Transcriptional-Readthrough RNAs Reflect the Phenomenon of “A Gene Contains Gene(s)” or “Gene(s) within a Gene” in the Human Genome, and Thus Are Not Chimeric RNAs
Abstract
:1. Introduction
2. There Are Different Types of Long Noncolinear RNAs
- RNAs with sequences of two different genes, which occur in two separate ways, i.e., (1) the two genes are adjacent to each other on the same chromosome; and (2) the two genes are located on two different chromosomes. Theoretically, there should also be many RNAs in which the two genes are on the same chromosome but are far away from each other, too far away for a transcriptional-readthrough to occur, but, unfathomably, there are few, if any, such RNAs reported in the literature, to our knowledge.
3. Trans-Splicing Remains as a Possible Mechanism for Formation of Chimeric and Other Noncolinear RNAs
4. Some Human Genomic Loci Are Crowded Gene Habitats
5. Some Genes Are Encoded by the Same Genomic Locus with Their RNAs Sharing Exons
6. Two-Gene RNAs from Unknown Mechanism Make RNA Classification Difficult
7. We Propose to Classify Long Mature RNAs into Four Types
8. Do Trans-Splicing and Authentic Chimeric RNAs Really Exist in Human Cells?
- The number of cis-splicing events and cis-splicing derived RNAs in human cells are numerous, and trans-splicing is very common in evolutionarily-low organisms [157,158,159,160], whereas reported trans-splicing events in human cells have so far been very few. Therefore, it seems to us that trans-splicing may have undergone regression during evolution towards higher organisms, although we still need to determine whether trans-splicing has become defunct in healthy humans and whether it reappears during carcinogenesis, which would be considered an atavism, i.e., a reverse-evolutionary process.
- Most, if not all, published studies that claim the observation of trans-splicing in human cells do not provide us with procedural and mechanistic details of the splicing. Therefore, we still know very little about it, although cis-splicing is well-characterized in human cells and trans-splicing is well characterized in evolutionarily-lower organisms. For example, although we do know that a large number of proteins are involved in cis-splicing, we do not know how many proteins are involved in trans-splicing and what these proteins are in human cells. After more than a decade since the initial publications on many chimeric RNAs and other noncolinear RNAs that are believed to be derived from trans-splicing, few follow-up studies, either by the initial reporters or by other researchers, have been published on the procedural and mechanistic details of the trans-splicing per se and of how the splicing leads to the formation of chimeras or other noncolinear RNAs in human cells.
- If trans-splicing does exist in human cells as a mechanism for chimeric RNA formation, we should see more of those chimeras with sequences of two genes that are on the same chromosome but are farther away from each other, too far away for transcriptional readthrough to occur. However, the fact is that two-distant-gene chimeras, if they exist, are rare, which provides indirect evidence against the true existence of a trans-splicing mechanism.
- Yu et al. once tried to validate many reported noncolinear RNAs and suggested that 50% of them are artifacts produced in vitro [161]. This high rate of spuriousness identified by a single study suggests to us that more stringent vindication is required for authentication of the remaining 50%.
9. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Birney, E.; Stamatoyannopoulos, J.A.; Dutta, A.; Guigo, R.; Gingeras, T.R.; Margulies, E.H.; Weng, Z.; Snyder, M.; Dermitzakis, E.T.; Thurman, R.E.; et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447, 799–816. [Google Scholar] [CrossRef] [PubMed]
- Gingeras, T.R. Implications of chimaeric non-co-linear transcripts. Nature 2009, 461, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Chwalenia, K.; Facemire, L.; Li, H. Chimeric RNAs in cancer and normal physiology. Wiley Interdiscip. Rev. RNA 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Sokol, M.; Jessen, KM.; Pedersen, F.S. Utility of next-generation RNA-sequencing in identifying chimeric transcription involving human endogenous retroviruses. APMIS 2016, 124, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Yuan, C.; Zellmer, L.; Liu, S.; Xu, N.; Liao, D.J. Hypothesis: Artifacts, Including Spurious Chimeric RNAs with a Short Homologous Sequence, Caused by Consecutive Reverse Transcriptions and Endogenous Random Primers. J. Cancer 2015, 6, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Han, Y.; Zellmer, L.; Yang, W.; Guan, Z.; Yu, W.; Huang, H.; Liao, D.J. It Is Imperative to Establish a Pellucid Definition of Chimeric RNA and to Clear Up a Lot of Confusion in the Relevant Research. Int. J. Mol. Sci. 2017, 18, 714. [Google Scholar] [CrossRef] [PubMed]
- Bamshad, M.J.; Ng, S.B.; Bigham, A.W.; Tabor, H.K.; Emond, M.J.; Nickerson, D.A.; Shendure, J. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 2011, 12, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Belizario, J.E. The humankind genome: From genetic diversity to the origin of human diseases. Genome 2013, 56, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.B.; Amaral, P.P.; Schlesinger, F.J.; Dinger, M.E.; Taft, R.J.; Rinn, J.L.; Ponting, C.P.; Stadler, P.F.; Morris, K.V.; Morillon, A.; et al. The reality of pervasive transcription. PLoS Biol. 2011, 9, e1000625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Wang, Y.; Yang, W.; Guan, Z.; Yu, W.; Liao, D.J. Protein multiplicity can lead to misconduct in western blotting and misinterpretation of immunohistochemical staining results, creating much conflicting data. Prog. Histochem. Cytochem. 2016, 51, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Zhang, J.; Liu, S.; Xu, N.; Liao, D.J. The other side of the coin: The tumor-suppressive aspect of oncogenes and the oncogenic aspect of tumor-suppressive genes, such as those along the CCND-CDK4/6-RB axis. Cell Cycle 2014, 13, 1677–1693. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, E. ENCODE project writes eulogy for junk DNA. Science 2012, 337, 1159–1161. [Google Scholar] [CrossRef] [PubMed]
- Skipper, M.; Dhand, R.; Campbell, P. Presenting ENCODE. Nature 2012, 489, 45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lou, X.; Shen, H.; Zellmer, L.; Sun, Y.; Liu, S.; Xu, N.; Liao, D.J. Isoforms of wild type proteins often appear as low molecular weight bands on SDS-PAGE. Biotechnol. J. 2014, 9, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.H.; Liu, S.; Zuo, Z.H.; Chen, R.; Tseng, G.C.; Yu, Y.P. Discovery and Classification of Fusion Transcripts in Prostate Cancer and Normal Prostate Tissue. Am. J. Pathol. 2015, 185, 1834–1845. [Google Scholar] [CrossRef] [PubMed]
- Davare, M.A.; Tognon, C.E. Detecting and targetting oncogenic fusion proteins in the genomic era. Biol. Cell 2015, 107, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Mertens, F.; Tayebwa, J. Evolving techniques for gene fusion detection in soft tissue tumours. Histopathology 2014, 64, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Mertens, F.; Johansson, B.; Fioretos, T.; Mitelman, F. The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer 2015, 15, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Kinali, M.; Arechavala-Gomeza, V.; Cirak, S.; Glover, A.; Guglieri, M.; Feng, L.; Hollingsworth, K.G.; Hunt, D.; Jungbluth, H.; Roper, H.P.; et al. Muscle histology vs. MRI in Duchenne muscular dystrophy. Neurology 2011, 76, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Aartsma-Rus, A.; Van Deutekom, J.C.; Fokkema, I.F.; Van Ommen, G.J.; Den Dunnen, J.T. Entries in the Leiden Duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 2006, 34, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Shlien, A.; Raine, K.; Fuligni, F.; Arnold, R.; Nik-Zainal, S.; Dronov, S.; Mamanova, L.; Rosic, A.; Ju, Y.S.; Cooke, S.L.; et al. Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer. Cell Rep. 2016, 16, 2032–2046. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Chen, L.; Jia, Q.; Dou, X.; Xu, N.; Liao, D.J. The well-accepted notion that gene amplification contributes to increased expression still remains, after all these years, a reasonable but unproven assumption. J. Carcinog. 2016, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, L.; Yu, B.; Zellmer, L.; Xu, N.; Liao, D.J. Learning about the Importance of Mutation Prevention from Curable Cancers and Benign Tumors. J. Cancer 2016, 7, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lou, X.; Zellmer, L.; Liu, S.; Xu, N.; Liao, D.J. Just like the rest of evolution in Mother Nature, the evolution of cancers may be driven by natural selection, and not by haphazard mutations. Oncoscience 2014, 1, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Guerra, E.; Trerotola, M.; Dell’Arciprete, R.; Bonasera, V.; Palombo, B.; El-Sewedy, T.; Ciccimarra, T.; Crescenzi, C.; Lorenzini, F.; Rossi, C.; et al. A bicistronic CYCLIN D1-TROP2 mRNA chimera demonstrates a novel oncogenic mechanism in human cancer. Cancer Res. 2008, 68, 8113–8121. [Google Scholar] [CrossRef] [PubMed]
- Hungerford, D.A. The philadelphia chromosome and some others. Ann. Intern. Med. 1964, 61, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Koretzky, G.A. The legacy of the Philadelphia chromosome. J. Clin. Investig. 2007, 117, 2030–2032. [Google Scholar] [CrossRef] [PubMed]
- Nowell, P.; Hungerford, D. A minute chromosome in human chronic granulocytic leukemia. Science 1960, 132, 1497. [Google Scholar]
- Nowell, P.C.; Hungerford, D.A. Chromosome studies on normal and leukemic human leukocytes. J. Natl. Cancer Inst. 1960, 25, 85–109. [Google Scholar] [PubMed]
- Nowell, P.C. The minute chromosome (Phl) in chronic granulocytic leukemia. Blut 1962, 8, 65–66. [Google Scholar] [CrossRef] [PubMed]
- Vilborg, A.; Steitz, J.A. Readthrough transcription: How are DoGs made and what do they do? RNA Biol. 2017, 14, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Henkin, T.M. The T box riboswitch: A novel regulatory RNA that utilizes tRNA as its ligand. Biochim. Biophys. Acta 2014, 1839, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Vilborg, A.; Sabath, N.; Wiesel, Y.; Nathans, J.; Levy-Adam, F.; Yario, T.A.; Steitz, J.A.; Shalgi, R. Comparative analysis reveals genomic features of stress-induced transcriptional readthrough. Proc. Natl. Acad. Sci. USA 2017, 114, E8362–E8371. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Sun, Y.; Ma, L.; Wang, C.; Wu, J.M.; Bi, A.; Liao, D.J. Complex alternative splicing of the Smarca2 gene suggests the importance of Smarca2-B variants. J. Cancer 2011, 2, 386–400. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wu, J.; Wu, S.H.; Bi, A.D.; Liao, D.J. Splicing of mouse p53 pre-mRNA does not always follow the “first come, first served” principle and may be influenced by cisplatin treatment and serum starvation. Mol. Biol. Rep. 2012, 39, 9247–9256. [Google Scholar] [CrossRef] [PubMed]
- Finta, C.; Warner, S.C.; Zaphiropoulos, P.G. Intergenic mRNAs. Minor gene products or tools of diversity? Histol. Histopathol. 2002, 17, 677–682. [Google Scholar] [PubMed]
- Gerstein, M.B.; Bruce, C.; Rozowsky, J.S.; Zheng, D.; Du, J.; Korbel, J.O.; Emanuelsson, O.; Zhang, Z.D.; Weissman, S.; Snyder, M. What is a gene, post-ENCODE? History and updated definition. Genome Res. 2007, 17, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Chen, L.; Ma, Y.; Zhang, J.; Xu, N.; Liao, D.J. To Know How a Gene Works, We Need to Redefine It First but then, More Importantly, to Let the Cell Itself Decide How to Transcribe and Process Its RNAs. Int. J. Biol. Sci. 2015, 11, 1413–1423. [Google Scholar] [CrossRef] [PubMed]
- Ponting, C.P.; Belgard, T.G. Transcribed dark matter: Meaning or myth? Hum. Mol. Genet. 2010, 19, R162–R168. [Google Scholar] [CrossRef] [PubMed]
- Portin, P. The elusive concept of the gene. Hereditas 2009, 146, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Signal, B.; Gloss, B.S.; Dinger, M.E. Computational Approaches for Functional Prediction and Characterisation of Long Noncoding RNAs. Trends Genet. 2016, 32, 620–637. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Osak, M.; Bogu, G.K.; Stanton, L.W.; Johnson, R.; Lipovich, L. Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 2010, 16, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Castelo-Branco, G.; Bonetti, A. Birth, coming of age and death: The intriguing life of long noncoding RNAs. Semin. Cell Dev. Biol. 2017. [Google Scholar] [CrossRef]
- Nilsen, T.W.; Graveley, B.R. Expansion of the eukaryotic proteome by alternative splicing. Nature 2010, 463, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Glanz, S.; Kuck, U. Trans-splicing of organelle introns—A detour to continuous RNAs. Bioessays 2009, 31, 921–934. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.; Glanz, S.; Bunse-Grassmann, A.; Kruse, O.; Kuck, U. RNA trans-splicing: Identification of components of a putative chloroplast spliceosome. Eur. J. Cell Biol. 2010, 89, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Lasda, E.L.; Blumenthal, T. Trans-splicing. Wiley Interdiscip. Rev. RNA 2011, 2, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Borst, P. Maxi-circles, glycosomes, gene transposition, expression sites, transsplicing, transferrin receptors and base. J. Mol. Biochem. Parasitol. 2016, 205, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.; Maire, S.; Gaillard, M.C.; Sahel, J.A.; Hantraye, P.; Bemelmans, A.P. mRNA trans-splicing in gene therapy for genetic diseases. Wiley Interdiscip. Rev. RNA 2016, 7, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Maniatis, T.; Tasic, B. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 2002, 418, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.J.; Eperon, I.C.; Samani, N.J. Complementary intron sequence motifs associated with human exon repetition: A role for intragenic, inter-transcript interactions in gene expression. Bioinformatics 2007, 23, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Rigatti, R.; Jia, J.H.; Samani, N.J.; Eperon, I.C. Exon repetition: A major pathway for processing mRNA of some genes is allele-specific. Nucleic Acids Res. 2004, 32, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Shepelev, V.; Fedorov, A. Bioinformatic analysis of exon repetition, exon scrambling and trans-splicing in humans. Bioinformatics 2006, 22, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Flouriot, G.; Brand, H.; Seraphin, B.; Gannon, F. Natural trans-spliced mRNAs are generated from the human estrogen receptor-α (hER α) gene. J. Biol. Chem. 2002, 277, 26244–26251. [Google Scholar] [CrossRef] [PubMed]
- Pink, J.J.; Wu, S.Q.; Wolf, D.M.; Bilimoria, M.M.; Jordan, V.C. A novel 80 kDa human estrogen receptor containing a duplication of exons 6 and 7. Nucleic Acids Res. 1996, 24, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Pink, J.J.; Fritsch, M.; Bilimoria, M.M.; Assikis, V.J.; Jordan, V.C. Cloning and characterization of a 77-kDa oestrogen receptor isolated from a human breast cancer cell line. Br. J. Cancer 1997, 75, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Caudevilla, C.; Serra, D.; Miliar, A.; Codony, C.; Asins, G.; Bach, M.; Hegardt, F.G. Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver. Proc. Natl. Acad. Sci. USA 1998, 95, 12185–12190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caudevilla, C.; Serra, D.; Miliar, A.; Codony, C.; Asins, G.; Bach, M.; Hegardt, F.G. Processing of carnitine octanoyltransferase pre-mRNAs by cis and trans-splicing. Adv. Exp. Med. Biol. 1999, 466, 95–102. [Google Scholar] [PubMed]
- Caudevilla, C.; Codony, C.; Serra, D.; Plasencia, G.; Roman, R.; Graessmann, A.; Asins, G.; Bach-Elias, M.; Hegardt, F.G. Localization of an exonic splicing enhancer responsible for mammalian natural trans-splicing. Nucleic Acids Res. 2001, 29, 3108–3115. [Google Scholar] [CrossRef] [PubMed]
- Akopian, A.N.; Okuse, K.; Souslova, V.; England, S.; Ogata, N.; Wood, J.N. Trans-splicing of a voltage-gated sodium channel is regulated by nerve growth factor. FEBS Lett. 1999, 445, 177–182. [Google Scholar] [CrossRef]
- Frantz, S.A.; Thiara, A.S.; Lodwick, D.; Ng, L.L.; Eperon, I.C.; Samani, N.J. Exon repetition in mRNA. Proc. Natl. Acad. Sci. USA 1999, 96, 5400–5405. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Waldholm, J.; Bohm, S.; Visa, N. Brahma regulates a specific trans-splicing event at the mod(mdg4) locus of Drosophila melanogaster. RNA Biol. 2014, 11, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Labrador, M.; Mongelard, F.; Plata-Rengifo, P.; Baxter, E.M.; Corces, V.G.; Gerasimova, T.I. Protein encoding by both DNA strands. Nature 2001, 409, 1000. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Yang, W.; Ouyang, Y.; Chen, L.; Jiang, H.; Liao, Y.; Liao, D.J. Two RNAs or DNAs May Artificially Fuse Together at a Short Homologous Sequence (SHS) during Reverse Transcription or Polymerase Chain Reactions, and Thus Reporting an SHS-Containing Chimeric RNA Requires Extra Caution. PLoS ONE 2016, 11, e0154855. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wu, J.M.; Bi, A.D.; Ou-Yang, Y.C.; Shen, H.H.; Chirn, G.W.; Zhou, J.H.; Weiss, E.; Holman, E.P.; Liao, D.J. Possible Formation of Mitochondrial-RNA Containing Chimeric or Trimeric RNA Implies a Post-Transcriptional and Post-Splicing Mechanism for RNA Fusion. PLoS ONE 2013, 8, e77016. [Google Scholar] [CrossRef] [PubMed]
- Burgess, D.J. Gene expression: Controls and roles for trans-splicing. Nat. Rev. Genet. 2013, 14, 822. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.S.; Yu, C.Y.; Chuang, C.Y.; Hsiao, M.; Kao, C.F.; Kuo, H.C.; Chuang, T.J. Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency. Genome Res. 2014, 24, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Kowarz, E.; Merkens, J.; Karas, M.; Dingermann, T.; Marschalek, R. Premature transcript termination, trans-splicing and DNA repair: A vicious path to cancer. Am. J. Blood Res. 2011, 1, 1–12. [Google Scholar] [PubMed]
- Lei, Q.; Li, C.; Zuo, Z.; Huang, C.; Cheng, H.; Zhou, R. Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome Biol. Evol. 2016, 8, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Babiceanu, M.; Qin, F.; Xie, Z.; Jia, Y.; Lopez, K.; Janus, N.; Facemire, L.; Kumar, S.; Pang, Y.; Qi, Y.; et al. Recurrent chimeric fusion RNAs in non-cancer tissues and cells. Nucleic Acids Res. 2016, 44, 2859–2872. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Xie, Z.; Li, H. Intergenically Spliced Chimeric RNAs in Cancer. Trends Cancer 2016, 2, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Zaphiropoulos, P.G. Trans-splicing in Higher Eukaryotes: Implications for Cancer Development? Front. Genet. 2011, 2, 92. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, T.; Aigaki, T. Alternative trans-splicing: A novel mode of pre-mRNA processing. Biol. Cell 2006, 98, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, H.; Xin, D.; Cheng, H.; Zhou, R. A novel ncRNA gene from mouse chromosome 5 trans-splices with Dmrt1 on chromosome 19. Biochem. Biophys. Res. Commun. 2010, 400, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Lehman, M.L.; Dinger, M.E.; Hendy, S.C.; Mercer, T.R.; Seim, I.; Lawrence, M.G.; Mattick, J.S.; Clements, J.A.; Nelson, C.C. A variant of the KLK4 gene is expressed as a cis sense-antisense chimeric transcript in prostate cancer cells. RNA 2010, 16, 1156–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahara, T.; Kanazu, S.I.; Yanagisawa, S.; Akanuma, H. Heterogeneous Sp1 mRNAs in human HepG2 cells include a product of homotypic trans-splicing. J. Biol. Chem. 2000, 275, 38067–38072. [Google Scholar] [CrossRef] [PubMed]
- Takahara, T.; Tasic, B.; Maniatis, T.; Akanuma, H.; Yanagisawa, S. Delay in synthesis of the 3′ splice site promotes trans-splicing of the preceding 5′ splice site. Mol. Cell 2005, 18, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Mor, G.; Sklar, J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 2008, 321, 1357–1361. [Google Scholar] [CrossRef] [PubMed]
- Rowley, J.D.; Blumenthal, T. The cart before the horse. Science 2008, 321, 1302–1304. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Mor, G.; Sklar, J. Erratum for the Report “A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells”. Science 2015, 350, aad3463. [Google Scholar]
- Li, H.; Wang, J.; Ma, X.; Sklar, J. Gene fusions and RNA trans-splicing in normal and neoplastic human cells. Cell Cycle 2009, 8, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Conklin, C.M.; Longacre, T.A. Endometrial stromal tumors: The new WHO classification. Adv. Anat. Pathol. 2014, 21, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Jung, S.H.; Kim, M.S.; Baek, I.P.; Rhee, J.K.; Lee, S.H.; Hur, S.Y.; Kim, T.M.; Chung, Y.J.; Lee, S.H. Genomic landscape of endometrial stromal sarcoma of uterus. Oncotarget 2015, 6, 33319–33328. [Google Scholar] [CrossRef] [PubMed]
- Amador-Ortiz, C.; Roma, A.A.; Huettner, P.C.; Becker, N.; Pfeifer, J.D. JAZF1 and JJAZ1 gene fusion in primary extrauterine endometrial stromal sarcoma. Hum. Pathol. 2011, 42, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Oliva, E.; de Leval, L.; Soslow, R.A.; Herens, C. High frequency of JAZF1-JJAZ1 gene fusion in endometrial stromal tumors with smooth muscle differentiation by interphase FISH detection. Am. J. Surg. Pathol. 2007, 31, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Terrinoni, A.; Dell’Arciprete, R.; Fornaro, M.; Stella, M.; Alberti, S. Cyclin D1 gene contains a cryptic promoter that is functional in human cancer cells. Genes Chromosomes Cancer 2001, 31, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Chung, L.W.; Li, S.; Zhau, H.E. Identification of a novel FAS/ER-α fusion transcript expressed in human cancer cells. Biochim. Biophys. Acta 2000, 1493, 373–377. [Google Scholar] [CrossRef]
- Finta, C.; Zaphiropoulos, P.G. Intergenic mRNA molecules resulting from trans-splicing. J. Biol. Chem. 2002, 277, 5882–5890. [Google Scholar] [CrossRef] [PubMed]
- Jehan, Z.; Vallinayagam, S.; Tiwari, S.; Pradhan, S.; Singh, L.; Suresh, A.; Reddy, H.M.; Ahuja, Y.R.; Jesudasan, R.A. Novel noncoding RNA from human Y distal heterochromatic block (Yq12) generates testis-specific chimeric CDC2L2. Genome Res. 2007, 17, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, X.N.; Yang, L.; Hu, G.J.; Lu, M.; Xiong, Y.; Yang, X.Y.; Chang, C.C.; Song, B.L.; Chang, T.Y.; et al. RNA secondary structures located in the interchromosomal region of human ACAT1 chimeric mRNA are required to produce the 56-kDa isoform. Cell Res. 2008, 18, 921–936. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.J.; Chen, J.; Zhao, X.N.; Xu, J.J.; Guo, D.Q.; Lu, M.; Zhu, M.; Xiong, Y.; Li, Q.; Chang, C.C.; et al. Production of ACAT1 56-kDa isoform in human cells via trans-splicing involving the ampicillin resistance gene. Cell Res. 2013, 23, 1007–1024. [Google Scholar] [CrossRef] [PubMed]
- Li, B.L.; Li, X.L.; Duan, Z.J.; Lee, O.; Lin, S.; Ma, Z.M.; Chang, C.C.; Yang, X.Y.; Park, J.P.; Mohandas, T.K.; et al. Human acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes. J. Biol. Chem. 1999, 274, 11060–11071. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lee, O.; Chen, J.; Chen, J.; Chang, C.C.; Zhou, P.; Wang, Z.Z.; Ma, H.H.; Sha, H.F.; Feng, J.X.; et al. Human acyl-coenzyme A:cholesterol acyltransferase 1 (acat1) sequences located in two different chromosomes (7 and 1) are required to produce a novel ACAT1 isoenzyme with additional sequence at the N terminus. J. Biol. Chem. 2004, 279, 46253–46262. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Noda, T. Genomic organization of the mouse Msh4 gene producing bicistronic, chimeric and antisense mRNA. Gene 2004, 342, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Wei, Y.; Kang, Y.; Landweber, L.F. Detection of a common chimeric transcript between human chromosomes 7 and 16. Biol. Direct 2012, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, P.; Maragkakis, M.; Mourelatos, Z.; Vourekas, A. cCLIP-Seq: Retrieval of Chimeric Reads from HITS-CLIP (CLIP-Seq) Libraries. Methods Mol. Biol. 2018, 1680, 87–100. [Google Scholar] [PubMed]
- Pinson, M.E.; Pogorelcnik, R.; Court, F.; Arnaud, P.; Vaurs-Barriere, C. CLIFinder: Identification of LINE-1 Chimeric Transcripts in RNA-seq data. Bioinformatics 2017. [Google Scholar] [CrossRef] [PubMed]
- Lagstad, S.; Zhao, S.; Hoff, A.M.; Johannessen, B.; Lingjaerde, O.C.; Skotheim, R.I. chimeraviz: A tool for visualizing chimeric RNA. Bioinformatics 2017, 33, 2954–2956. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Heavican, T.B.; Vellichirammal, N.N.; Iqbal, J.; Guda, C. ChimeRScope: A novel alignment-free algorithm for fusion transcript prediction using paired-end RNA-Seq data. Nucleic Acids Res. 2017, 45, e120. [Google Scholar] [CrossRef] [PubMed]
- Paciello, G.; Ficarra, E. FuGePrior: A novel gene fusion prioritization algorithm based on accurate fusion structure analysis in cancer RNA-seq samples. BMC Bioinform. 2017, 18, 58. [Google Scholar] [CrossRef] [PubMed]
- Gorohovski, A.; Tagore, S.; Palande, V.; Malka, A.; Raviv-Shay, D.; Frenkel-Morgenstern, M. ChiTaRS-3.1-the enhanced chimeric transcripts and RNA-seq database matched with protein-protein interactions. Nucleic Acids Res. 2017, 45, D790–D795. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Martin, B.; Palumbo, E.; Marco-Sola, S.; Griebel, T.; Ribeca, P.; Alonso, G.; Rastrojo, A.; Aguado, B.; Guigo, R.; Djebali, S. ChimPipe: Accurate detection of fusion genes and transcription-induced chimeras from RNA-seq data. BMC Genom. 2017, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Okonechnikov, K.; Imai-Matsushima, A.; Paul, L.; Seitz, A.; Meyer, T.F.; Garcia-Alcalde, F. InFusion: Advancing Discovery of Fusion Genes and Chimeric Transcripts from Deep RNA-Sequencing Data. PLoS ONE 2016, 11, e0167417. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Razzaq, S.K.; Vo, A.D.; Gautam, M.; Li, H. Identifying fusion transcripts using next generation sequencing. Wiley Interdiscip. Rev. RNA 2016, 7, 811–823. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Liu, Y.; Yang, M.; Liao, D.J. New methods as alternative or corrective measures for the pitfalls and artifacts of reverse transcription and polymerase chain reactions (RT-PCR) in cloning chimeric or antisense-accompanied RNA. RNA Biol. 2013, 10, 958–967. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Cho, S.I.; Chae, J.H.; Lim, B.C.; Lee, J.S.; Lee, S.J.; Seo, S.H.; Park, H.; Cho, A.; Kim, S.Y.; et al. Pitfalls of Multiple Ligation-Dependent Probe Amplifications in Detecting DMD Exon Deletions or Duplications. J. Mol. Diagn. 2016, 18, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Labaj, P.P.; Kreil, D.P. Sensitivity, specificity, and reproducibility of RNA-Seq differential expression calls. Biol. Direct 2016, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.; Nolan, T. Talking the talk, but not walking the walk: RT-qPCR as a paradigm for the lack of reproducibility in molecular research. Eur. J. Clin. Investig. 2017. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A. The reproducibility of biomedical research: Sleepers awake! Biomol. Detect. Quantif. 2014, 2, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Koo, K.M.; Carrascosa, L.G.; Shiddiky, M.J.; Trau, M. Amplification-Free Detection of Gene Fusions in Prostate Cancer Urinary Samples Using mRNA-Gold Affinity Interactions. Anal. Chem. 2016, 88, 6781–6788. [Google Scholar] [CrossRef] [PubMed]
- Gillen, A.E.; Yamamoto, T.M.; Kline, E.; Hesselberth, J.R.; Kabos, P. Improvements to the HITS-CLIP protocol eliminate widespread mispriming artifacts. BMC Genom. 2016, 17, 338. [Google Scholar] [CrossRef] [PubMed]
- Lecanda, A.; Nilges, B.S.; Sharma, P.; Nedialkova, D.D.; Schwarz, J.; Vaquerizas, J.M.; Leidel, S.A. Dual randomization of oligonucleotides to reduce the bias in ribosome-profiling libraries. Methods 2016, 107, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Waugh, C.; Cromer, D.; Grimm, A.; Chopra, A.; Mallal, S.; Davenport, M.; Mak, J. A general method to eliminate laboratory induced recombinants during massive, parallel sequencing of cDNA library. Virol. J. 2015, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.R.; Marcelino, L.A.; Polz, M.F. Heteroduplexes in mixed-template amplifications: Formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res. 2002, 30, 2083–2088. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Boltz, V.F.; Spindler, J.E.; Kearney, M.F.; Maldarelli, F.; Mellors, J.W.; Stewart, C.; Volfovsky, N.; Levitsky, A.; Stephens, R.M.; et al. Analysis of 454 sequencing error rate, error sources, and artifact recombination for detection of Low-frequency drug resistance mutations in HIV-1 DNA. Retrovirology 2013, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Houseley, J.; Tollervey, D. Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro. PLoS ONE 2010, 5, e12271. [Google Scholar] [CrossRef] [PubMed]
- Beaumeunier, S.; Audoux, J.; Boureux, A.; Ruffle, F.; Commes, T.; Philippe, N.; Alves, R. On the evaluation of the fidelity of supervised classifiers in the prediction of chimeric RNAs. BioData Min. 2016, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Brakenhoff, R.H.; Schoenmakers, J.G.; Lubsen, N.H. Chimeric cDNA clones: A novel PCR artifact. Nucleic Acids Res. 1991, 19, 1949. [Google Scholar] [CrossRef] [PubMed]
- Cocquet, J.; Chong, A.; Zhang, G.; Veitia, R.A. Reverse transcriptase template switching and false alternative transcripts. Genomics 2006, 88, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E.; et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Lerat, H.; Berby, F.; Trabaud, M.A.; Vidalin, O.; Major, M.; Trepo, C.; Inchauspe, G. Specific detection of hepatitis C virus minus strand RNA in hematopoietic cells. J. Clin. Investig. 1996, 97, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Mader, R.M.; Schmidt, W.M.; Sedivy, R.; Rizovski, B.; Braun, J.; Kalipciyan, M.; Exner, M.; Steger, G.G.; Mueller, M.W. Reverse transcriptase template switching during reverse transcriptase-polymerase chain reaction: Artificial generation of deletions in ribonucleotide reductase mRNA. J. Lab. Clin. Med. 2001, 137, 422–428. [Google Scholar] [CrossRef] [PubMed]
- McManus, C.J.; Duff, M.O.; Eipper-Mains, J.; Graveley, B.R. Global analysis of trans-splicing in Drosophila. Proc. Natl. Acad. Sci. USA 2010, 107, 12975–12979. [Google Scholar] [CrossRef] [PubMed]
- Ozsolak, F.; Milos, P.M. RNA sequencing: Advances, challenges and opportunities. Nat. Rev. Genet. 2011, 12, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Paabo, S.; Irwin, D.M.; Wilson, A.C. DNA damage promotes jumping between templates during enzymatic amplification. J. Biol. Chem. 1990, 265, 4718–4721. [Google Scholar] [PubMed]
- Qiu, X.; Wu, L.; Huang, H.; McDonel, P.E.; Palumbo, A.V.; Tiedje, J.M.; Zhou, J. Evaluation of PCR-Generated Chimeras, Mutations, and Heteroduplexes with 16S rRNA Gene-Based Cloning. Appl. Environ. Microbiol. 2001, 67, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Quail, M.A.; Kozarewa, I.; Smith, F.; Scally, A.; Stephens, P.J.; Durbin, R.; Swerdlow, H.; Turner, D.J. A large genome center’s improvements to the Illumina sequencing system. Nat. Methods 2008, 5, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Ro, S.; Kang, S.H.; Farrelly, A.M.; Ordog, T.; Partain, R.; Fleming, N.; Sanders, K.M.; Kenyon, J.L.; Keef, K.D. Template switching within exons 3 and 4 of KV11.1 (HERG) gives rise to a 5′ truncated cDNA. Biochem. Biophys. Res. Commun. 2006, 345, 1342–1349. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.W.; Irimia, M. When good transcripts go bad: Artifactual RT-PCR ‘splicing’ and genome analysis. Bioessays 2008, 30, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Shammas, F.V.; Heikkila, R.; Osland, A. Fluorescence-based method for measuring and determining the mechanisms of recombination in quantitative PCR. Clin. Chim. Acta 2001, 304, 19–28. [Google Scholar] [CrossRef]
- Tuiskunen, A.; Leparc-Goffart, I.; Boubis, L.; Monteil, V.; Klingstrom, J.; Tolou, H.J.; Lundkvist, A.; Plumet, S. Self-priming of reverse transcriptase impairs strand-specific detection of dengue virus RNA. J. Gen. Virol. 2010, 91, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Zaphiropoulos, P.G. Template switching generated during reverse transcription? FEBS Lett. 2002, 527, 326. [Google Scholar] [CrossRef]
- Gao, R.; Zhao, A.H.; Du, Y.; Ho, W.T.; Fu, X.; Zhao, Z.J. PCR artifacts can explain the reported biallelic JAK2 mutations. Blood Cancer J. 2012, 2, e56. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.W.; Irimia, M. Intron mis-splicing: No alternative? Genome Biol. 2008, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Chung, L.M.; Zhao, H. Bias detection and correction in RNA-Sequencing data. BMC Bioinform. 2011, 12, 290. [Google Scholar] [CrossRef] [PubMed]
- Djebali, S.; Lagarde, J.; Kapranov, P.; Lacroix, V.; Borel, C.; Mudge, J.M.; Howald, C.; Foissac, S.; Ucla, C.; Chrast, J.; et al. Evidence for transcript networks composed of chimeric RNAs in human cells. PLoS ONE 2012, 7, e28213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Xie, Y.; Martignetti, J.A.; Yeo, T.T.; Massa, S.M.; Longo, F.M. A candidate chimeric mammalian mRNA transcript is derived from distinct chromosomes and is associated with nonconsensus splice junction motifs. DNA Cell Biol. 2003, 22, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Maillet, P.; Delaunay, J.; Baklouti, F. Chimeric probe-mediated ribonuclease protection assay for molecular diagnosis of mRNA deficiencies. Hum. Mutat. 1996, 7, 61–64. [Google Scholar] [CrossRef]
- Sherr, C.J. Divorcing ARF and p53: An unsettled case. Nat. Rev. Cancer 2006, 6, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Azpurua, J.; Ke, Z.; Augereau, A.; Zhang, Z.D.; Vijg, J.; Gladyshev, V.N.; Gorbunova, V.; Seluanov, A. INK4 locus of the tumor-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform. Proc. Natl. Acad. Sci. USA 2015, 112, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Bazzini, A.A.; Johnstone, T.G.; Christiano, R.; Mackowiak, S.D.; Obermayer, B.; Fleming, E.S.; Vejnar, C.E.; Lee, M.T.; Rajewsky, N.; Walther, T.C.; et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. 2014, 33, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Chan, W.S.; Li, Z.; Wang, D.; Liu, S.; Zhou, Y. Small open reading frames: Current prediction techniques and future prospect. Curr. Protein Pept. Sci. 2011, 12, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, Y.; Kondo, T.; Hashimoto, Y. Coding vs non-coding: Translatability of short ORFs found in putative non-coding transcripts. Biochimie 2011, 93, 1981–1986. [Google Scholar] [CrossRef] [PubMed]
- Landry, C.R.; Zhong, X.; Nielly-Thibault, L.; Roucou, X. Found in translation: Functions and evolution of a recently discovered alternative proteome. Curr. Opin. Struct. Biol. 2015, 32, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Pauli, A.; Valen, E.; Schier, A.F. Identifying (non-)coding RNAs and small peptides: Challenges and opportunities. Bioessays 2015, 37, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.J.; Rothnagel, J.A. Emerging evidence for functional peptides encoded by short open reading frames. Nat. Rev. Genet. 2014, 15, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Chu, Q.; Ma, J.; Saghatelian, A. Identification and characterization of sORF-encoded polypeptides. Crit. Rev. Biochem. Mol. Biol. 2015, 50, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Hashimoto, Y.; Kato, K.; Inagaki, S.; Hayashi, S.; Kageyama, Y. Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA. Nat. Cell Biol. 2007, 9, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Plaza, S.; Zanet, J.; Benrabah, E.; Valenti, P.; Hashimoto, Y.; Kobayashi, S.; Payre, F.; Kageyama, Y. Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis. Science 2010, 329, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Ladoukakis, E.; Pereira, V.; Magny, E.G.; Eyre-Walker, A.; Couso, J.P. Hundreds of putatively functional small open reading frames in Drosophila. Genome Biol. 2011, 12, R118. [Google Scholar] [CrossRef] [PubMed]
- Magny, E.G.; Pueyo, J.I.; Pearl, F.M.; Cespedes, M.A.; Niven, J.E.; Bishop, S.A.; Couso, J.P. Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science 2013, 341, 1116–1120. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Anderson, K.M.; Chang, C.L.; Makarewich, C.A.; Nelson, B.R.; McAnally, J.R.; Kasaragod, P.; Shelton, J.M.; Liou, J.; Bassel-Duby, R.; et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 2015, 160, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Kondo, T.; Kageyama, Y. Lilliputians get into the limelight: Novel class of small peptide genes in morphogenesis. Dev. Growth Differ. 2008, 50, S269–S276. [Google Scholar] [CrossRef] [PubMed]
- Pauli, A.; Norris, M.L.; Valen, E.; Chew, G.L.; Gagnon, J.A.; Zimmerman, S.; Mitchell, A.; Ma, J.; Dubrulle, J.; Reyon, D.; et al. Toddler: An embryonic signal that promotes cell movement via Apelin receptors. Science 2014, 343, 1248636. [Google Scholar] [CrossRef] [PubMed]
- Zanet, J.; Benrabah, E.; Li, T.; Pelissier-Monier, A.; Chanut-Delalande, H.; Ronsin, B.; Bellen, H.J.; Payre, F.; Plaza, S. Pri sORF peptides induce selective proteasome-mediated protein processing. Science 2015, 349, 1356–1358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.S.; Longo, F.M. LAR tyrosine phosphatase receptor: Alternative splicing is preferential to the nervous system, coordinated with cell growth and generates novel isoforms containing extensive CAG repeats. J. Cell Biol. 1995, 128, 415–431. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.A.; Hillier, L.W.; Waterston, R.H.; Blumenthal, T. A global analysis of C. elegans trans-splicing. Genome Res. 2011, 21, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Denker, J.A.; Zuckerman, D.M.; Maroney, P.A.; Nilsen, T.W. New components of the spliced leader RNP required for nematode trans-splicing. Nature 2002, 417, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Hastings, K.E. SL trans-splicing: Easy come or easy go? Trends Genet. 2005, 21, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, T.W. Evolutionary origin of SL-addition trans-splicing: Still an enigma. Trends Genet. 2001, 17, 678–680. [Google Scholar] [CrossRef]
- Yu, C.Y.; Liu, H.J.; Hung, L.Y.; Kuo, H.C.; Chuang, T.J. Is an observed non-co-linear RNA product spliced in trans, in cis or just in vitro? Nucleic Acids Res. 2014, 42, 9410–9423. [Google Scholar] [CrossRef] [PubMed]
Name | Gene ID * | Location | Coding or not | Name | Gene ID | Location | Coding or not |
---|---|---|---|---|---|---|---|
MROH7-TTC4 | 100527960 | 1p32.3 | noncoding | DNAAF4-CCPG1 | 100533483 | 15q21.3 | noncoding |
GJA9-MYCBP | 100527950 | 1p34.3 | noncoding | ST20-MTHFS | 100528021 | 15q25.1 | coding |
CENPS-CORT | 100526739 | 1p36.22 | both ** | C15orf38-AP3S2 | 100526783 | 15q26.1 | coding |
PMF1-BGLAP | 100527963 | 1q22 | coding | SLX1A-SULT1A3 | 100526830 | 16p11.2 | noncoding |
TSNAX-DISC1 | 100303453 | 1q42.2 | noncoding | SLX1B-SULT1A4 | 100526831 | 16p11.2 | noncoding |
HSPE1-MOB4 | 100529241 | 2q33.1 | coding | BOLA2-SMG1P6 | 107282092 | 16p11.2 | both |
ABHD14A-ACY1 | 100526760 | 3p21.2 | coding | PKD1P6-NPIPP1 | 105369154 | 16p13.11 | noncoding |
ARPC4-TTLL3 | 100526693 | 3p25.3 | coding | CORO7-PAM16 | 100529144 | 16p13.3 | coding |
FAM47E-STBD1 | 100631383 | 4q21.1 | coding | CKLF-CMTM1 | 100529251 | 16q21 | coding |
TMED7-TICAM2 | 100302736 | 5q22.3 | coding | TVP23C-CDRT4 | 100533496 | 17p12 | both |
CNPY3-GNMT | 107080644 | 6p21.1 | both | RNASEK-C17orf49 | 100529209 | 17p13.1 | noncoding |
RPS10-NUDT3 | 100529239 | 6p21.31 | coding | TNFSF12-TNFSF13 | 407977 | 17p13.1 | coding |
PPT2-EGFL8 | 100532746 | 6p21.32 | noncoding | SENP3-EIF4A1 | 100533955 | 17p13.1 | noncoding |
ATP6V1G2-DDX39B | 100532737 | 6p21.33 | noncoding | RAD51L3-RFFL | 100529207 | 17q12 | noncoding |
MSH5-SAPCD1 | 100532732 | 6p21.33 | noncoding | PTGES3L-AARSD1 | 100885850 | 17q21.31 | coding |
BLOC1S5-TXNDC5 | 100526836 | 6p24.3 | noncoding | NME1-NME2 | 654364 | 17q21.33 | both |
EEF1E1-BLOC1S5 | 100526837 | 6p24.3 | noncoding | TBC1D3P1-DHX40P1 | 653645 | 17q23.1 | noncoding |
URGCP-MRPS24 | 100534592 | 7p13 | coding | TEN1-CDK3 | 100529145 | 17q25.1 | noncoding |
ATP5J2-PTCD1 | 100526740 | 7q22.1 | coding | RPL17-C18orf32 | 100526842 | 18q21.1 | coding |
C7orf55-LUC7L2 | 100996928 | 7q34 | coding | PPAN-P2RY11 | 692312 | 19p13.2 | coding |
C10orf32-AS3MT | 100528007 | 10q24.32 | noncoding | RAB4B-EGLN2 | 100529264 | 19q13.2 | noncoding |
TMX2-CTNND1 | 100528016 | 11q12.1 | noncoding | MIA-RAB4B | 100529262 | 19q13.2 | noncoding |
KCNK4-TEX40 | 106780802 | 11q13.1 | noncoding | FKBP1A-SDCBP2 | 100528031 | 20p13 | noncoding |
RBM14-RBM4 | 100526737 | 11q13.2 | coding | SYS1-DBNDD2 | 767557 | 20q13.12 | noncoding |
HSPB2-C11orf52 | 100528019 | 11q23.1 | noncoding | SLMO2-ATP5E | 100533975 | 20q13.32 | noncoding |
BLOC1S1-RDH5 | 100528022 | 12q13.2 | noncoding | STX16-NPEPL1 | 100534593 | 20q13.32 | noncoding |
ZNF664-RFLNA | 100533183 | 12q24.31 | coding | SPECC1L-ADORA2A | 101730217 | 22q11.23 | noncoding |
BCL2L2-PABPN1 | 100529063 | 14q11.2 | coding | PIR-FIGF | 100532742 | Xp22.2 | noncoding |
CHURC1-FNTB | 100529261 | 14q23.3 | coding | RPL36A-HNRNPH2 | 100529097 | Xq22.1 | coding |
SERF2-C15orf63 | 100529067 | 15q15.3 | noncoding |
# | Transcript Mechanism | Genetic Base | RNAs |
---|---|---|---|
I | Well characterized | With an annotated or unannotated (including reathrough) gene as a base | Classical mRNAs and noncoding RNAs |
Circular RNAs | |||
With a fusion gene as a DNA base | Fusion RNAs | ||
II | Unknown | With or without a DNA base? | RNAs with neighboring-genes’ sequences |
III | Less known | Without a DNA base | RNAs with sense and antisense sequences |
RNAs with duplicated exons | |||
IV | Unknown | With two genes as bases | Authentic chimeric RNAs |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Yuan, C.; Chen, L.; Lei, M.; Zellmer, L.; Huang, H.; Liao, D.J. Transcriptional-Readthrough RNAs Reflect the Phenomenon of “A Gene Contains Gene(s)” or “Gene(s) within a Gene” in the Human Genome, and Thus Are Not Chimeric RNAs. Genes 2018, 9, 40. https://doi.org/10.3390/genes9010040
He Y, Yuan C, Chen L, Lei M, Zellmer L, Huang H, Liao DJ. Transcriptional-Readthrough RNAs Reflect the Phenomenon of “A Gene Contains Gene(s)” or “Gene(s) within a Gene” in the Human Genome, and Thus Are Not Chimeric RNAs. Genes. 2018; 9(1):40. https://doi.org/10.3390/genes9010040
Chicago/Turabian StyleHe, Yan, Chengfu Yuan, Lichan Chen, Mingjuan Lei, Lucas Zellmer, Hai Huang, and Dezhong Joshua Liao. 2018. "Transcriptional-Readthrough RNAs Reflect the Phenomenon of “A Gene Contains Gene(s)” or “Gene(s) within a Gene” in the Human Genome, and Thus Are Not Chimeric RNAs" Genes 9, no. 1: 40. https://doi.org/10.3390/genes9010040
APA StyleHe, Y., Yuan, C., Chen, L., Lei, M., Zellmer, L., Huang, H., & Liao, D. J. (2018). Transcriptional-Readthrough RNAs Reflect the Phenomenon of “A Gene Contains Gene(s)” or “Gene(s) within a Gene” in the Human Genome, and Thus Are Not Chimeric RNAs. Genes, 9(1), 40. https://doi.org/10.3390/genes9010040