struct. Biotechnol. J. 2016, 14, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Patrucco, L.; Chiesa, A.; Soluri, M.F.; Fasolo, F.; Takahashi, H.; Carninci, P.; Zucchelli, S.; Santoro, C.; Gustincich, S.; Sblattero, D.; et al. Engineering mammalian cell factories with SINEUP noncoding RNAs to improve translation of secreted proteins. Gene 2015, 569, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Git, A.; Dvinge, H.; Salmon-Divon, M.; Osborne, M.; Kutter, C.; Hadfield, J.; Bertone, P.; Caldas, C. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 2010, 16, 991–1006. [Google Scholar] [CrossRef] [PubMed]
- Willenbrock, H.; Salomon, J.; Søkilde, R.; Barken, K.B.; Hansen, T.N.; Nielsen, F.C.; Møller, S.; Litman, T. Quantitative mirna expression analysis: Comparing microarrays with next-generation sequencing. RNA 2009, 15, 2028–2034. [Google Scholar] [CrossRef] [PubMed]
Year | Initial Screen | Researchers | Type of Cells | Conditions Evaluated in Initial Screen | Reference |
---|---|---|---|---|---|
Previously identified microRNAs | |||||
2015 | miR mimics and mir-34 sponge decoy | Kelly et al. | CHO | apoptosis and cell growth | [26] |
2015 | miR mimics and mir-23 sponge decoy | Kelly et al. | CHO | energy metabolism | [27] |
Microarray | |||||
2007 | human, mouse and rat microRNA arrays | Gammell et al. | CHO | temperature shift | [25] |
2009 | human and mouse microRNA arrays | Koh et al. | HEK293 | 3 stages of batch culture | [28] |
2011 | human microRNA arrays | Barron et al. | CHO | temperature shift | [29] |
2011 | mouse and rat microRNA arrays | Druz et al. | CHO | apoptosis | [30] |
2011 | human, mouse and rat microRNA arrays | Lin et al. | CHO | producing lines compared to parental and MTX amplification | [31] |
2014 | cross-species microRNA and mRNA arrays | Maccani et al. | CHO | high producing cell lines compared to low producing cell lines | [32] |
2016 | human for HELA, mouse, rat and human for CHO microRNA arrays | Emmerling et al. | HELA and CHO | mild hypothermia | [33] |
2016 | human, mouse, rat, viral microRNAs | Klanert et al. | CHO | growth rate in multiple cell lines | [34] |
microRNA screen | |||||
2013 | human microRNA library | Strotbek et al. | CHO | IgG | [35] |
2014 | murine microRNA library | Fischer et al. | CHO | SEAP | [36] |
2015 | human microRNA library | Xiao et al. | HEK293 | neurotensin receptor | [37] |
2017 | human microRNA library | Meyer et al. | HEK293 | antibody | [38] |
Next Generation Sequencing | |||||
2011 | small RNA transcriptome | Hackl et al. | CHO | identified conserved and novel CHO microRNAs | [39] |
2012 | microRNA | Jadhav et al. | CHO | effects of overexpressing microRNA | [40] |
2014 | microRNA | Loh et al. | CHO | looking at profile of different expression level cultures | [41] |
2016 | microRNA and mRNA | Pfizenmaier et al. | CHO | osmotic shift | [42] |
2016 | microRNA | Stiefel et al. | CHO | biphasic fed batch cultivation of high low and non-producing CHO lines with mild hypothermia | [43] |
microRNA Target Prediction | |||
miRwalk | Collection of experimentally validated and predicted microRNA binding sites from multiple resources | http://mirwalk.uni-hd.de/ | [60] |
miRbase | Collection that provides a registry of published microRNA sequences | http://www.mirbase.org/ | [61] |
miRANDA algorithm | Algorithm that predicts microRNA targets based on sequence complementarity, energy binding and evolutionary conservation | http://www.microrna.org/ | [62] |
PITA | Database based on algorithms predicting targets based on site accessibility | https://genie.weizmann.ac.il/pubs/mir07/index.html | [63] |
RNAhybrid | Database based on algorithms predicting targets based on minimum free energy hybridization | https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/ | [64] |
DIANA tools | Database based on algorithms predicting targets based on site recognition | http://diana.imis.athena-innovation.gr/DianaTools/index.php | [65] |
targetScan | Database based on algorithms predicting targets based on site recognition | http://www.targetscan.org/vert_71/ | [66] |
EiMMo | Database based on algorithms predicting targets based on site recognition | http://www.clipz.unibas.ch//ElMMo3/index.php | [67] |
miRtarbase | Database based on experimentally validated microRNA/mRNA interactions | http://mirtarbase.mbc.nctu.edu.tw/ | [59] |
mirdb | Database for microRNA target prediction and functional annotation | http://mirdb.org/ | [68] |
DAVID | Database for identifying gene ontology but can and has also been used for identifying microRNA targets | https://david.ncifcrf.gov/ | [69] |
Biological Processes, Gene Ontology and Protein Identification | |||
PANTHER | Database for gene ontology and gene clustering analysis and gene products | http://pantherdb.org/ | [70] |
MASCOT | Software program for identifying proteins | http://www.matrixscience.com/ | |
HomoloGene | Database containing information about genes that have been used to study homology between species as well as for providing information about gene function | https://www.ncbi.nlm.nih.gov/homologene | |
GeneCards | Database containing information about genes that have been used to study homology between species as well as for providing information about gene function | http://www.genecards.org/ | |
BLAST | Basic local alignment search tool (i.e., Blast) utilizes the discontiguous megablast algorithm can be used to align gene sequences between species | https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome | |
edgeR | “R” software program package for differential expression analysis of RNA-seq data | https://bioconductor.org/packages/release/bioc/html/edgeR.html | [71] |
maSigPro | “R” software program package for regression analysis and differential expression analysis of microarray and RNA-seq data | https://bioconductor.org/packages/release/bioc/html/maSigPro.html | [72] |
LIMMA | “R” software program package for linear models and differential expression analysis of microarray data | https://bioconductor.org/packages/release/bioc/html/limma.html | [73] |
Gorilla | Tool for identifying enriched gene ontology terms | http://cbl-gorilla.cs.technion.ac.il/ | [74] |
MGI Gene Ontology Term Finder | Gene ontology database primarily for mouse genes | http://www.informatics.jax.org/ | [75] |
Vmatch | Sequence analysis software | http://www.vmatch.de/ | |
MetaCore | Pathway and network analysis software | https://clarivate.com/products/metacore/ | |
Ingenuity Pathways Analysis | Pathway and network analysis software | https://www.qiagen.com/us/shop/analytics-software/biological-data-tools/ingenuity-pathway-analysis/ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inwood, S.; Betenbaugh, M.J.; Shiloach, J. Methods for Using Small Non-Coding RNAs to Improve Recombinant Protein Expression in Mammalian Cells. Genes 2018, 9, 25. https://doi.org/10.3390/genes9010025
Inwood S, Betenbaugh MJ, Shiloach J. Methods for Using Small Non-Coding RNAs to Improve Recombinant Protein Expression in Mammalian Cells. Genes. 2018; 9(1):25. https://doi.org/10.3390/genes9010025
Chicago/Turabian StyleInwood, Sarah, Michael J. Betenbaugh, and Joseph Shiloach. 2018. "Methods for Using Small Non-Coding RNAs to Improve Recombinant Protein Expression in Mammalian Cells" Genes 9, no. 1: 25. https://doi.org/10.3390/genes9010025
APA StyleInwood, S., Betenbaugh, M. J., & Shiloach, J. (2018). Methods for Using Small Non-Coding RNAs to Improve Recombinant Protein Expression in Mammalian Cells. Genes, 9(1), 25. https://doi.org/10.3390/genes9010025