Synthesis of Zn-Saponite Using a Microwave Circulating Reflux Method under Atmospheric Pressure
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Crystalinity and Phase Purity
3.2. Cation Exchange Capacity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bergaya, F.; Lagaly, G. General introduction: Clays, clay minerals, and clay science. In Developments in Clay Science; Faïza, B., Benny, K.G.T., Gerhard, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–18. [Google Scholar]
- Vaccari, A. Clays and catalysis: A promising future. Appl. Clay Sci. 1999, 14, 161–198. [Google Scholar] [CrossRef]
- Thomas, J.M.; Theocharis, C.R. Perspectives in Catalysis; Blackwell Scientific: London, UK, 1992; 431p. [Google Scholar]
- Lambert, J.-F.; Chevelier, S.; Frank, R.; Barthomeuf, D. Al-Pillared saponites. Part 2.-NMR studies. J. Chem. Soc. Faraday Trans. 1994, 90, 675–682. [Google Scholar] [CrossRef]
- Golubeva, O.Y.; Gusarov, V.V. Layered silicates with a montmorillonite structure: Preparation and prospects for the use in polymer nanocomposites. Glass Phys. Chem. 2007, 33, 237–241. [Google Scholar] [CrossRef]
- Whitney, G. Hydrothermal reactivity of saponite. Clays Clay Miner. 1983, 31, 1–8. [Google Scholar] [CrossRef]
- Bisio, C.; Gatti, G.; Boccaleri, E.; Marchese, L.; Superti, G.B.; Pastore, H.O.; Thommes, M. Understanding physico-chemical properties of saponite synthetic clays. Microporous Mesoporous Mater. 2008, 107, 90–101. [Google Scholar] [CrossRef]
- Costenaro, D.; Gatti, G.; Carniato, F.; Paul, G.; Bisio, C.; Marchese, L. The effect of synthesis gel dilution on the physico-chemical properties of acid saponite clays. Microporous Mesoporous Mater. 2012, 162, 159–167. [Google Scholar] [CrossRef]
- Vicente, I.; Salagre, P.; Cesteros, Y. Preparation of pure hectorite using microwaves. Phys. Procedia. 2010, 8, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Trujillano, R.; Rico, E.; Vicente, M.A.; Rives, V.; Sobrados, I.; Sanz, J. Saponites containing divalent transition metal cations in octahedral positions—Exploration of synthesis possibilities using microwave radiation and NMR characterization. Appl. Clay Sci. 2015, 115, 24–29. [Google Scholar] [CrossRef]
- Baron, F.; SC Pushparaj, S.; Fontaine, C.; V Sivaiah, M.; Decarreau, A.; Petit, S. Microwave-assisted hydrothermal synthesis of Ni–Mg layered silicate clays. Curr. Miccowave Chem. 2016, 3, 85–89. [Google Scholar] [CrossRef]
- Trujillano, R.; Rico, E.; Vicente, M.A.; Rives, V.; Bergaoui, L.; Ben Chaabene, S.; Ghorbel, A. Microwave-Assisted Synthesis of Fe3+ Saponites. Characterization by X-Ray Diffraction and FT-IR Spectroscopy. Rev. Soc. Esp. Miner. 2009, 11, 189–190. [Google Scholar]
- Trujillano, R.; Rico, E.; Vicente, M.A.; Herrero, M.; Rives, V. Microwave radiation and mechanical grinding as new ways for preparation of saponite-like materials. Appl. Clay Sci. 2010, 48, 32–38. [Google Scholar] [CrossRef]
- Trujillano, R.; Rico, E.; Vicente, M.A.; Rives, V.; Ciuffi, K.J.; Cestari, A.; Gil, A.; Korili, S.A. Rapid microwave-assisted synthesis of saponites and their use as oxidation catalysts. Appl. Clay Sci. 2011, 53, 326–330. [Google Scholar] [CrossRef]
- Vicente, I.; Salagre, P.; Cesteros, Y.; Guirado, F.; Medina, F.; Sueiras, J.E. Fast microwave synthesis of hectorite. Appl. Clay Sci. 2009, 43, 103–107. [Google Scholar] [CrossRef]
- Vicente, I.; Salagre, P.; Cesteros, Y.; Medina, F.; Sueiras, J.E. Microwave-assisted synthesis of saponite. Appl. Clay Sci. 2010, 48, 26–31. [Google Scholar] [CrossRef]
- Vogels, R.J.M.J.; Kerkhoffs, M.J.H.V.; Geus, J.W. Non-hydrothermal synthesis, characterisation and catalytic properties of saponite clays. Stud. Surf. Sci. Catal. 1995, 91, 1153–1161. [Google Scholar]
- Kloprogge, J.T.; Komarneni, S.; Amonette, J.E. Synthesis of smectite clay minerals: A critical review. Clays Clay Miner. 1999, 47, 529–544. [Google Scholar] [CrossRef]
- Prikhod’ko, R.V.; Sychev, M.V.; Astrelin, I.M.; Erdmann, K.; Hensen, E.J.M.; Van Santen, R.A. Nonhydrothermal synthesis and properties of saponite-like materials. Russ. J. Appl. Chem. 2003, 76, 700–705. [Google Scholar] [CrossRef]
- Vogels, R.J.M.J.; Kloprogge, J.T.; Geus, J.W. Synthesis and characterization of saponite clays. Am. Miner. 2005, 90, 931–944. [Google Scholar] [CrossRef]
- Zhang, C.; He, H.; Tao, Q.; Ji, S.; Li, S.; Ma, L.; Zhu, J. Metal occupancy and its influence on thermal stability of synthetic saponites. Appl. Clay Sci. 2017, 135, 282–288. [Google Scholar] [CrossRef]
- Petit, S.; Righi, D.; Decarreau, A. Transformation of synthetic Zn-stevensite to Zn-talc induced by the Hofmann-Klemen effect. Clays Clay Miner. 2008, 56, 645–654. [Google Scholar] [CrossRef]
- Yu, B.S.; Liu, Y.Y. Improvement in phase purity and yield of hydrothermally synthesized smectite using Taguchi method. Appl. Clay Sci. 2018, 161, 103–109. [Google Scholar] [CrossRef]
- Bergmann, J.; Friedel, P.; Kleeberg, R. BGMN—A new fundamental parameter based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations. CPD Newsl. 1998, 20, 5–8. [Google Scholar]
- Bergaya, F.; Vayer, M. CEC of clays: Measurement by adsorption of a copper ethylenediamine complex. Appl. Clay Sci. 1997, 12, 275–280. [Google Scholar] [CrossRef]
- Grauby, O.; Petit, S.; Decarreau, A.; Baronnet, A. The beidellite–saponite series: An experimental approach. Eur. J. Miner. 1993, 5, 623–635. [Google Scholar] [CrossRef]
- Pascua, C.S.; Ohnuma, M.; Matsushita, Y.; Tamura, K.; Yamada, H.; Cuadros, J.; Ye, J. Synthesis of monodisperse Zn-smectite. Appl. Clay Sci. 2010, 48, 55–59. [Google Scholar] [CrossRef]
- Girnus, I.; Jancke, K.; Vetter, R.; Richter-Mendau, J.; Caro, J. Large AlPO4-5 crystals by microwave heating. Zeolites 1995, 15, 33–39. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Zhang, J.X.; Zhou, H.F.; Qin, W.Q.; Chai, L.Y.; Hu, Y.H. Microwave-assisted synthesis and characterization of ZnO-nanorod arrays. Trans. Nonferrous Met. Soc. China 2009, 19, 1578–1582. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, S.; Zhang, M.; Lin, Y. Antibacterial activity of silver-loaded zeolite A prepared by a fast microwave-loading method. J. Mater. Sci. 2009, 44, 457–462. [Google Scholar] [CrossRef]
- Fan, D.; Wang, L.; Chen, W.; Ma, S.; Ma, W.; Liu, X.; Zhao, J.; Zhang, H. Effect of microwave on lamellar parameters of rice starch through small-angle X-ray scattering. Food Hydrocoll. 2014, 35, 620–626. [Google Scholar] [CrossRef]
- Murray, H.H.; Lyons, S.C. Further correlations of kaolinite crystallinity with chemical and physical properties. Clays Clay Miner. 1960, 8, 11–17. [Google Scholar] [CrossRef]
- Ormsby, W.C.; Shartsis, J.M.; Woodside, K.H. Exchange behavior of kaolins of varying degrees of crystallinity. J. Am. Ceram. Soc. 1962, 45, 361–366. [Google Scholar] [CrossRef]
- Peigneur, P.; Maes, A.; Cremers, A. Heterogeneity of charge density distribution in montmorillonite as inferred from cobalt adsorption. Clays Clay Miner. 1975, 23, 71–75. [Google Scholar] [CrossRef]
- Siantar, D.P.; Millman, W.S. Structural defects and cation exchange capacity in dealuminated Y zeolites. Zeolites 1995, 15, 556–560. [Google Scholar] [CrossRef]
Sample Number | Phase Purity (%) | Basal Spacing (nm) | d060 (nm) |
---|---|---|---|
Hot-plate-24 | 97.3 | 1.298 ± 0.003 | 0.1539 ± 0.0004 |
Microwave-24 | 45.0 | 1.325 ± 0.003 | 0.1539 ± 0.0004 |
Microwave-24-0.5E | 50.2 | 1.303 ± 0.003 | 0.1538 ± 0.0004 |
Microwave-24-0.5V | 43.9 | 1.383 ± 0.003 | 0.1539 ± 0.0004 |
Sample Number | Reaction Time (h) | CEC (cmol(+)/kg) |
---|---|---|
Hot-plate-16 | 16 | 84 |
Hot-plate-24 | 24 | 91 |
Microwave-16 | 16 | 96 |
Microwave-24 | 24 | 105 |
Microwave-24-0.5E | 24 | 112 |
Microwave-24-0.5V | 24 | 120 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.-S.; Hung, W.-H.; Fang, J.-N.; Yu, Y.-T. Synthesis of Zn-Saponite Using a Microwave Circulating Reflux Method under Atmospheric Pressure. Minerals 2020, 10, 45. https://doi.org/10.3390/min10010045
Yu B-S, Hung W-H, Fang J-N, Yu Y-T. Synthesis of Zn-Saponite Using a Microwave Circulating Reflux Method under Atmospheric Pressure. Minerals. 2020; 10(1):45. https://doi.org/10.3390/min10010045
Chicago/Turabian StyleYu, Bing-Sheng, Wei-Hsiang Hung, Jiann-Neng Fang, and Yu-Ting Yu. 2020. "Synthesis of Zn-Saponite Using a Microwave Circulating Reflux Method under Atmospheric Pressure" Minerals 10, no. 1: 45. https://doi.org/10.3390/min10010045
APA StyleYu, B. -S., Hung, W. -H., Fang, J. -N., & Yu, Y. -T. (2020). Synthesis of Zn-Saponite Using a Microwave Circulating Reflux Method under Atmospheric Pressure. Minerals, 10(1), 45. https://doi.org/10.3390/min10010045