Bioleaching of Iron, Copper, Lead, and Zinc from the Sludge Mining Sediment at Different Particle Sizes, pH, and Pulp Density Using Acidithiobacillus ferrooxidans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ore Samples
2.2. Microorganism and Preparation of Media
2.3. Chemical Leaching
2.4. Bioleaching Experiments
2.4.1. Particle Size Experiments
2.4.2. pH Experiments
2.4.3. Pulp Density Experiments
2.4.4. Solid and Liquid Sampling
2.4.5. Chemical Analysis
3. Results and Discussion
3.1. Interaction of Sample, Medium and Microorganisms
3.2. Chemical Leaching
3.3. Influence of Particle Sizes on Metal Extraction Efficiency
3.3.1. Iron
3.3.2. Copper
3.3.3. Zinc
3.3.4. Lead
3.4. Influence of pH Value on Metal Extraction Efficiency
3.5. Influence of Pulp Density in Pilot Plant Conditions
3.5.1. Bioleaching of Iron and Zinc
3.5.2. Bioleaching of Copper and Lead
3.6. Processing of the Pregnant Leach Solution
4. Conclusions
- There is great potential for recovery of Fe, Zn, Cu, and Pb from mining wastes by biological leaching (hydrometallurgical).
- High extraction efficiencies of heavy metals were achieved by leaching Acidithiobacillus ferrooxidans bacteria under laboratory and pilot conditions.
- Chemical extraction with sulfuric acid was achieved lower metal yields than biological leaching, which integrates the principle of microbial dissolution and acid oxidation.
- Particle size, pH, and pulp density significantly influenced metal recovery efficiencies.
- The optimal parameters for the bioleaching of polymetallic waste were pH 1.8, particle size 71–100 µm, extraction time 35 days, and orbital direction of agitation.
- It was found that increasing the pulp density reduced the amount of regenerated metals.
- Bacterial leaching under optimized conditions could be applicable to waste materials with similar total elemental chemistry.
- The main benefits of the proposed methodology are the reduction of sludge sediment weight, metal recovery, and partial removal of permanently stored mining waste, which is a local environmental risk due to the high concentration of heavy metals.
- The practical disadvantage of the method is the low kinetics of the process.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Conić, V.T.; Rajčić Vujasinović, M.M.; Trujić, V.K.; Cvetkovski, V.B. Copper, zinc, and iron bioleaching from polymetallic sulphide concentrate. Trans. Nonferrous Met. Soc. China 2014, 24, 3688–3695. [Google Scholar] [CrossRef]
- Akcil, A. Potential bioleaching developments towards commercial reality: Turkish metal mining’s future. Miner. Eng. 2004, 17, 477–480. [Google Scholar] [CrossRef]
- Guezennec, A.-G.; Bru, K.; Jacob, J.; d’Hugues, P. Co-processing of sulfidic mining wastes and metal-rich post-consumer wastes by biohydrometallurgy. Miner. Eng. 2015, 75, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Valdés, J.; Pedroso, I.; Quatrini, R.; Dodson, R.J.; Tettelin, H.; Blake, R.; Eisen, J.A.; Holmes, D.S. Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications. BMC Genom. 2008, 9, 597. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.; Kim, D.J.; Ralph, D.E.; Ahn, J.G.; Rhee, Y.H. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. J. Hazard. Mater. 2008, 152, 1082–1091. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.-B.; Zhuang, T.; Qin, W.-Q.; Zhu, S.; Qiu, G.-Z. Bioleaching of Pb–Zn–Sn chalcopyrite concentrate in tank bioreactor and microbial community succession analysis. Trans. Nonferrous Met. Soc. China 2013, 23, 3758–3762. [Google Scholar] [CrossRef]
- Giaveno, A.; Lavalle, L.; Chiacchiarini, P.; Donati, E. Bioleaching of zinc from low-grade complex sulfide ores in an airlift by isolated Leptospirillum ferrooxidans. Hydrometallurgy 2007, 89, 117–126. [Google Scholar] [CrossRef]
- Olubambi, P.A.; Ndlovu, S.; Potgieter, J.H.; Borode, J.O. Effects of ore mineralogy on the microbial leaching of low grade complex sulphide ores. Hydrometallurgy 2007, 86, 96–104. [Google Scholar] [CrossRef]
- Amiri, F.; Mousavi, S.M.; Yaghmaei, S. Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum. Sep. Purif. Technol. 2011, 80, 566–576. [Google Scholar] [CrossRef]
- Olubambi, P.A.; Ndlovu, S.; Potgieter, J.H.; Borode, J.O. Role of ore mineralogy in optimizing conditions for bioleaching low-grade complex sulphide ores. Trans. Nonferrous Met. Soc. China 2008, 18, 1234–1246. [Google Scholar] [CrossRef]
- Deveci, H.; Akcil, A.; Alp, I. Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: Comparative importance of pH and iron. Hydrometallurgy 2004, 73, 293–303. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Lin, J.-G. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: Effects of sulfur concentration. Water Res. 2004, 38, 3205–3214. [Google Scholar] [CrossRef] [PubMed]
- Deveci, H. Effect of particle size and shape of solids on the viability of acidophilic bacteria during mixing in stirred tank reactors. Hydrometallurgy 2004, 71, 385–396. [Google Scholar] [CrossRef]
- Nemati, M.; Lowenadler, J.; Harrison, S.T.L. Particle size effects in bioleaching of pyrite by acidophilic thermophile Sulfolobus metallicus (BC). Appl. Microbiol. Biotechnol. 2000, 53, 173–179. [Google Scholar] [CrossRef]
- Bosecker, K. Bioleaching: Metal solubilization by microorganisms. FEMS Microbiol. Rev. 1997, 20, 591–604. [Google Scholar] [CrossRef]
- Amaro, A.M.; Chamorro, D.; Seeger, M.; Arredondo, R.; Peirano, I.; Jerez, C.A. Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans. J. Bacteriol. 1991, 173, 910–915. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Yan, L.; Wu, Z.; Xu, R.; Li, S.; Wang, N.; Liang, N.; Li, H. Draft genome sequence of extremely acidophilic bacterium Acidithiobacillus ferrooxidans DLC-5 isolated from acid mine drainage in Northeast China. Genom. Data 2015, 6, 267–268. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yan, L.; Xing, W.; Chen, P.; Zhang, Y.; Wang, W. Acidithiobacillus ferrooxidans and its potential application. Extremophiles 2018, 22, 563–579. [Google Scholar] [CrossRef]
- Mikoda, B.; Potysz, A.; Kmiecik, E. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans. J. Environ. Manag. 2019, 236, 436–445. [Google Scholar] [CrossRef]
- Ye, M.; Yan, P.; Sun, S.; Han, D.; Xiao, X.; Zheng, L.; Huang, S.; Chen, Y.; Zhuang, S. Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process. Chemosphere 2017, 168, 1115–1125. [Google Scholar] [CrossRef]
- Ahmadi, S.; Vafaie Sefti, M.; Shadman, M.M.; Azimi Dijvejin, Z.; Hosseini, H. The optimization of Cu and Fe bioleaching from converter slag using Acidithiobacilus ferrooxidans. J. Adv. Environ. Health Res. 2017, 5. [Google Scholar] [CrossRef]
- Qiu, M.; Wang, G.; Zhang, W.; Xiong, S. Optimizing conditions for bacterial leaching of copper from discarded mines. J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. 2006, 13, 108–111. [Google Scholar] [CrossRef]
- Kocadagistan, M.E.; Bayhan, Y.K.; Çakici, A. Fe Extraction from Çayeli Copper Ores by Bioleaching with Eco Freiendly Acidithiobacillus ferrooxidans. J. Chem. Soc. Pak. 2017, 39, 13. [Google Scholar]
- Gerayeli, F.; Ghojavand, F.; Mousavi, S.M.; Yaghmaei, S.; Amiri, F. Screening and optimization of effective parameters in biological extraction of heavy metals from refinery spent catalysts using a thermophilic bacterium. Sep. Purif. Technol. 2013, 118, 151–161. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Lin, J.-G. Enhancement of metal bioleaching from contaminated sediment using silver ion. J. Hazard. Mater. 2009, 161, 893–899. [Google Scholar] [CrossRef]
- Schippers, A.; Breuker, A.; Blazejak, A.; Bosecker, K.; Kock, D.; Wright, T.L. The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy 2010, 104, 342–350. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Q.; Wang, Q.; Wu, T. Heavy metals extraction from municipal solid waste incineration fly ash using adapted metal tolerant Aspergillus niger. Bioresour. Technol. 2009, 100, 254–260. [Google Scholar] [CrossRef]
- Akcil, A.; Ciftci, H.; Deveci, H. Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Miner. Eng. 2007, 20, 310–318. [Google Scholar] [CrossRef]
- Úvod|DIAMO, State Enterprise. Available online: https://www.diamo.cz/en (accessed on 14 October 2020).
- Silverman’, M.P.; Lundgren, D.G. Studies on the chemoautotrophic iron bacterium ferrobacillus ferrooxidans i. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol. 1959, 77, 642–647. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.K.; Lee, M.H.; Park, H.J.; Lee, J.-U. Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp. J. Ind. Eng. Chem. 2015, 21, 451–458. [Google Scholar] [CrossRef]
- Rohwerder, T.; Gehrke, T.; Kinzler, K.; Sand, W. Bioleaching review part A: Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 2003, 63, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Lottermoser, B.G. Mine Wastes: Characterization, Treatment and Environmental Impacts, 3rd ed.; Springer: New York, NY, USA, 2010; ISBN 978-3-642-12418-1. [Google Scholar]
- Guler, E. Pressure acid leaching of sphalerite concentrate. Modeling and optimization by response surface methodology. Physicochem. Probl. Miner. Process. 2016, 52, 479–496. [Google Scholar] [CrossRef]
- Bogdanović, G.; Stanković, V.; Trumić, M.; Antić, D.; Trumić, M. Leaching of low-grade copper ores: A case study for “Kraku Bugaresku-Cementacija” deposits (Eastern Serbia). J. Min. Metall. Min. 2016, 52, 45–56. [Google Scholar] [CrossRef]
- Mejía, E.R.; Ospina, J.D.; Márquez, M.A.; Morales, A.L. Bioleaching of Galena (PbS). In Fourier Transform—Materials Analysis; Salih, S.M., Ed.; BoD—Books on Demand: Norderstedt, Germany, 2012; pp. 185–206. ISBN 978-953-51-0594-7. [Google Scholar]
- Rezvani Pour, H.; Mostafavi, A.; Shams Pur, T.; Ebadi Pour, G.; Haji Zadeh Omran, A. Removal of sulfur and phosphorous from iron ore concentrate by leaching. Physicochem. Probl. Miner. Process. 2016, 52, 845–854. [Google Scholar] [CrossRef]
- Fomchenko, N.V.; Muravyov, M.I. Selective leaching of zinc from copper-zinc concentrate. Appl. Biochem. Microbiol. 2017, 53, 73–77. [Google Scholar] [CrossRef]
- Ghassa, S.; Noaparast, M.; Shafaei, S.Z.; Abdollahi, H.; Gharabaghi, M.; Boruomand, Z. A study on the zinc sulfide dissolution kinetics with biological and chemical ferric reagents. Hydrometallurgy 2017, 171, 362–373. [Google Scholar] [CrossRef]
- Esparza, M.; Cárdenas, J.; Bowien, B.; Jedlicki, E.; Holmes, D.S. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, Carbon fixation in A. ferrooxidans. BMC Microbiol. 2010, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Robertson, S.; Vercuil, A.; van Staden, P.; Craven, P.A. Bacterial heap leaching approach for the treatment of low grade primary copper sulphide ore. In The Third Southern African Conference Base Metals: “Southern African’s Response to Changing Global Base Metals Market Dynamics”; S39; Southern African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2005; pp. 471–484. ISBN 978-1-919783-74-1. [Google Scholar]
- Acevedo, F.; Gentina, J.C.; Valencia, P. Optimization of pulp density and particle size in the biooxidation of a pyritic gold concentrate by Sulfolobus metallicus. World J. Microbiol. Biotechnol. 2004, 20, 865–869. [Google Scholar] [CrossRef]
- Crundwell, F.K. The kinetics of the chemiosmotic proton circuit of the iron-oxidizing bacterium Thiobacillus ferrooxidans. Bioelectrochem. Bioenerg. 1997, 43, 115–122. [Google Scholar] [CrossRef]
- Quatrini, R.; Johnson, D.B. Acidithiobacillus ferrooxidans. Trends Microbiol. 2019, 27, 282–283. [Google Scholar] [CrossRef]
- Neale, J.W.; Gericke, M.; Ramcharan, K. The application of bioleaching to base metal sulfides in southern africa: Prospects and opportunities. S. Afr. Inst. Min. Metall. 2011, 367–389. [Google Scholar] [CrossRef]
- Fonti, V.; Dell’Anno, A.; Beolchini, F. Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments? Sci. Total Environ. 2016, 563–564, 302–319. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Gu, G.; Wang, X.; Yan, W.; Qiu, G. Study on the jarosite mediated by bioleaching of pyrrhotite using Acidthiobacillus ferrooxidans. Biosci. J. 2017, 33, 721–729. [Google Scholar] [CrossRef] [Green Version]
- Tipre, D.R.; Dave, S.R. Bioleaching process for Cu–Pb–Zn bulk concentrate at high pulp density. Hydrometallurgy 2004, 75, 37–43. [Google Scholar] [CrossRef]
- Olubambi, P.A.; Potgieter, J.H.; Ndlovu, S.; Borode, J.O. Electrochemical studies on interplay of mineralogical variation and particle size on bioleaching low grade complex sulphide ores. Trans. Nonferrous Met. Soc. China 2009, 19, 1312–1325. [Google Scholar] [CrossRef]
- Kodali, B.; Rao, M.B.; Narasu, M.L.; Pogaku, R. Effect of biochemical reactions in enhancement of rate of leaching. Chem. Eng. Sci. 2004, 59, 5069–5073. [Google Scholar] [CrossRef]
- Makita, M.; Esperón, M.; Pereyra, B.; López, A.; Orrantia, E. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans. BMC Biotechnol. 2004, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Keeling, S.E.; Palmer, M.-L.; Caracatsanis, F.C.; Johnson, J.A.; Watling, H.R. Leaching of chalcopyrite and sphalerite using bacteria enriched from a spent chalcocite heap. Miner. Eng. 2005, 18, 1289–1296. [Google Scholar] [CrossRef]
- Nemati, M.; Harrison, S.T.L. Effects of solid particles on thermophilic bioleaching of sulphide minerals. In Process Metallurgy; Amils, R., Ballester, A., Eds.; Biohydrometallurgy and the Environment toward the Mining of the 21 Century—Proceedings of the International Biohydrometallurgy Symposium; Elsevier: Amsterdam, The Netherlands, 1999; Volume 9, pp. 473–482. [Google Scholar]
- Dong, Y.; Lin, H.; Xu, X.; Zhang, Y.; Gao, Y.; Zhou, S. Comparative study on the bioleaching, biosorption and passivation of copper sulfide minerals. Int. Biodeterior. Biodegrad. 2013, 84, 29–34. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Lin, J.-G. Bioleaching of heavy metals from sediment: Significance of pH. Chemosphere 2001, 44, 1093–1102. [Google Scholar] [CrossRef]
- Fomina, M.; Gadd, G.M. Biosorption: Current perspectives on concept, definition and application. Bioresour. Technol. 2014, 160, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Ghassa, S.; Boruomand, Z.; Abdollahi, H.; Moradian, M.; Akcil, A. Bioleaching of high grade Zn–Pb bearing ore by mixed moderate thermophilic microorganisms. Sep. Purif. Technol. 2014, 136, 241–249. [Google Scholar] [CrossRef]
- Abhilash; Mehta, K.D.; Pandey, B.D. Bacterial leaching kinetics for copper dissolution from a lowgrade Indian chalcopyrite ore. Rem Rev. Esc. Minas 2013, 66, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Valix, M. Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. J. Clean. Prod. 2014, 65, 465–472. [Google Scholar] [CrossRef]
- Schnell, H.A. Bioleaching of Copper. In Biomining: Theory, Microbes and Industrial Processes; Springer: Berlin, Germany, 1997; pp. 21–43. ISBN 978-3-662-06113-8. [Google Scholar]
- Acevedo, F.; Gentina, J.C.; Bustos, S. Bioleaching of minerals—A valid alternative for developing countries. J. Biotechnol. 1993, 31, 115–123. [Google Scholar] [CrossRef]
- Zhu, N.; Xiang, Y.; Zhang, T.; Wu, P.; Dang, Z.; Li, P.; Wu, J. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria. J. Hazard. Mater. 2011, 192, 614–619. [Google Scholar] [CrossRef]
- Lan, Z.; Hu, Y.; Liu, J.; Wang, J. Solvent extraction of copper and zinc from bioleaching solutions with LIX984 and D2EHPA. J. Cent. South Univ. Technol. 2005, 12, 45–49. [Google Scholar] [CrossRef]
- Choi, J.-W.; Song, M.-H.; Bediako, J.K.; Yun, Y.-S. Sequential recovery of gold and copper from bioleached wastewater using ion exchange resins. Environ. Pollut. 2020, 266, 115167. [Google Scholar] [CrossRef]
Elements | Mass Fraction [%] | Elements | Mass Fraction [%] | ||
---|---|---|---|---|---|
Average | SD | Average | SD | ||
Cu | 1.743 | 0.023 | Pb | 0.342 | 0.013 |
Fe | 20.309 | 0.064 | S | 0.840 | 0.011 |
P | 0.822 | 0.011 | Zn | 3.878 | 0.118 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouchalova, D.; Rouchalova, K.; Janakova, I.; Cablik, V.; Janstova, S. Bioleaching of Iron, Copper, Lead, and Zinc from the Sludge Mining Sediment at Different Particle Sizes, pH, and Pulp Density Using Acidithiobacillus ferrooxidans. Minerals 2020, 10, 1013. https://doi.org/10.3390/min10111013
Rouchalova D, Rouchalova K, Janakova I, Cablik V, Janstova S. Bioleaching of Iron, Copper, Lead, and Zinc from the Sludge Mining Sediment at Different Particle Sizes, pH, and Pulp Density Using Acidithiobacillus ferrooxidans. Minerals. 2020; 10(11):1013. https://doi.org/10.3390/min10111013
Chicago/Turabian StyleRouchalova, Dana, Kamila Rouchalova, Iva Janakova, Vladimir Cablik, and Sarah Janstova. 2020. "Bioleaching of Iron, Copper, Lead, and Zinc from the Sludge Mining Sediment at Different Particle Sizes, pH, and Pulp Density Using Acidithiobacillus ferrooxidans" Minerals 10, no. 11: 1013. https://doi.org/10.3390/min10111013
APA StyleRouchalova, D., Rouchalova, K., Janakova, I., Cablik, V., & Janstova, S. (2020). Bioleaching of Iron, Copper, Lead, and Zinc from the Sludge Mining Sediment at Different Particle Sizes, pH, and Pulp Density Using Acidithiobacillus ferrooxidans. Minerals, 10(11), 1013. https://doi.org/10.3390/min10111013