Genetic Mechanisms of Asthma and the Implications for Drug Repositioning
Abstract
:1. Introduction
2. Pathogenesis of Asthma
3. Genetics of Asthma
3.1. Research Methods in Asthma Genetics
3.2. Asthma-Susceptible Genes
3.3. Pharmacogenetics of Asthma
4. Drug Repositioning Based on Genetics
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Papi, A.; Brightling, C.; Pedersen, S.E.; Reddel, H.K. Asthma. Lancet 2018, 391, 783–800. [Google Scholar] [CrossRef]
- Miller, S.M.; Ortega, V.E. Pharmacogenetics and the development of personalized approaches for combination therapy in asthma. Curr. Allergy Asthma Rep. 2013, 13, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Available online: http://ginasthma.org/ (accessed on 3 April 2018).
- Zhu, W.; Ma, H.; Cui, H.; Lu, X.; Shao, M.; Li, S.; Luo, Y.; Wang, Q.; Xu, C.; Xu, D.; et al. Prevalence and treatment of children’s asthma in rural areas compared with urban areas in Beijing. Chin. Med. J. 2015, 128, 2273–2277. [Google Scholar] [PubMed]
- Slager, R.E.; Hawkins, G.A.; Li, X.; Postma, D.S.; Meyers, D.A.; Bleecker, E.R. Genetics of asthma susceptibility and severity. Clin. Chest Med. 2012, 33, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Zhang, H.Y. Rational drug repositioning by medical genetics. Nat. Biotechnol. 2013, 31, 1080–1082. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.T. Pathogenesis of asthma. Clin. Exp. Allergy 2008, 38, 872–897. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, N.G.; Arakawa, H.; Carlsen, K.H.; Custovic, A.; Gern, J.; Lemanske, R.; Le Souef, P.; Makela, M.; Roberts, G.; Wong, G.; et al. International consensus on (ICON) pediatric asthma. Allergy 2012, 67, 976–997. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.T.; Arshad, H.; Roberts, G.; Howarth, P.H.; Thurner, P.J.; Davies, D.E. A new look at the pathogenesis of asthma. Clin. Sci. 2009, 118, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Pathophysiology of asthma. Br. J. Clin. Pharmacol. 1996, 42, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, G.; van Beijsterveldt, T.C.; van Baal, C.G.; Postma, D.; Boomsma, D.I. Heritability of self-reported asthma and allergy: A study in adult Dutch twins, siblings and parents. Twin Res. Hum. Genet. 2008, 11, 132–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ober, C.; Yao, T.C. The genetics of asthma and allergic disease: A 21st century perspective. Immunol. Rev. 2011, 242, 10–30. [Google Scholar] [CrossRef] [PubMed]
- Ober, C.; Hoffjan, S. Asthma genetics 2006: The long and winding road to gene discovery. Genes Immun. 2006, 7, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Meyers, D.A.; Bleecker, E.R.; Holloway, J.W.; Holgate, S.T. The genetics of asthma: Towards a personalised approach to diagnosis and treatment. Lancet Respir. Med. 2014, 2, 405–415. [Google Scholar] [CrossRef]
- Postma, D.S.; Kerkhof, M.; Boezen, H.M.; Koppelman, G.H. Asthma and chronic obstructive pulmonary disease: Common genes, common environments? Am. J. Respir. Crit. Care Med. 2011, 183, 1588–1594. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.T.; Raby, B.A.; Rogers, A. Asthma genetics and genomics 2009. Curr. Opin. Genet. Dev. 2009, 19, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Siroux, V.; Gonzalez, J.R.; Bouzigon, E.; Curjuric, I.; Boudier, A.; Imboden, M.; Anto, J.M.; Gut, I.; Jarvis, D.; Lathrop, M.; et al. Genetic heterogeneity of asthma phenotypes identified by a clustering approach. Eur. Respir. J. 2014, 43, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Madore, A.M.; Laprise, C. Immunological and genetic aspects of asthma and allergy. J. Asthma Allergy 2010, 3, 107–121. [Google Scholar] [PubMed]
- Vercelli, D. Discovering susceptibility genes for asthma and allergy. Nat. Rev. Immunol. 2008, 8, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Demenais, F.; Margaritte-Jeannin, P.; Barnes, K.C.; Cookson, W.O.C.; Altmüller, J.; Ang, W.; Barr, R.G.; Beaty, T.H.; Becker, A.B.; Beilby, J.; et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat. Genet. 2018, 50, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, N.; Konno, S.; Hattori, T.; Isada, A.; Shimizu, K.; Shimizu, K.; Shijubo, N.; Huang, S.K.; Hizawa, N.; Nishimura, M. The CC16 A38G polymorphism is associated with asymptomatic airway hyper-responsiveness and development of late-onset asthma. Ann. Allergy Asthma Immunol. 2013, 111, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Raby, B.A.; Van Steen, K.; Lazarus, R.; Celedon, J.C.; Silverman, E.K.; Weiss, S.T. Eotaxin polymorphisms and serum total IgE levels in children with asthma. J. Allergy Clin. Immunol. 2006, 117, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.G.; Huang, J.; Zhang, J.; Li, X.B.; He, C.; Xiao, Y.L.; Tian, C.; Wan, H.; Zhao, Y.L.; Tsewang, Y.G.; et al. Rantes gene polymorphisms and asthma risk: A meta-analysis. Arch. Med. Res. 2010, 41, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Hizawa, N.; Yamaguchi, E.; Konno, S.; Tanino, Y.; Jinushi, E.; Nishimura, M. A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma. Am. J. Respir. Crit. Care Med. 2002, 166, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, J.; Kirsten, H.; Wolfram, G.; Quente, E.; Ahnert, P. Differential allelic expression of IL13 and CSF2 genes associated with asthma. Genet. Mol. Biol. 2012, 35, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, Y.; Sun, W.; Germ, K.; Jiang, Y.; Guo, W.; Xu, C.; Li, C. IFNG+874A/T polymorphisms and IFNG CA repeat polymorphism associated with asthma in Asian—A meta-analysis. J. Asthma 2014, 51, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Hyun, M.H.; Lee, C.H.; Kang, M.H.; Park, B.K.; Lee, Y.H. Interleukin-10 promoter gene polymorphisms and susceptibility to asthma: A meta-analysis. PLoS ONE 2013, 8, e53758. [Google Scholar] [CrossRef] [PubMed]
- Padron-Morales, J.; Sanz, C.; Davila, I.; Munoz-Bellido, F.; Lorente, F.; Isidoro-Garcia, M. Polymorphisms of the IL12B, IL1B, and TNFA genes and susceptibility to asthma. J. Investig. Allergol. Clin. Immunol. 2013, 23, 487–494. [Google Scholar] [PubMed]
- Accordini, S.; Calciano, L.; Bombieri, C.; Malerba, G.; Belpinati, F.; Lo Presti, A.R.; Baldan, A.; Ferrari, M.; Perbellini, L.; de Marco, R. An interleukin 13 polymorphism is associated with symptom severity in adult subjects with ever asthma. PLoS ONE 2016, 11, e0151292. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, M.F.; Gut, I.G.; Demenais, F.; Strachan, D.P.; Bouzigon, E.; Heath, S.; Mutius, E.V.; Farrall, M.; Lathrop, M.; Cookson, W.O.C.M.; et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 2010, 363, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Savenije, O.E.; John, J.M.; Granell, R.; Kerkhof, M.; Dijk, F.N.; De Jongste, J.C.; Smit, H.A.; Brunekreef, B.; Postma, D.S.; Van Steen, K.; et al. Association of IL33-IL-1 receptor-like 1 (IL1RL1) pathway polymorphisms with wheezing phenotypes and asthma in childhood. J. Allergy Clin. Immunol. Pract. 2014, 134, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Lin, H.G.; Chen, B.F. Association of IL-4 promoter polymorphisms with asthma: A meta-analysis. Genet. Mol. Res. 2014, 13, 1383–1394. [Google Scholar] [CrossRef] [PubMed]
- Amirzargar, A.A.; Movahedi, M.; Rezaei, N.; Moradi, B.; Dorkhosh, S.; Mahloji, M.; Mahdaviani, S.A. Polymorphisms in IL4 and IL4RA confer susceptibility to asthma. J. Investig. Allergol. Clin. Immunol. 2009, 19, 433–438. [Google Scholar] [PubMed]
- Freidin, M.B.; Kobyakova, O.S.; Ogorodova, L.M.; Puzyrev, V.P. Association of polymorphisms in the human IL4 and IL5 genes with atopic bronchial asthma and severity of the disease. Comp. Funct. Genom. 2003, 4, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Babusikova, E.; Jurecekova, J.; Jesenak, M.; Evinova, A. Association of gene polymorphisms in interleukin 6 in infantile bronchial asthma. Arch. Bronconeumol. 2017, 53, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Randolph, A.G.; Lange, C.; Silverman, E.K.; Lazarus, R.; Weiss, S.T. Extended haplotype in the tumor necrosis factor gene cluster is associated with asthma and asthma-related phenotypes. Am. J. Respir. Crit. Care Med. 2005, 172, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Choi, J.; Hahn, H.J.; Lee, Y.B.; Yu, D.S.; Kim, J.W. Association of macrophage migration inhibitory factor polymorphisms with total plasma IgE levels in patients with atopic dermatitis in Korea. PLoS ONE 2016, 11, e0162477. [Google Scholar] [CrossRef] [PubMed]
- El-Adly, T.Z.; Kamal, S.; Selim, H.; Botros, S. Association of macrophage migration inhibitory factor promoter polymorphism–173G/C with susceptibility to childhood asthma. Cent. Eur. J. Immunol. 2016, 41, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Gao, Y.; Ye, X.; Lu, M. Association of STAT6 variants with asthma risk: A systematic review and meta-analysis. Hum. Immunol. 2014, 75, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Hirota, T.; Jodo, A.I.; Hitomi, Y.; Sakashita, M.; Tsunoda, T.; Miyagawa, T.; Doi, S.; Kameda, M.; Fujita, K.; et al. Thymic stromal lymphopoietin gene promoter polymorphisms are associated with susceptibility to bronchial asthma. Am. J. Respir. Cell Mol. Biol. 2011, 44, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, R.; Raby, B.A.; Lange, C.; Silverman, E.K.; Kwiatkowski, D.J.; Vercelli, D.; Klimecki, W.J.; Martinez, F.D.; Weiss, S.T. Toll-like receptor 10 genetic variation is associated with asthma in two independent samples. Am. J. Respir. Crit. Care Med. 2004, 170, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Tizaoui, K.; Kaabachi, W.; Hamzaoui, K.; Hamzaoui, A. Association of single nucleotide polymorphisms in toll-like receptor genes with asthma risk: A systematic review and meta-analysis. Allergy Asthma Immunol. Res. 2015, 7, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Tantisira, K.; Klimecki, W.T.; Lazarus, R.; Palmer, L.J.; Raby, B.A.; Kwiatkowski, D.J.; Silverman, E.; Vercelli, D.; Martinez, F.D.; Weiss, S.T. Toll-like receptor 6 gene (TLR6): Single-nucleotide polymorphism frequencies and preliminary association with the diagnosis of asthma. Genes Immun. 2004, 5, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, E.; Sakamoto, H.; Hirota, T.; Ochiai, K.; Imoto, Y.; Sakashita, M.; Kurosaka, F.; Akasawa, A.; Yoshihara, S.; Kanno, N.; et al. Genome-wide association study identifies HLA-DP as a susceptibility gene for pediatric asthma in Asian populations. PLoS Genet. 2011, 7, e1002170. [Google Scholar] [CrossRef] [PubMed]
- Lasky-Su, J.; Himes, B.E.; Raby, B.A.; Klanderman, B.J.; Sylvia, J.S.; Lange, C.; Melen, E.; Martinez, F.D.; Israel, E.; Gauderman, J.; et al. HLA-DQ strikes again: Genome-wide association study further confirms HLA-DQ in the diagnosis of asthma among adults. Clin. Exp. Allergy 2012, 42, 1724–1733. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, M.F.; Schou, C.; Faux, J.A.; Abecasis, G.R.; James, A.; Musk, A.W.; Cookson, W.O. Association between quantitative traits underlying asthma and the HLA-DRB1 locus in a family-based population sample. Eur. J. Hum. Genet. 2001, 9, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.H.; Seo, J.; Kim, H.Y.; Kwon, J.W.; Kim, B.J.; Kim, H.B.; Lee, S.Y.; Jang, G.C.; Song, D.J.; Kim, W.K.; et al. The relationship between asthma and bronchiolitis is modified by TLR4, CD14, and IL-13 polymorphisms. Pediatr. Pulmonol. 2015, 50, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Smit, L.A.; Siroux, V.; Bouzigon, E.; Oryszczyn, M.P.; Lathrop, M.; Demenais, F.; Kauffmann, F. CD14 and toll-like receptor gene polymorphisms, country living, and asthma in adults. Am. J. Respir. Crit. Care Med. 2009, 179, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Ramphul, K.; Lv, J.; Hua, L.; Liu, Q.H.; Fang, D.Z.; Ji, R.X.; Bao, Y.X. Single nucleotide polymorphisms predisposing to asthma in children of Mauritian Indian and Chinese Han ethnicity. Braz. J. Med. Biol. Res. 2014, 47, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Hizawa, N.; Maeda, Y.; Konno, S.; Fukui, Y.; Takahashi, D.; Nishimura, M. Genetic polymorphisms at FCER1B and PAI-1 and asthma susceptibility. Clin. Exp. Allergy 2006, 36, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.; Vyhlidal, C.A.; Dai, H.; Jones, B.L. Genetic variation within the histamine pathway among patients with asthma—A pilot study. J. Asthma 2015, 52, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Narożna, B.; Hoffmann, A.; Sobkowiak, P.; Schoneich, N.; Bręborowicz, A.; Szczepankiewicz, A. Polymorphisms in the interleukin 4, interleukin 4 receptor and interleukin 13 genes and allergic phenotype: A case control study. Adv. Med. Sci. 2016, 61, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Cheong, H.S.; Kim, L.H.; Park, B.L.; Choi, Y.H.; Park, H.S.; Hong, S.J.; Choi, B.W.; Park, C.S.; Shin, H.D. Association analysis of interleukin 5 receptor alpha subunit (IL5RA) polymorphisms and asthma. J. Hum. Genet. 2005, 50, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Rantala, A.; Lajunen, T.; Juvonen, R.; Silvennoinen-Kassinen, S.; Peitso, A.; Vainio, O.; Saikku, P.; Leinonen, M. Association of IL-6 and IL-6R gene polymorphisms with susceptibility to respiratory tract infections in young Finnish men. Hum. Immunol. 2011, 72, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Vestbo, J.; Lenney, W.; Silverman, M.; Whyte, M.; Helms, P.; Anderson, W.H.; Pillai, S.G. Association of PTGDR gene polymorphisms with asthma in two Caucasian populations. Genes Immun. 2007, 8, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Isidoro-Garcia, M.; Sanz, C.; Garcia-Solaesa, V.; Pascual, M.; Pescador, D.B.; Lorente, F.; Davila, I. PTGDR gene in asthma: A functional, genetic, and epigenetic study. Allergy 2011, 66, 1553–1562. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Li, S.; Xie, X.; Li, M. Association between thromboxane A2 receptor polymorphisms and asthma risk: A meta-analysis. J. Asthma 2016, 53, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Kavalar, M.S.; Balantic, M.; Silar, M.; Kosnik, M.; Korosec, P.; Rijavec, M. Association of ORMDL3, STAT6 and TBXA2R gene polymorphisms with asthma. Int. J. Immunogenet. 2012, 39, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Kalayci, O.; Birben, E.; Sackesen, C.; Keskin, O.; Tahan, F.; Wechsler, M.E.; Civelek, E.; Soyer, O.U.; Adalioglu, G.; Tuncer, A.; et al. ALOX5 promoter genotype, asthma severity and LTC4 production by eosinophils. Allergy 2006, 61, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Migita, O.; Koga, M.; Shibasaki, M.; Arinami, T.; Noguchi, E. Determination of structure and transcriptional regulation of CYSLTR1 and an association study with asthma and rhinitis. Pediatr Allergy Immunol. 2006, 17, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Fukai, H.; Ogasawara, Y.; Migita, O.; Koga, M.; Ichikawa, K.; Shibasaki, M.; Arinami, T.; Noguchi, E. Association between a polymorphism in cysteinyl leukotriene receptor 2 on chromosome 13q14 and atopic asthma. Pharmacogenet. Genom. 2004, 14, 683–690. [Google Scholar] [CrossRef]
- Park, J.S.; Chang, H.S.; Park, C.S.; Lee, J.H.; Lee, Y.M.; Choi, J.H.; Park, H.S.; Kim, L.H.; Park, B.L.; Choi, Y.H.; et al. Association analysis of cysteinyl-leukotriene receptor 2 (CYSLTR2) polymorphisms with aspirin intolerance in asthmatics. Pharmacogenet. Genom. 2005, 15, 483–492. [Google Scholar] [CrossRef]
- Lima, J.J.; Zhang, S.; Grant, A.; Shao, L.; Tantisira, K.G.; Allayee, H.; Wang, J.; Sylvester, J.; Holbrook, J.; Wise, R.; et al. Influence of leukotriene pathway polymorphisms on response to montelukast in asthma. Am. J. Respir. Crit. Care Med. 2006, 173, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Sun, S.; Cao, C.; Deng, Z. Association between angiotensin-converting enzyme I/D polymorphism and asthma risk: A meta-analysis involving 11,897 subjects. J. Asthma 2012, 49, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wang, L.; Su, X.; Hu, X.F. Association between V4 polymorphism in the ADAM33 gene and asthma risk: A meta-analysis. Genet. Mol. Res. 2015, 14, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Z.H.; Zhen, W.; Lu, S.J.; Liu, Z.; Zou, L.Y.; Xu, J.J. Association between genetic polymorphisms in the ADAM33 gene and asthma risk: A meta-analysis. DNA Cell. Biol. 2014, 33, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Zdorova, E.D.; Gabaeva, M.; Latysheva, E.; Voronko, O. ADRB2, ADAM33 and AAT gene polymorphisms and IgE-mediated asthma in Russian patients. Eur. Respir. J. 2011, 38, 481. [Google Scholar]
- Liang, S.Q.; Chen, X.L.; Deng, J.M.; Wei, X.; Gong, C.; Chen, Z.R.; Wang, Z.B. Beta-2 Adrenergic Receptor (ADRB2) Gene polymorphisms and the risk of asthma: A meta-analysis of case-control studies. PLoS ONE 2014, 9, e104488. [Google Scholar] [CrossRef] [PubMed]
- Moore, W.C.; Meyers, D.A.; Wenzel, S.E.; Teague, W.G.; Li, H.; Li, X.; D’Agostino, R., Jr.; Castro, M.; Curran-Everett, D.; Fitzpatrick, A.M.; et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 2010, 181, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J.L.; Crisafi, G.M.; Holm, C.T.; Meyers, D.A.; Hawkins, G.A.; Bleecker, E.R.; Jarjour, N.; Cohn, L.; Chupp, G.L. Genetic variation in chitinase 3-like 1 (CHI3L1) contributes to asthma severity and airway expression of YKL-40. J. Allergy Clin. Immunol. 2015, 136, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, W.; Willis-Owen, S.A.; Jiang, L.; Ma, Y.; Tian, X.; Moffatt, M.; Cookson, W.; Lin, Y.; Zhang, Y. Polymorphisms of PHF11 and DPP10 are associated with asthma and related traits in a Chinese population. Respiration 2010, 79, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Mathias, R.A.; Grant, A.V.; Rafaels, N.; Hand, T.; Gao, L.; Vergara, C.; Tsai, Y.J.; Yang, M.; Campbell, M.; Foster, C.; et al. A genome-wide association study on African-ancestry populations for asthma. J. Allergy Clin. Immunol. 2009, 125, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Leung, T.F.; Liu, E.K.; Tang, N.L.; Ko, F.W.; Li, C.Y.; Lam, C.; Wong, G.W. Nitric oxide synthase polymorphisms and asthma phenotypes in Chinese children. Clin. Exp. Allergy 2005, 35, 1288–1294. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.N.; Fan, Y.; Huang, J.J.; Zhang, H.X.; Gao, T.; Wang, C.; Wang, T.; Hou, L.F. The association of GSDMB and ORMDL3 gene polymorphisms with asthma: A meta-analysis. Allergy Asthma Immunol. Res. 2015, 7, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Rakyan, V.K.; Down, T.A.; Balding, D.J.; Beck, S. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet. 2011, 12, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Begin, P.; Tremblay, K.; Daley, D.; Lemire, M.; Claveau, S.; Salesse, C.; Kacel, S.; Montpetit, A.; Becker, A.; Chan-Yeung, M.; et al. Association of urokinase-type plasminogen activator with asthma and atopy. Am. J. Respir. Crit. Care Med. 2007, 175, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, A.; Postma, D.S.; Bruinenberg, M.; van Diemen, C.C.; Boezen, H.M.; Koppelman, G.H.; Timens, W.; Vonk, J.M. Serpine1-675 4G/5G polymorphism is associated with asthma severity and inhaled corticosteroid response. Eur. Respir. J. 2011, 38, 1036–1043. [Google Scholar] [CrossRef] [PubMed]
- Che, Z.; Zhu, X.; Yao, C.; Liu, Y.; Chen, Y.; Cao, J.; Liang, C.; Lu, Y. The association between the C-509T and T869C polymorphisms of TGF-β1 gene and the risk of asthma: A meta-analysis. Hum. Immunol. 2014, 75, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Hossny, E.M.; Amr, N.H.; Elsayed, S.B.; Nasr, R.A.; Ibraheim, E.M. Association of polymorphisms in the mast cell chymase gene promoter region (-1903 G/A) and (TG)n(GA)m repeat downstream of the gene with bronchial asthma in children. J. Investig. Allergol. Clin. Immunol. 2008, 18, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S.; Gupta, S.; Agarwal, S.; Sharma, N. CRHR1 gene SNPs and response to systemic corticosteroids in Indian asthmatic children during acute exacerbation. Indian J. Pediatr. 2015, 82, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Berg, N.D.; Husemoen, L.L.; Thuesen, B.H.; Hersoug, L.G.; Elberling, J.; Thyssen, J.P.; Carlsen, B.C.; Johansen, J.D.; Menne, T.; Bonnelykke, K.; et al. Interaction between filaggrin null mutations and tobacco smoking in relation to asthma. J. Allergy Clin. Immunol. 2012, 129, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Ziyab, A.H.; Karmaus, W.; Zhang, H.; Holloway, J.W.; Steck, S.E.; Ewart, S.; Arshad, S.H. Association of filaggrin variants with asthma and rhinitis: Is eczema or allergic sensitization status an effect modifier? Int. Arch. Allergy Immunol. 2014, 164, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Melen, E.; Bruce, S.; Doekes, G.; Kabesch, M.; Laitinen, T.; Lauener, R.; Lindgren, C.M.; Riedler, J.; Scheynius, A.; van Hage-Hamsten, M.; et al. Haplotypes of G protein-coupled receptor 154 are associated with childhood allergy and asthma. Am. J. Respir. Crit. Care Med. 2005, 171, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, S.; Chang, H.; Nie, Y.; Zeng, L.; Zhang, X.; Wang, Y. Quantitative assessment of the association between the GSTM1-null genotype and the risk of childhood asthma. Genet. Test. Mol. Biomark. 2013, 17, 656–661. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, E.A.; Brauer, M.; Melen, E.; Bauer, C.P.; Bauer, M.; Berdel, D.; Bergstrom, A.; Brunekreef, B.; Chan-Yeung, M.; Klumper, C.; et al. GSTP1 and TNF gene variants and associations between air pollution and incident childhood asthma: The traffic, asthma and genetics (TAG) study. Environ. Health Perspect. 2014, 122, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, S.; Liu, Z.; Ye, Y.; Mao, M. Significant association between GSTT1 null genotype and risk of asthma during childhood in Caucasians. Mol. Biol. Rep. 2013, 40, 1973–1978. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, Y.; Dong, L.; Yu, H.; Cheng, L.; Zhao, X.; Ding, M. Genetic variation of ITGB3 is associated with asthma in Chinese Han children. PLoS ONE 2013, 8, e56914. [Google Scholar] [CrossRef] [PubMed]
- Weiss, L.A.; Lester, L.A.; Gern, J.E.; Wolf, R.L.; Parry, R.; Lemanske, R.F.; Solway, J.; Ober, C. Variation in ITGB3 is associated with asthma and sensitization to mold allergen in four populations. Am. J. Respir. Crit. Care Med. 2005, 172, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Q.; Zhang, M.; Wang, C. NAT2 slow acetylation genotypes contribute to asthma risk among caucasians: Evidence from 946 cases and 1091 controls. Mol. Biol. Rep. 2014, 41, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Hysi, P.; Kabesch, M.; Moffatt, M.F.; Schedel, M.; Carr, D.; Zhang, Y.; Boardman, B.; von Mutius, E.; Weiland, S.K. NOD1 variation, immunoglobulin E and asthma. Hum. Mol. Genet. 2005, 14, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Walley, A.J.; Chavanas, S.; Moffatt, M.F.; Esnouf, R.M.; Ubhi, B.; Lawrence, R.; Wong, K.; Abecasis, G.R.; Jones, E.Y.; Harper, J.I.; et al. Gene polymorphism in Netherton and common atopic disease. Nat. Genet. 2001, 29, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Torgerson, D.G.; Ampleford, E.J.; Chiu, G.Y.; Gauderman, W.J.; Gignoux, C.R.; Graves, P.E.; Himes, B.E.; Levin, A.M.; Mathias, R.A.; Hancock, D.B.; et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse north American populations. Nat. Genet. 2011, 43, 887–892. [Google Scholar] [PubMed]
- Raby, B.A.; Lazarus, R.; Silverman, E.K.; Lake, S.; Lange, C.; Wjst, M.; Weiss, S.T. Association of vitamin D receptor gene polymorphisms with childhood and adult asthma. Am. J. Respir. Crit. Care Med. 2004, 170, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Tizaoui, K.; Berraies, A.; Hamdi, B.; Kaabachi, W.; Hamzaoui, K.; Hamzaoui, A. Association of vitamin D receptor gene polymorphisms with asthma risk: Systematic review and updated meta-analysis of case-control studies. Lung 2014, 192, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Weizmann Institute of Science. GeneCards. Available online: http://www.genecards.org/ (accessed on 2 May 2018).
- Yao, Y.; Zhu, L.; Li, J.; Jin, Y.; He, L. Association of HLA-DRB1 gene polymorphism with risk of asthma: A meta-analysis. Med. Sci. Monit. Basic Res. 2016, 22, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Hansbro, P.M.; Kaiko, G.E.; Foster, P.S. Cytokine/anti-cytokine therapy–novel treatments for asthma? Br. J. Pharmacol. 2011, 163, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, J.E.; Kelly, R.; Bunyavanich, S.; Mcgeachie, M.; Qiu, W.; Croteau-Chonka, D.C.; Soto-Quiros, M.; Avila, L.; Celedón, J.C.; Brehm, J.M.; et al. Genome-wide expression profiles identify potential targets for gene by environment interactions in asthma severity. J. Allergy Clin. Immunol. 2015, 136, 885–892.e2. [Google Scholar] [CrossRef] [PubMed]
- Reijmerink, N.E.; Kerkhof, M.; Koppelman, G.H.; Gerritsen, J.; de Jongste, J.C.; Smit, H.A.; Brunekreef, B.; Postma, D.S. Smoke exposure interacts with ADAM33 polymorphisms in the development of lung function and hyperresponsiveness. Allergy 2009, 64, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Panasevich, S.; Lindgren, C.; Kere, J.; Wickman, M.; Pershagen, G.; Nyberg, F.; Melen, E. Interaction between early maternal smoking and variants in TNF and GSTP1 in childhood wheezing. Clin. Exp. Allergy 2010, 40, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Kabesch, M.; Hoefler, C.; Carr, D.; Leupold, W.; Weiland, S.K.; von Mutius, E. Glutathione S transferase deficiency and passive smoking increase childhood asthma. Thorax 2004, 59, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Von Mutius, E. Gene-environment interactions in asthma. J. Allergy Clin. Immunol. 2009, 123, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.P. Asthma phenotypes: Nonallergic (intrinsic) asthma. J. Allergy Clin. Immunol. 2014, 2, 650–652. [Google Scholar] [CrossRef] [PubMed]
- Borish, L.; Culp, J.A. Asthma: A syndrome composed of heterogeneous diseases. Ann. Allergy Asthma Immunol. 2008, 101, 1–9. [Google Scholar] [CrossRef]
- Anvari, S.; Vyhlidal, C.A.; Dai, H.; Jones, B.L. Genetic variation along the histamine pathway in children with allergic versus nonallergic asthma. Am. J. Respir. Cell Mol. Biol. 2015, 53, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.J.; Blake, K.V.; Tantisira, K.G.; Weiss, S.T. Pharmacogenetics of asthma. Curr. Opin. Pulm. Med. 2009, 15, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, G.A.; Lazarus, R.; Smith, R.S.; Tantisira, K.G.; Meyers, D.A.; Peters, S.P.; Weiss, S.T.; Bleecker, E.R. The glucocorticoid receptor hetero-complex gene STIP1 is associated with improved lung function in asthmatics subjects treated with inhaled corticosteroids. J. Allergy Clin. Immunol. 2009, 123, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Tantisira, K.G.; Silverman, E.S.; Mariani, T.J.; Xu, J.; Richter, B.G.; Klanderman, B.J.; Litonjua, A.A.; Lazarus, R.; Rosenwasser, L.J.; Fuhlbrigge, A.L.; et al. FCER2: A pharmacogenetic basis for severe exacerbations in children with asthma. J. Allergy Clin. Immunol. 2007, 120, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zhou, G.; Ouyang, H.; Liu, Y.; Wang, A.; Cai, L.; Ti, X.; Song, L.; Shi, J.; Wu, C.; et al. Association of the glucocorticoid receptor D641V variant with steroid-resistant asthma: A case-control study. Pharmacogenet. Genom. 2015, 25, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Drazen, J.M.; Yandava, C.N.; Dubé, L.; Szczerback, N.; Hippensteel, R.; Pillari, A.; Israel, E.; Schork, N.; Silverman, E.S.; Katz, D.A.; et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat. Genet. 1999, 22, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Quan, Y.; Zhang, H.Y. Medical genetic inspirations for anticancer drug repurposing. Trends Pharmacol. Sci. 2014, 35, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Wang, Z.Y.; Chu, X.Y.; Zhang, H.Y. Evolutionary and genetic features of drug targets. Med. Res. Rev. 2018. [Google Scholar] [CrossRef] [PubMed]
- Plenge, R.M.; Scolnick, E.M.; Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 2013, 12, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Online Mendelian Inheritance in Man. Available online: http://www.omim.org/ (accessed on 25 December 2017).
- Therapeutic Targets Database. Available online: http://bidd.nus.edu.sg/BIDD-Databases/TTD/TTD.asp (accessed on 25 December 2017).
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2017, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Available online: https://www.clinicaltrials.gov/ (accessed on 25 December 2017).
- Drugs.com. Available online: https://www.drugs.com/ (accessed on 3 April 2018).
- The Medical Dictionary. Available online: http://the-medical-dictionary.com/ (accessed on 3 April 2018).
- Vatrella, A.; Fabozzi, I.; Calabrese, C.; Maselli, R.; Pelaia, G. Dupilumab: A novel treatment for asthma. J. Asthma Allergy 2014, 7, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Howarth, P.; Babu, K.; Arshad, H.; Lau, L.; Buckley, M.; McConnell, W.; Beckett, P.; Al, A.; Chauhan, A.; Wilson, S.; et al. Tumour necrosis factor (TNFα) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax 2005, 60, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.A.; Hargadon, B.; Shelley, M.; Parker, D.; Shaw, D.E.; Green, R.H.; Bradding, P.; Brightling, C.E.; Wardlaw, A.J.; Pavord, I.D. Evidence of a role of tumor necrosis factor α in refractory asthma. N. Engl. J. Med. 2006, 354, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.J.; Polosa, R. Study of infliximab treatment in asthma. Am. J. Respir. Crit. Care Med. 2007, 175, 196. [Google Scholar] [CrossRef] [PubMed]
- Desai, D.; Brightling, C.E. Cytokine and anti-cytokine therapy in asthma: Ready for the clinic? Clin. Exp. Immunol. 2009, 158, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Catal, F.; Mete, E.; Tayman, C.; Topal, E.; Albayrak, A.; Sert, H. A human monoclonal anti-TNF alpha antibody (adalimumab) reduces airway inflammation and ameliorates lung histology in a murine model of acute asthma. Allergol. Immunopathol. 2015, 43, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Baena-Cagnani, C.E. Desloratadine activity in concurrent seasonal allergic rhinitis and asthma. Allergy 2001, 56 (Suppl. 65), 21–27. [Google Scholar] [CrossRef] [PubMed]
- Berger, W.E.; Schenkel, E.J.; Mansfield, L.E. Safety and efficacy of desloratadine 5 mg in asthma patients with seasonal allergic rhinitis and nasal congestion. Ann. Allergy Asthma Immunol. 2002, 89, 485–491. [Google Scholar] [CrossRef]
- Baena-Cagnani, C.E.; Berger, W.E.; Dubuske, L.M.; Gurne, S.E.; Stryszak, P.; Lorber, R.; Danzig, M. Comparative effects of desloratadine versus montelukast on asthma dymptoms and use of β2-agonists in patients with seasonal allergic rhinitis and asthma. Int. Arch. Allergy Immunol. 2003, 130, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Beermann, S.; Glage, S.; Jonigk, D.; Seifert, R.; Neumann, D. Opposite effects of mepyramine on JNJ 7777120-induced amelioration of experimentally induced asthma in mice in sensitization and provocation. PLoS ONE 2012, 7, e30285. [Google Scholar] [CrossRef] [PubMed]
- Caruso, M.; Morjaria, J.; Emma, R.; Amaradio, M.D.; Polosa, R. Biologic agents for severe asthma patients: Clinical perspectives and implications. Int. Emerg. Med. 2018, 13, 155–176. [Google Scholar] [CrossRef] [PubMed]
- Gour, N.; Wills-Karp, M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine 2015, 75, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Rael, E.L.; Lockey, R.F. Interleukin-13 signaling and its role in asthma. World Allergy Organ. J. 2011, 4, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, M.E. Inhibiting interleukin-4 and interleukin-13 in difficult-to-control asthma. N. Engl. J. Med. 2013, 368, 2511–2513. [Google Scholar] [CrossRef] [PubMed]
- Warrier, M.R.; Hershey, G.K. Asthma genetics: Personalizing medicine. J. Asthma 2008, 45, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Brightling, C.E.; Berry, M.; Amrani, Y. Targeting TNF-α: A novel therapeutic approach for asthma. J. Allergy Clin. Immunol. 2008, 121, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.T.; Noonan, M.; Chanez, P.; Busse, W.; Dupont, L.; Pavord, I.; Hakulinen, A.; Paolozzi, L.; Wajdula, J.; Zang, C.; et al. Efficacy and safety of etanercept in moderate-to-severe asthma: A randomised, controlled trial. Eur. Respir. J. 2011, 37, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
Categories | Gene | Chromosome 1 | Molecular Function 2 | Variants | Population | References |
---|---|---|---|---|---|---|
Inflammation and Immune Response Pathway | ||||||
Cytokines | ||||||
CC16 | 11q12.3 | secretoglobin family 1A member 1 | 38A/G | Japanese | [23] | |
CCL11 | 17q12 | CCR chemokine receptor binding | −384A/G | African American | [24] | |
CCL5 | 17q12 | phosphatidylinositol phospholipase C activity; chemokine receptor binding | −403G/A −28C/G | Multiple countries Japanese | [25,26] | |
CSF2 | 5q31.1 | colony-stimulating factor receptor binding; | rs25882 | Swiss | [27] | |
IFNG | 12q15 | interferon-gamma receptor binding; | 874A/T | Chinese Han | [28] | |
IL10 | 1q32.1 | interleukin-10 receptor binding; | −1082A/G | East Asians | [29] | |
IL12B | 5q33.3 | cytokine receptor activity | rs3212227 | n.a. 3 | [30] | |
IL13 | 5q31.1 | interleukin-13 receptor binding | rs20541 rs848 rs1295686 | Multiple countries Italy Multiple countries | [20,31,32] | |
IL1B | 2q14.1 | interleukin-1 receptor binding | rs16944 rs1143634 | n.a. 3 | [30] | |
IL33 | 9p24.1 | protein binding | rs928413 rs3939286 rs1342326 | Multiple countries Multiple countries Dutch | [17,32,33] | |
IL4 | 5q31.1 | interleukin-4 receptor binding; growth factor activity | −589C/T 33C/T | Europeans; Iranian | [34,35] | |
IL5 | 5q31.1 | interleukin-5 receptor binding; growth factor activity | −703C/T | Russia | [36] | |
IL6 | 7p15.3 | interleukin-6 receptor binding; growth factor activity | −174G/C (rs1800795) | Multiple countries | [37] | |
LTA | 6p21.33 | tumor necrosis factor receptor binding | NcoI | Multiple countries | [38] | |
MIF | 22q11.23 | cytokine receptor binding | −173G/C | Korea; Egyptian | [39,40] | |
STAT6 | 12q13.3 | nucleic acid binding; transcription factor; DNA binding transcription factor activity and sequence-specific DNA binding | rs167769 rs71802646 | Multiple countries | [20,41] | |
TNF | 6p21.33 | tumor necrosis factor receptor binding | −308G/A −238G/A | n.a. 3 | [30] | |
TSLP | 5q22.1 | cytokine activity | rs1837253 rs3806933 rs2289276 | Multiple countries Japanese | [17,42] | |
Toll-like receptors | ||||||
TLR10 | 4p14 | transmembrane signaling receptor activity | 2322A/G 1031G/A | African American; European American | [43] | |
TLR2 | 4q31.3 | Toll-like receptor binding | Arg753Gln | Multiple countries | [44] | |
TLR4 | 9q33.1 | transmembrane signaling receptor activity | Asp299Gly Thr399Ile | Multiple countries | [44] | |
TLR6 | 4p14 | toll-like receptor 2 binding; transmembrane signaling receptor activity | Ser249Pro | African Americans; European Americans; Hispanic Americans | [45] | |
TLR9 | 3p21.2 | interleukin-1 receptor binding; transmembrane signaling receptor activity | −1237T/C | Multiple countries | [44] | |
Major histocompatibility complexes | ||||||
HLA-DP | 6p21.32 | MHC class II receptor activity | rs987870 | Asian | [46] | |
HLA-DQA1 | 6p21.32 | MHC class II receptor activity | rs9272346 | Multiple countries | [47] | |
HLA-DQB1 | 6p21.32 | MHC class II receptor activity | rs9273349 | Multiple countries | [32,47] | |
HLA-DRB1 | 6p21.32 | MHC class II receptor activity | rs9272346 rs9271300 | Multiple countries Australian | [20,48] | |
Receptors | ||||||
CD14 | 5q31.3 | opsonin receptor activity | −260C/T | Korean;French | [49,50] | |
FCER1B | 1q23.2 | IgE receptor activity | −109C/T | Indian; Chinese; Japanese | [51,52] | |
HRH1 | 3p25.3 | G-protein coupled receptor activity; histamine receptor activity | −17T/C (rs901865) | Multiple countries | [53] | |
IL12RB | 19p13.11 | cytokine activity | rs2284033 | Multiple countries | [32] | |
IL18R1 | 2q12.1 | interleukin-18 receptor activity | rs3771166 | Multiple countries | [32] | |
IL1RL1 | 2q12.1 | cytokine receptor activity; receptor signaling protein activity | rs17026974 rs13431828 rs1420101 | Multiple countries | [17,20] | |
IL4RA | 16p12.1 | cytokine receptor activity; signal transducer activity, downstream of receptor | rs1805011 | Caucasians | [54] | |
IL5RA | 3p26.2 | interleukin-5 receptor activity | 5993A/G | Korean | [55] | |
IL6R | 1q21.3 | interleukin-6 receptor activity | −174C/G | Finnish | [56] | |
PTGDR | 14q22.1 | prostaglandin D receptor activity | −731A/G 6651C/T | Caucasian | [57,58] | |
TBXA2R | 19p13.3 | thromboxane A2 receptor activity | 795C/T | Multiple countries | [59,60] | |
−924C/T | ||||||
rs8113232 | n.a. 3 | |||||
Cysteine leukotriene metabolic pathway | ||||||
ALOX5 | 17p13.2 | arachidonate 5-lipoxygenase activity | rs59439148 | African American; White | [61] | |
CYSLTR1 | Xq21.1 | cysteinyl leukotriene receptor activity | rs2637204 | Japanese | [62] | |
CYSLTR2 | 13q14.2 | cysteinyl leukotriene receptor activity | −1220A/C −819T/G | Japanese Koreans | [63,64] | |
LTC4S | 5q35.3 | leukotriene-C4 synthase activity | −444A/C | African American; White | [61,65] | |
Airway hyperresponsiveness, airway remodeling, lung function | ||||||
ACE | 17q23.3 | actin binding; drug binding | I/D polymorphism | Multiple countries | [66] | |
ADAM33 | 20p13 | metalloendopeptidase activity; zinc ion binding | rs528557 | Multiple countries | [67,68] | |
ADRB2 | 5q32 | beta2-adrenergic receptor activity | Arg16Gly Gln27Glu | Multiple countries | [69,70] | |
AREG | 4q13.3 | epidermal growth factor receptor binding; cytokine activity | rs204993 | Japanese | [71] | |
CHI3L1 | 1q32.1 | hydrolyzing O-glycosyl compounds; carbohydrate binding; hydrolase activity | rs4950928 rs12141494 | European | [72] | |
DPP10 | 2q14.1 | dipeptidyl-peptidase activity | rs10208402 rs1435879 | Chinese | [73,74] | |
NOS1 | 12q24.22 | nitric-oxide synthase activity | 3391C/T 5266C/T | Chinese | [75] | |
ORMDL3 | 17q21.1 | protein binding | rs8076131 rs12603332 rs7216389 | Multiple countries | [17,76,77] | |
PLAU | 10q22.2 | serine-type endopeptidase activity; protein binding; kinase activity | rs2227564C rs2227566C | French-Canadian familial | [78] | |
SERPINB4 | 18q21.33 | serine-type endopeptidase activity; protease binding | n.a. 3 | [18] | ||
SERPINE1 | 7q22.1 | serine-type endopeptidase activity; protease binding | −675 4G/5G | Dutch | [79] | |
SERPINH1 | 11q13.5 | serine-type endopeptidase activity; protease binding | n.a. 3 | [18] | ||
TGFB1 | 19q13.2 | cytokine activity; transforming growth factor beta receptor binding | −509C/T | White | [19,80] | |
CMA1 | 14q12 | endopeptidase activity | −1903G/A | Egyptian children | [81] | |
Others | ||||||
BACH2 | 6q15 | transcription factor activity; sequence-specific DNA binding | rs2325291 | Multiple countries | [20] | |
CLEC16A | 16p13.13 | protein binding | rs17806299 | Multiple countries | [20] | |
CRHR1 | 17q21.31 | G-protein coupled receptor activity | rs242941 | Indian children | [82] | |
EMSY | 11q13.5 | protein binding; protein homodimerization activity | rs7927894 | Multiple countries | [20] | |
ERBB2 | 17q12 | protein binding; signal transducer activity | rs2952156 | Multiple countries | [20] | |
FLG | 1q21.3 | structural molecule activity; protein binding | 2282del4 | White; Danish | [83,84] | |
GATA3 | 10p14 | DNA binding transcription factor activity; transcription factor binding | rs2589561 | Multiple countries | [20] | |
GPRA | 7p14.3 | neuropeptide S receptor 1 | rs324384 rs324396 | Western European | [85] | |
GPX5 | 6p22.1 | glutathione peroxidase activity | rs1233578 | Multiple countries | [20] | |
GSTM1 | 1p13.3 | glutathione transferase activity; transferase activity; enzyme binding | +/null | Multiple countries | [86] | |
GSTP1 | 11q13.2 | glutathione transferase activity | IIe105Val Ala114Val | Multiple countries | [87] | |
GSTT1 | 22q11.23 | glutathione transferase activity | A/null | Caucasians | [88] | |
ITGB3 | 17q21.32 | receptor activity | rs3809865 | Multiple countries | [89,90] | |
MICB | 6p21.33 | natural killer cell lectin-like receptor binding | rs2855812 | Multiple countries | [20] | |
NAT2 | 8p22 | arylamine N-acetyltransferase activity | Acetylation genotypes | Caucasians | [91] | |
NDFIP1 | 5q31.3 | protein binding; signal transducer activity | rs7705042 | Multiple countries | [20] | |
NOD1 | 7p14.3 | protein binding; cysteine-type endopeptidase activator activity involved in apoptotic process | ND (1) + 32656 | Australia; America | [92] | |
RANBP6 | 9p24.1 | transporter activity; protein binding | rs992969 | Multiple countries | [20] | |
RORA | 15q22.2 | DNA binding transcription factor activity and transcription factor binding | rs11071558 rs11071559 | Multiple countries | [20,32] | |
SLC25A46 | 5q22.1 | protein binding | rs10455025 | Multiple countries | [20] | |
SMAD3 | 15q23 | sequence-specific DNA binding transcription factor activity | rs744910 rs2033784 | Multiple countries | [32] | |
SPINK5 | 5q32 | serine-type endopeptidase inhibitor activity | Glu420Lys | German | [93] | |
SRP9 | 1q42.12 | RNA binding; protein binding | rs4653433 | Multiple countries | [94] | |
TPD52 | 8q21.13 | protein binding | rs12543811 | Multiple countries | [20] | |
VDR | 12q13.11 | steroid hormone receptor activity; vitamin D response element binding | TaqI, BsmI, and FokI polymorphisms | Multiple countries | [95,96] | |
ZNF652 | 17q21.32-q21.33 | nucleic acid binding; DNA binding; protein binding | rs17637472 | Multiple countries | [20] |
Target | Pathogenesis 1 | Drug (Mode of Action) 2 | Side Effects 3 |
---|---|---|---|
GR | GOF | Budesonide (antagonist) | Motor activity, piloerection, generalized edema; |
CYSLTR1 | GOF | Montelukast (antagonist) | Headache, abdominal or stomach pain, cough, dental pain, dizziness, fever, heartburn, skin rash, stuffy nose, weakness or unusual tiredness; |
CYSLTR1 | GOF | Pranlukast (antagonist) | Headache, abdominal or stomach pain, cough, dental pain, dizziness, fever, heartburn, skin rash, stuffy nose, weakness or unusual tiredness; |
HRH1 | GOF | Chloropyramine (antagonist) | Agitation and dizziness; |
HRH1 | GOF | Emedastine (antagonist) | Somnolence and malaise; |
IL-5 | GOF | Mepolizumab (antagonist) | Blurred, confusion, cough, difficulty with breathing, dizziness, noisy breathing, sweating, tightness in the chest, swelling, hives, blisters and tiredness; |
IL-5 | GOF | Reslizumab (antagonist) | Allergic reactions, anaphylaxis, cancer, muscle pain; |
ADRB2 | LOF | Isoetarine (agonist) | Tachycardia, palpitations, nausea, headache, and epinephrine-like; |
ADRB2 | LOF | Salbutamol (agonist) | Tremor, hypersensitivity reaction and tachycardia; |
Target | Pathogenesis 1 | Drug (Mode of Action) 2 | Current Drug Indication 2 | Source 3 | Reference 4 |
---|---|---|---|---|---|
IL4RA | GOF | Dupilumab (antagonist) | Atopic dermatitis | Top gene | [1,122] |
TNF-α | GOF | Etanercept (antibody) | Psoriasis; | Top gene | [123,124] |
TNF-α | GOF | Infliximab (inhibitor) | Psoriasis; Crohn’s disease; | Top gene | [125,126] |
Ankylosing spondylitis; | |||||
Psoriatic arthritis; Rheumatoid arthritis; Ulcerative colitis | |||||
TNF-α | GOF | Adalimumab (antibody) | Ankylosing spondylitis; | Top gene | [127] |
Rheumatoid arthritis | |||||
HRH1 HRH1 | GOF GOF | Desloratadine (antagonist) Mepyramine maleate (antagonist) | Allergic rhinitis Allergy | Druggable gene Druggable gene | [128,129,130] [131] |
Alox-5 Alox-5 Alox-5 | GOF GOF GOF | Lonapalene (inhibitor) Flobufen (inhibitor) Masoprocol (inhibitor) | Psoriasis Rheumatold arthritis Prostate cancer | Druggable gene Druggable gene Druggable gene | n.a. n.a. n.a. |
CYSLTR1 | GOF | LY-2300559 (antagonist) | Migraine | Druggable gene | n.a. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, Y.; Zhang, H.-Y. Genetic Mechanisms of Asthma and the Implications for Drug Repositioning. Genes 2018, 9, 237. https://doi.org/10.3390/genes9050237
Huo Y, Zhang H-Y. Genetic Mechanisms of Asthma and the Implications for Drug Repositioning. Genes. 2018; 9(5):237. https://doi.org/10.3390/genes9050237
Chicago/Turabian StyleHuo, Yue, and Hong-Yu Zhang. 2018. "Genetic Mechanisms of Asthma and the Implications for Drug Repositioning" Genes 9, no. 5: 237. https://doi.org/10.3390/genes9050237
APA StyleHuo, Y., & Zhang, H. -Y. (2018). Genetic Mechanisms of Asthma and the Implications for Drug Repositioning. Genes, 9(5), 237. https://doi.org/10.3390/genes9050237