Casting Octahedra for Reproducible Multi-Anvil Experiments by 3D-Printed Molds
Abstract
:1. Introduction
2. Experimental Methods
2.1. D-Printed Molds for Casting Octahedra
2.2. Casting Octahedra from Aremco Ceramacast Cement
2.3. Pressure Calibrations
3. Results and Discussion
3.1. Reproducible Octahedral Pressure Media for Multi-Anvil Experiments
3.2. Room-Temperature Pressure-Load Calibration of the Cell Assemblies
3.3. High-Temperature Calibration of the 646-18/12 Assembly
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kawai, N.; Endo, S. The generation of ultrahigh pressures by a split sphere apparatus. Rev. Sci. Instrum. 1970, 41, 1178–1181. [Google Scholar] [CrossRef]
- Liebermann, R.C. Multi-anvil, high pressure apparatus: A half-century of development and progress. High Pressure Res. 2011, 31, 493–532. [Google Scholar] [CrossRef]
- Walker, D. Some simplifications to multianvil devices for high pressure experiments. Am. Mineral. 1990, 75, 1020–1028. [Google Scholar]
- Frost, D.J.; Poe, B.T.; Trønnes, R.G.; Liebske, C.; Duba, A.; Rubie, D.C. A new large-volume multianvil system. Phys. Earth Planet. Ineriors 2004, 143, 507–514. [Google Scholar] [CrossRef]
- Irifune, T.; Kurio, A.; Sakamoto, S.; Inoue, T.; Sumiya, H. Ultrahard polycrystalline diamond from graphite. Nature 2003, 421, 599–600. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, E.; Kagawa, N.; Shimomura, O.; Togaya, M.; Suito, K.; Onodera, A.; Sawamoto, H.; Yoneda, M.; Tanaka, S.; Utsumi, W.; et al. High-pressure generation by a multiple anvil system with sintered diamond anvils. Rev. Sci. Instrum. 1989, 60, 922. [Google Scholar] [CrossRef]
- Ito, E.; Katsura, T.; Aizawa, Y.; Kawabe, K.; Yokoshi, S.; Nozawa, A.; Funakoshi, K. High-pressure generation in the Kawai-type apparatus equipped with sintered diamond anvils: Application to wurtzite-rocksalt transformation in GaN. In Advances in High-Pressure Technology for Geophysical Applications; Elsevier: Amsterdam, The Netherlands, 2005; pp. 451–460. [Google Scholar]
- Ito, E.; Yamazaki, D.; Yoshino, T.; Fukui, H.; Zhai, S.M.; Shatzkiy, A.; Katsura, T.; Tange, Y.; Funakoshi, K. Pressure generation and investigation of the post-perovskite transformation in MgGeO3 by squeezing the Kawai-cell equipped with sintered diamond anvils. Earth Planet. Sci. Lett. 2010, 293, 84–89. [Google Scholar]
- Irifune, T.; Kunimoto, T.; Shinmei, T.; Tange, Y. High pressure generation in Kawai-type multianvil apparatus using nano-polycrystalline diamond anvils, C.R. Geoscience 2019, 351, 260–268. [Google Scholar] [CrossRef]
- Kunimoto, T.; Irifune, T. Pressure generation to 125 GPa using a 6-8-2 type multianvil apparatus with nano-polycrystalline diamond anvils. J. Phys. Conf. Ser. 2010, 215, 012190. [Google Scholar] [CrossRef]
- Leinenweber, K.; Mosebfelder, J.; Diedrich, T.; Soignanrd, E.; Sharp, T.G.; Tyburczy, J.A.; Wang, Y. High-pressure cells for in situ mutli-anvil experiments. High Pressure Res. 2006, 26, 283–292. [Google Scholar] [CrossRef]
- Leinenweber, K.D.; Tyburczy, J.A.; Sharp, T.G.; Soignard, E.; Diedrich, T.; Petuskey, W.B.; Wang, Y.; Mosenfelder, J.L. Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies). Am. Mineral. 2012, 97, 353–368. [Google Scholar] [CrossRef]
- Walker, D. Lubrication, gasketing, and precision in multianvil experiments. Am. Mineral. 1991, 76, 1092–1100. [Google Scholar]
- Casas, L.; Estop, E. Virtual and printed 3D models for teaching crystal symmetry and point groups. J. Chem. Educ. 2015, 92, 1338–1343. [Google Scholar] [CrossRef]
- Casas, L. 3D-printing aids in visualizing the optical properties of crystals. J. Appl. Cryst. 2018, 51, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Luffman, I.; Nandi, A.; Luffman, B. Comparison of geometric and volumetric methods to a 3D solid model for measurement of Gully erosion and sediment yield. Geosciences 2018, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Knibble, J.S.; Luginbühl, S.M.; Stoevelarr, R.; van der Plas, W.; van Harlingen, D.M.; Rai, N.; Steenstra, E.S.; van de Geer, R.; van Westrenen, W. Calibration of a multi-anvil high-pressure apparatus to simulate planetary interior conditions. EPJ Tech. Instrum. 2018, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Bose, K.; Ganguly, J. Quartz-coesite transition revisited: Reversed experimental determination at 500–1200 °C and retrieved thermochemical properties. Am. Mineral. 1995, 80, 231–238. [Google Scholar] [CrossRef]
- Decker, D.L.; Bassett, L.; Merrill, H.T.; Hall, H.T.; Barnett, J.D. High-pressure calibration: A critical review. J. Phys. Chem. Ref. Data 1972, 1, 773. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.; Li, J. Castable solid pressure media for multi-anvil devices. Matter Radiat. Extrem. 2019. [Google Scholar] [CrossRef] [Green Version]
OEL (mm) | Powder (g) | Activator (g) | P/A | W (g) | L (mm) | DH (mm) | WG (mm) | HG (mm) |
---|---|---|---|---|---|---|---|---|
with fins | ||||||||
10 | 3.5 | 1.5 | 2.33 | 2.25 (0.07) | 9.88 (0.21) | 4.37 | 2.4 (0.14) | 2.47 (0.04) |
14 | 5.5 | 2.5 | 2.2 | 4.31 (0.16) | 14.12 (0.23) | 4.80 | 2.68 (0.06) | 2.85 (0.05) |
18 | 8.5 | 3.9 | 2.2 | 9.22 (0.10) | 17.98 (0.25) | 6.75 | 2.50 (0.04) | 2.86 (0.05) |
without fins or finless 2 | ||||||||
10 | 7 | 3.5 | 2 | 0.70 (0.02) | 9.97 (0.16) | 4.40 | 4.66 | 2.22 |
14 | 15 | 7.5 | 2 | 1.96 (0.03) | 13.67 (0.07) | 5.60 | 4.47 | 2.82 |
COMPRES octahedra without fins 3 | ||||||||
10 | - | 1.01 (0.01) | 10.02 (0.04) | 4.40 | 4.50 | 2.36 | ||
14 | - | 2.79 (0.01) | 13.57 (0.08) | 5.60 | 4.50 | 2.83 |
Run Number | Load (ton) | Temperature (°C) | Resultant Phases * |
---|---|---|---|
PL133 | 241 | 1000 | Quartz |
PL134 | 286 | 1000 | Coesite |
PL136 | 268 | 1000 | Coesite + quartz (minor) |
PL137 | 251 | 1000 | Quartz |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Li, H.; Lai, X.; Zhu, F.; Rapp, R.P.; Chen, B. Casting Octahedra for Reproducible Multi-Anvil Experiments by 3D-Printed Molds. Minerals 2020, 10, 4. https://doi.org/10.3390/min10010004
Liu Y, Li H, Lai X, Zhu F, Rapp RP, Chen B. Casting Octahedra for Reproducible Multi-Anvil Experiments by 3D-Printed Molds. Minerals. 2020; 10(1):4. https://doi.org/10.3390/min10010004
Chicago/Turabian StyleLiu, Yingxin, Haijian Li, Xiaojing Lai, Feng Zhu, Robert P. Rapp, and Bin Chen. 2020. "Casting Octahedra for Reproducible Multi-Anvil Experiments by 3D-Printed Molds" Minerals 10, no. 1: 4. https://doi.org/10.3390/min10010004
APA StyleLiu, Y., Li, H., Lai, X., Zhu, F., Rapp, R. P., & Chen, B. (2020). Casting Octahedra for Reproducible Multi-Anvil Experiments by 3D-Printed Molds. Minerals, 10(1), 4. https://doi.org/10.3390/min10010004