Genetic Imbalances in Argentinean Patients with Congenital Conotruncal Heart Defects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Subjects
2.3. Cytogenetic Studies
2.4. Fluorescent In Situ Hybridization
2.5. Multiplex Ligation Probe Amplification Analysis
2.6. TBX1 Exon 7 Sequencing
2.7. Statistical Analysis
3. Results
3.1. Description of the Cohort
3.2. Cytogenetic and Fluorescent In Situ Hybridization Analyses
3.3. Multiplex Ligation Probe Amplification Analysis
3.4. Analysis of the Distribution of 22q11 and Other Imbalances among Different Groups of CCHD Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pierpont, M.E.; Basson, C.T.; Benson, D.W.; Gelb, B.D.; Giglia, T.M.; Goldmuntz, E.; McGee, G.; Sable, C.A.; Srivastava, D.; Webb, C.L. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the american heart association congenital cardiac defects committee, council on cardiovascular disease in the young: endorsed by the american academy of pediatrics. Circulation 2007, 115, 3015–3038. [Google Scholar] [CrossRef] [PubMed]
- Bruneau, B.G. The developmental genetics of congenital heart disease. Nature 2008, 451, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Groisman, B.; Bidondo, M.P.; Duarte, S.; Piola, A.; Tardivo, A.; Liascovich, R.; Barbero, P. Reporte Anual RENAC 2017. Análisis Epidemiológico Sobre las Anomalías Congénitas en Recién Nacidos, Registradas Durante 2016 en la República Argentina. Available online: http://www.msal.gob.ar/images/stories/bes/graficos/0000001111cnt-2018-02-06-reporte-renac-2017-web.pdf (accessed on 26 July 2018).
- Patel, S.S.; Burns, T.L. Nongenetic risk factors and congenital heart defects. Pediatr. Cardiol. 2013, 34, 1535–1555. [Google Scholar] [CrossRef] [PubMed]
- Fahed, A.C.; Gelb, B.D.; Seidman, J.G.; Seidman, C.E. Genetics of congenital heart disease: the glass half empty. Circ. Res. 2013, 112, 707–720. [Google Scholar] [CrossRef] [PubMed]
- Wessels, M.; Willems, P. Genetic factors in non-syndromic congenital heart malformations. Clin. Genet. 2010, 78, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Andersen, T.A.; Troelsen, K.L.; Larsen, L.A. Of mice and men: Molecular genetics of congenital heart disease. Cell. Mol. Life Sci. 2014, 71, 1327–1352. [Google Scholar] [CrossRef] [PubMed]
- Sifrim, A.; Hitz, M.P.; Wilsdon, A.; Breckpot, J.; Turki, S.H.A.; Thienpont, B.; McRae, J.; Fitzgerald, T.W.; Singh, T.; Swaminathan, G.J.; et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat. Genet. 2016, 48, 1060–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Alessandro, L.C.; Al Turki, S.; Manickaraj, A.K.; Manase, D.; Mulder, B.J.M.; Bergin, L.; Rosenberg, H.C.; Mondal, T.; Gordon, E.; Lougheed, J.; et al. Exome sequencing identifies rare variants in multiple genes in atrioventricular septal defect. Genet. Med. 2016, 18, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, J.; Wei, C.; Hou, Z.; Li, Y.; Zou, H.; Meng, M.; Wang, W.; Jiang, L. Genetic variations of NKX2-5 in sporadic atrial septal defect and ventricular septal defect in Chinese Yunnan population. Gene 2016, 575, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, K.M.; El-Segaier, M.; Fernlund, E.; Errami, A.; Bouvagnet, P.; Nehme, N.; Steensberg, J.; Hjortdal, V.; Soller, M.; Behjati, M.; et al. Screening of congenital heart disease patients using multiplex ligation-dependent probe amplification: Early diagnosis of syndromic patients. Am. J. Med. Genet. Part A 2012, 158A, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Hartman, R.J.; Rasmussen, S.A.; Botto, L.D.; Riehle-Colarusso, T.; Martin, C.L.; Cragan, J.D.; Shin, M.; Correa, A. The contribution of chromosomal abnormalities to congenital heart defects: A population-based study. Pediatr. Cardiol. 2011, 32, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Wimalasundera, R.C.; Gardiner, H.M. Congenital heart disease and aneuploidy. Prenat. Diagn. 2004, 24, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Molina, O.; Anton, E.; Vidal, F.; Blanco, J. Sperm rates of 7q11.23, 15q11q13 and 22q11.2 deletions and duplications: A FISH approach. Hum. Genet. 2011, 129, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Marino, B.; Digilio, M.C.; Toscano, A.; Anaclerio, S.; Giannotti, A.; Feltri, C.; de Ioris, M.A.; Angioni, A.; Dallapiccola, B. Anatomic patterns of conotruncal defects associated with deletion 22q11. Genet. Med. 2001, 3, 45–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portnoï, M.-F. Microduplication 22q11.2: A new chromosomal syndrome. Eur. J. Med. Genet. 2009, 52, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Hacıhamdioğlu, B.; Hacıhamdioğlu, D.; Delil, K. 22q11 deletion syndrome: current perspective. Appl. Clin. Genet. 2015, 8, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, W.; Egger, J.; Brunner, H.; de Leeuw, N. A patient with a de novo distal 22q11.2 microdeletion and anxiety disorder. Am. J. Med. Genet. Part A 2011, 155, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Azamian, M.; Lalani, S.R. Cytogenomic aberrations in congenital cardiovascular malformations. Mol. Syndromol. 2016, 7, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Lalani, S.R.; Belmont, J.W. Genetic basis of congenital cardiovascular malformations. Eur. J. Med. Genet. 2014, 57, 402–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, H.M.; Werner, P.; Stambolian, D.; Bailey-Wilson, J.E.; Hakonarson, H.; White, P.S.; Taylor, D.M.; Goldmuntz, E. Rare copy number variants in patients with congenital conotruncal heart defects. Birth Defects Res. 2017, 109, 271–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, J.I.E.; Kaplan, S.; Hoffman, J.I.E.; Kaplan, S.; Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef]
- Galindo, A.; Mendoza, A.; Arbues, J.; Grañeras, A.; Escribano, D.; Nieto, O. Conotruncal anomalies in fetal life: Accuracy of diagnosis, associated defects and outcome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 146, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.M.R.; Zanardo, E.A.; Dutra, R.L.; Kulikowski, L.D.; Kim, C.A. Investigation of copy number variation in children with conotruncal heart defects. Arq. Bras. Cardiol. 2014, 24–30. [Google Scholar] [CrossRef] [PubMed]
- De Souza, K.R.; Mergener, R.; Huber, J.; Campos Pellanda, L.; Riegel, M. Cytogenomic evaluation of subjects with syndromic and nonsyndromic conotruncal heart defects. Biomed. Res. Int. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pierpont, M.E.M.; Moller, J.H. The Genetics of Cardiovascular Disease; Martinus Nijhoff Publishing: Boston, MA, USA, 1987; ISBN 9781461294191. [Google Scholar]
- EUROCAT Subgroups of Congenital Anomalies. Available online: http://www.eurocat-network.eu/content/Full%20Guide%201%204%20version%2021_June2018.pdf (accessed on 26 July 2018).
- Crawshaw, P. The new BPA classification. Arch. Dis. Child. 1995, 73, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Van der Linde, D.; Konings, E.E.; Slager, M.A.; Witsenburg, M.; Helbing, W.A.; Takkenberg, J.J.; Roos-Hesselink, J.W. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2011, 58, 2241–2247. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.; Ronemus, M.; Kline, J.; Jobanputra, V.; Williams, I.; Anyane-Yeboa, K.; Chung, W.; Yu, L.; Wong, N.; Awad, D.; et al. The contribution of de novo and rare inherited copy number changes to congenital heart disease in an unselected sample of children with conotruncal defects or hypoplastic left heart disease. Hum. Genet. 2014, 133, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.C.; Homsy, J.; Zaidi, S.; Lu, Q.; Morton, S.; DePalma, S.R.; Zeng, X.; Qi, H.; Chang, W.; Sierant, M.C.; et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 2017, 49, 1593–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homsy, J.; Zaidi, S.; Shen, Y.; Ware, J.S.; Samocha, K.E.; Karczewski, K.J.; Depalma, S.R.; Mckean, D.; Wakimoto, H.; Gorham, J.; et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science 2015, 350, 1262–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samánek, M. Boy:girl ratio in children born with different forms of cardiac malformation: A population-based study. Pediatr. Cardiol. 1997, 15, 53–57. [Google Scholar] [CrossRef]
- Bianca, S.; Ettore, G. Sex ratio imbalance in transposition of the great arteries and possible agricultural environmental risk factors. Images Paediatr. Cardiol. 2001, 3, 10–14. [Google Scholar] [PubMed]
- Poirsier, C.; Besseau-Ayasse, J.; Schluth-Bolard, C.; Toutain, J.; Missirian, C.; Le Caignec, C.; Bazin, A.; de Blois, M.C.; Kuentz, P.; Catty, M.; et al. A French multicenter study of over 700 patients with 22q11 deletions diagnosed using FISH or aCGH. Eur. J. Hum. Genet. 2016, 24, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Mlynarski, E.E.; Xie, M.; Taylor, D.; Sheridan, M.B.; Guo, T.; Racedo, S.E.; McDonald-McGinn, D.M.; Chow, E.W.C.; Vorstman, J.; Swillen, A.; et al. Rare copy number variants and congenital heart defects in the 22q11.2 deletion syndrome. Hum. Genet. 2016, 135, 273–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziolkowska, L.; Kawalec, W.; Turska-Kmiec, A.; Krajewska-Walasek, M.; Brzezinska-Rajszys, G.; Daszkowska, J.; Maruszewski, B.; Burczynski, P. Chromosome 22q11.2 microdeletion in children with conotruncal heart defects: Frequency, associated cardiovascular anomalies, and outcome following cardiac surgery. Eur. J. Pediatr. 2008, 167, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Goldmuntz, E.; Clark, B.J.; Mitchell, L.E.; Jawad, A.F.; Cuneo, B.F.; Reed, L.; McDonald-McGinn, D.; Chien, P.; Feuer, J.; Zackai, E.H.; et al. Frequency of 22q11 deletions in patients with conotruncal defects. J. Am. Coll. Cardiol. 1998, 32, 492–498. [Google Scholar] [CrossRef] [Green Version]
- Barisić, I.; Morozin Pohovski, L.; Petković, I.; Cvetko, Z.; Stipancić, G.; Bagatin, M. Screening of patients at risk for 22q11 deletion. Coll. Antropol. 2008, 32, 165–169. [Google Scholar] [PubMed]
- Zhang, X.; Xu, Y.; Liu, D.; Geng, J.; Chen, S.; Jiang, Z.; Fu, Q.; Sun, K. A modified multiplex ligation-dependent probe amplification method for the detection of 22q11.2 copy number variations in patients with congenital heart disease. BMC Genom. 2015, 16, 364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ma, D.; Wang, Y.; Cao, L.; Wu, Y.; Qiao, F.; Liu, A.; Li, L.; Lin, Y.; Liu, G.; et al. Analysis of chromosome 22q11 copy number variations by multiplex ligation-dependent probe amplification for prenatal diagnosis of congenital heart defect. Mol. Cytogenet. 2015, 8, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bretelle, F.; Beyer, L.; Pellissier, M.C.; Missirian, C.; Sigaudy, S.; Gamerre, M.; D’Ercole, C.; Philip, N. Prenatal and postnatal diagnosis of 22q11.2 deletion syndrome. Eur. J. Med. Genet. 2010, 53, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Botto, L.D.; May, K.; Fernhoff, P.M.; Correa, A.; Coleman, K.; Rasmussen, S.A.; Merritt, R.K.; O’Leary, L.A.; Wong, L.; Elixson, E.M.; et al. A population-based study of the 22q11.2 deletion: Phenotype, incidence, and contribution to major birth defects in the population. Pediatrics 2003, 112, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Momma, K. Cardiovascular anomalies associated with chromosome 22q11.2 deletion syndrome. Am. J. Cardiol. 2010, 105, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Melchionda, S.; Digilio, M.C.; Mingarelli, R.; Novelli, G.; Scambler, P.; Marino, B.; Dallapiccola, B. Transposition of the great arteries associated with deletion of chromosome 22q11. Am. J. Cardiol. 1995, 75, 95–98. [Google Scholar] [CrossRef]
- Marble, M.; Morava, E.; Lopez, R.; Pierce, M.; Pierce, R. Report of a new patient with transposition of the great arteries with deletion of 22q11.2. Am. J. Med. Genet. 1998, 78, 317–318. [Google Scholar] [CrossRef]
- Ryan, A.K.; Goodship, J.A.; Wilson, D.I.; Philip, N.; Levy, A.; Seidel, H.; Schuffenhauer, S.; Oechsler, H.; Belohradsky, B.; Prieur, M.; et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: A European collaborative study. J. Med. Genet. 1997, 34, 798–804. [Google Scholar] [CrossRef] [PubMed]
- McDonald-McGinn, D.M.; Sullivan, K.E.; Marino, B.; Philip, N.; Swillen, A.; Vorstman, J.A.S.; Zackai, E.H.; Emanuel, B.S.; Vermeesch, J.R.; Morrow, B.E.; et al. 22q11.2 deletion syndrome. Nat. Rev. Dis. Prim. 2015, 1, 15071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald-McGinn, D.M.; Tonnesen, M.K.; Laufer-Cahana, A.; Finucane, B.; Driscoll, D.A.; Emanuel, B.S.; Zackai, E.H. Phenotype of the 22q11.2 deletion in individuals identified through an affected relative: Cast a wide FISHing net! Genet. Med. 2001, 3, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, Z.; Berg, J.S.; Yonath, H.; Enciso, V.B.; Miller, D.T.; Picker, J.; Lenzi, T.; Keegan, C.E.; Sutton, V.R.; Belmont, J.; et al. Microduplications of 22q11.2 are frequently inherited and are associated with variable phenotypes. Genet. Med. 2008, 10, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, F.; Larsen, L.A.; Zhang, L.; Tümer, Z.; Tommerup, N.; Chen, W.; Jacobsen, J.R.; Schubert, M.; Jurkatis, J.; Tzschach, A.; et al. High frequency of submicroscopic genomic aberrations detected by tiling path array comparative genome hybridisation in patients with isolated congenital heart disease. J. Med. Genet. 2008, 45, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhu, X.; Yang, Y.; Mo, X.; Sheng, M.; Yao, J.; Wang, D. Incidences of micro-deletion/duplication 22q11.2 detected by multiplex ligation-dependent probe amplification in patients with congenital cardiac disease who are scheduled for cardiac surgery. Cardiol. Young 2009, 19, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-P.; Chang, T.-Y.; Guo, W.-Y.; Wu, P.-C.; Wang, L.-K.; Chern, S.-R.; Wu, P.-S.; Su, J.-W.; Chen, Y.-T.; Chen, L.-F.; et al. Chromosome 17p13.3 deletion syndrome: aCGH characterization, prenatal findings and diagnosis, and literature review. Gene 2013, 532, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Barros Fontes, M.I.; Dos Santos, A.P.; Rossi Torres, F.; Lopes-Cendes, I.; Cendes, F.; Appenzeller, S.; Kawasaki De Araujo, T.; Lopes Monlleó, I.; Gil-Da-Silva-Lopes, V.L. 17p13.3 microdeletion: Insights on genotype-phenotype correlation. Mol. Syndromol. 2017, 8, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Strehle, E.-M.; Yu, L.; Rosenfeld, J.A.; Donkervoort, S.; Zhou, Y.; Chen, T.-J.; Martinez, J.E.; Fan, Y.-S.; Barbouth, D.; Zhu, H.; et al. Genotype-phenotype analysis of 4q deletion syndrome: Proposal of a critical region. Am. J. Med. Genet. Part A 2012, 158A, 2139–2151. [Google Scholar] [CrossRef] [PubMed]
- Molck, M.C.; Simioni, M.; Paiva Vieira, T.; Sgardioli, I.C.; Paoli Monteiro, F.; Souza, J.; Fett-Conte, A.C.; Félix, T.M.; Lopes Monlléo, I.; Gil-da-Silva-Lopes, V.L. Genomic imbalances in syndromic congenital heart disease. J. Pediatr. 2017, 93, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Paylor, R.; Glaser, B.; Mupo, A.; Ataliotis, P.; Spencer, C.; Sobotka, A.; Sparks, C.; Choi, C.-H.; Oghalai, J.; Curran, S.; et al. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: Implications for 22q11 deletion syndrome. Proc. Natl. Acad. Sci. USA 2006, 103, 7729–7734. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yang, Y.-S.; Shih, J.-C.; Lin, W.-H.; Lee, D.-J.; Lin, Y.-S.; Chou, C.-H.; Cameron, A.D.; Ginsberg, N.A.; Chen, C.-A.; et al. Microdeletions/duplications involving TBX1 gene in fetuses with conotruncal heart defects which are negative for 22q11.2 deletion on fluorescence in-situ hybridization. Ultrasound Obstet. Gynecol. 2014, 43, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Griffin, H.R.; Töpf, A.; Glen, E.; Zweier, C.; Stuart, A.G.; Parsons, J.; Peart, I.; Deanfield, J.; O’Sullivan, J.; Rauch, A.; et al. Systematic survey of variants in TBX1 in non-syndromic tetralogy of Fallot identifies a novel 57 base pair deletion that reduces transcriptional activity but finds no evidence for association with common variants. Heart 2010, 96, 1651–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.-J.; Chen, S.; Zhang, J.; Fang, S.-H.; Guo, Q.-Q.; Wang, J.; Fu, Q.-H.; Li, F.; Xu, R.; Sun, K. Novel TBX1 loss-of-function mutation causes isolated conotruncal heart defects in Chinese patients without 22q11.2 deletion. BMC Med. Genet. 2014, 15, 78. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, Z.-G.; Liu, X.-Y.; Zhao, H.; Zhou, N.; Zheng, G.-F.; Qiu, X.-B.; Li, R.-G.; Yuan, F.; Shi, H.-Y.; et al. A novel TBX1 loss-of-function mutation associated with congenital heart disease. Pediatr. Cardiol. 2015, 36, 1400–1410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, F.-X.; Liu, X.-Y.; Hou, J.-Y.; Ni, S.-H.; Wang, J.; Zhao, C.-M.; Zhang, W.; Kong, Y.; Huang, R.-T.; et al. TBX1 loss-of-function mutation contributes to congenital conotruncal defects. Exp. Ther. Med. 2018, 15, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Jerome, L.A.; Papaioannou, V.E. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat. Genet. 2001, 27, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, E.A.; Vitelli, F.; Su, H.; Morishima, M.; Huynh, T.; Pramparo, T.; Jurecic, V.; Ogunrinu, G.; Sutherland, H.F.; Scambler, P.J.; et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001, 410, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Merscher, S.; Funke, B.; Epstein, J.A.; Heyer, J.; Puech, A.; Lu, M.M.; Xavier, R.J.; Demay, M.B.; Russell, R.G.; Factor, S.; et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 2001, 104, 619–629. [Google Scholar] [CrossRef]
- Harada, N.; Visser, R.; Dawson, A.; Fukamachi, M.; Iwakoshi, M.; Okamoto, N.; Kishino, T.; Niikawa, N.; Matsumoto, N. A 1-Mb critical region in six patients with 9q34.3 terminal deletion syndrome. J. Hum. Genet. 2004, 49, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, Y.; Wang, J.; Yang, J.-F.; Yang, Y.-F.; Tan, Z.-P. 576 kb deletion in 1p36.33-p36.32 containing SKI is associated with limb malformation, congenital heart disease and epilepsy. Gene 2013, 528, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, F.; Ullmann, R.; Chen, W.; Schubert, M.; Adolph, S.; Hultschig, C.; Kalscheuer, V.; Ropers, H.-H.; Spaich, C.; Tzschach, A. Characterization of a 5.3 Mb deletion in 15q14 by comparative genomic hybridization using a whole genome “tiling path” BAC array in a girl with heart defect, cleft palate, and developmental delay. Am. J. Med. Genet. A 2007, 143A, 172–178. [Google Scholar] [CrossRef] [PubMed]
CCHD | n | Gender | Presence of Other CHD | Presence of Extracardiac MA | |||
---|---|---|---|---|---|---|---|
F | M | Simple | Complex | Isolated | Associated | ||
TOF | 86 | 36 | 50 | 84 | 2 | 69 | 17 |
PTA | 12 | 5 | 7 | 8 | 4 | 7 | 5 |
TGV | 44 | 15 | 29 | 21 | 23 | 40 | 4 |
IAA | 27 | 10 | 17 | 20 | 7 | 16 | 11 |
PA + VSD | 48 | 21 | 26 | 35 | 13 | 30 | 18 |
DORV | 10 | 4 | 6 | 2 | 8 | 6 | 4 |
sVSD | 8 | 5 | 3 | 5 | 3 | 6 | 2 |
Subject ID | Gender | Cytoband | Chromosome Region (hg18) | Event | Probes | OMIM Genes |
---|---|---|---|---|---|---|
57 | M | 17p13.3 | Chr17:169259-1211325 | Del | 4 | VPS53 GEMIN4 BHLHA9 YWHAE |
58 | M | 17p13.3 | Chr17:1211255-1211325 | Del | 1 | YWHAE |
59 | M | 17p13.3 | Chr17:1211255-1211325 | Dup | 1 | YWHAE |
60 | M | 17p13.3 | Chr17:596607-596671 | Dup | 1 | GEMIN4 |
61 | M | 17p13.3 | Chr17:596607-596671 | Dup | 1 | GEMIN4 |
62 | M | 8p23 | Chr8:11653542-11653609 | Dup | 1 | GATA4 |
63 | M | 9q34.3 | Chr9:139731001-139731062 | Dup | 1 | EHMT1 b |
64 | F | 01p36.33 | Chr1:1137299-1137363 | Dup | 1 | TNFRSF4 |
65 | M | 02q22.3 | Chr2:148401174-148401249 | Dup | 1 | ACVR2A |
66 | M | 15q14 | Chr15:32872975-32873043 | Dup | 1 | ACTC1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delea, M.; Espeche, L.D.; Bruque, C.D.; Bidondo, M.P.; Massara, L.S.; Oliveri, J.; Brun, P.; Cosentino, V.R.; Martinoli, C.; Tolaba, N.; et al. Genetic Imbalances in Argentinean Patients with Congenital Conotruncal Heart Defects. Genes 2018, 9, 454. https://doi.org/10.3390/genes9090454
Delea M, Espeche LD, Bruque CD, Bidondo MP, Massara LS, Oliveri J, Brun P, Cosentino VR, Martinoli C, Tolaba N, et al. Genetic Imbalances in Argentinean Patients with Congenital Conotruncal Heart Defects. Genes. 2018; 9(9):454. https://doi.org/10.3390/genes9090454
Chicago/Turabian StyleDelea, Marisol, Lucía D. Espeche, Carlos D. Bruque, María Paz Bidondo, Lucía S. Massara, Jaen Oliveri, Paloma Brun, Viviana R. Cosentino, Celeste Martinoli, Norma Tolaba, and et al. 2018. "Genetic Imbalances in Argentinean Patients with Congenital Conotruncal Heart Defects" Genes 9, no. 9: 454. https://doi.org/10.3390/genes9090454
APA StyleDelea, M., Espeche, L. D., Bruque, C. D., Bidondo, M. P., Massara, L. S., Oliveri, J., Brun, P., Cosentino, V. R., Martinoli, C., Tolaba, N., Picon, C., Ponce Zaldua, M. E., Ávila, S., Gutnisky, V., Perez, M., Furforo, L., Buzzalino, N. D., Liascovich, R., Groisman, B., ... Dain, L. (2018). Genetic Imbalances in Argentinean Patients with Congenital Conotruncal Heart Defects. Genes, 9(9), 454. https://doi.org/10.3390/genes9090454