Mineralogical Setting of Precious Metals at the Assarel Porphyry Copper-Gold Deposit, Bulgaria, as Supporting Information for the Development of New Drill Core 3D XCT-XRF Scanning Technology
Abstract
:1. Introduction
2. Geological and Metallogenic Setting of the Assarel Ore Deposit
2.1. Regional Geological Setting
2.2. Major Ore and Alteration Mineral Assemblages in the Panagyurishte District
- Magnetite-hematite (±ilmenite, rutile) ± bornite, chalcopyrite is an early mineral assemblage. Tarkian et al. [23] refer to this assemblage as “magnetite–chalcopyrite–bornite” at the Elatsite deposit, mentioning the hematite as a secondary phase formed on magnetite.
- Quartz–pyrite–chalcopyrite is the main Cu-bearing mineral association, related to propylitic, sericitic and transitional sericitic-propylitic alteration of the host rocks; it occurs as veinlets, small nests and disseminations.
- Quartz-molybdenite occurs in the inner parts of the deposits (spatially associated with the quartz-pyrite-chalcopyrite assemblage), sometimes in veinlets.
- Quartz-pyrite containing milky quartz and subhedral to euhedral pyrite aggregates; it locally occurs in veins and veinlets.
- Quartz–sphalerite–galena (pyrite, chalcopyrite) occurs as veins in the upper and marginal parts of deposits.
- A supergene alteration assemblage containing variable amounts of chalcocite, covellite, malachite, azurite, and Fe-hydroxide is also known from the porphyry Cu deposits.
2.3. The Assarel Porphyry Copper Deposit
3. Materials and Methods
4. Results
4.1. Ore and Hydrothermal Alteration Mineralogy
4.1.1. Chalcopyrite–Pyrite–Magnetite ± Bornite (CPM) Assemblage Associated with Propylitic Alteration
4.1.2. Chalcopyrite–Pyrite–Hematite (CPH) Assemblage Associated with Sericitic-Chloritic Alteration
4.1.3. Fine-Grained Pyrite–Chalcopyrite (PC) Assemblage Associated with Argillic Alteration
4.1.4. Quartz–Pyrite ± Chalcopyrite (QP) Assemblage Associated with Sericitic Alteration
4.2. Mode of Occurrence of Precious Metals and Associated Minerals
4.2.1. Gold Minerals
4.2.2. Silver Minerals
4.2.3. Platinum-Group Minerals
4.2.4. Nickel Minerals
4.2.5. Bismuth Minerals
4.2.6. Other Minerals
5. Discussion
5.1. Mineralization and Alteration
5.2. Precious Metals and Aspects of Ore-Forming Conditions
5.3. Implications of Precious Metals Distribution and for the Validation of 3D XRF-XCT Scanning
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sinclair, W.D. Porphyry deposits. In Mineral Deposits of Canada: A Synthesis of Major Deposits—Types. District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Geological Association of Canada, Mineral Deposits Division, Special Publication no. 5: St. John’s, NL, Canada, 2007; pp. 223–243. [Google Scholar]
- McFall, K.A.; Roberts, S.; Teagle, D.; Naden, J.; Lusty, P.; Boyce, A. The origin and distribution of critical metals (Pd, Pt, Te and Se) within the Skouries Cu–Au porphyry deposit, Greece. Appl. Earth Sci. 2016, 125, 100–101. [Google Scholar] [CrossRef]
- Crespo, J.; Reich, M.; Barra, F.; Verdugo, J.J.; Martinez, C. Critical Metal Particles in Copper Sulfides from the Supergiant Río Blanco Porphyry Cu–Mo Deposit, Chile. Minerals 2018, 8, 519. [Google Scholar] [CrossRef] [Green Version]
- Agorhom, E.A.; Skinner, W.; Zanin, M. Influence of gold mineralogy on its flotation recovery in a porphyry copper–gold ore. Chem. Eng. Sci. 2013, 99, 127–138. [Google Scholar] [CrossRef]
- Sadegh Safarzadeh, M.; Horton, M.; Van Rythoven, A.D. Review of Recovery of Platinum Group Metals from Copper Leach Residues and Other Resources. Miner. Process. Extr. Metall. Rev. 2018, 39, 1–17. [Google Scholar] [CrossRef]
- Zachariáš, J.; Pertold, Z.; Pudilová, M.; Zák, K.; Pertoldová, J.; Stein, H.; Markey, R. Geology and genesis of Variscan porphyry-style gold mineralization, Petráčkova hora deposit, Bohemian Massif, Czech Republic. Miner. Depos. 2001, 36, 517–541. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Eliopoulos, D.G. Mineralogical and geochemical characteristics of the Skouries porphyry-Cu-Au-Pd-Pt deposit (Greece): Evidence for the precious metal. In Mineral Deposit Research: Meeting the Global Challenge; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Gray, C.A.; Rythoven, A.D. A Comparative Study of Porphyry-Type Copper Deposit Mineralogies by Portable X-ray Fluorescence and Optical Petrography. Minerals 2020, 10, 431. [Google Scholar] [CrossRef]
- Lypaczewski, P.; Rivard, B.; Lesage, G.; Byrne, K.; D’Angelo, M.; Lee, R.G. Characterization of Mineralogy in the Highland Valley Porphyry Cu District Using Hyperspectral Imaging, and Potential Applications. Minerals 2020, 10, 473. [Google Scholar] [CrossRef]
- Kauppinen, T.; Khajehzadeh, N.; Haavisto, O. Laser-induced fluorescence images and Raman spectroscopy studies on rapid scanning of rock drillcore samples. Int. J. Miner. Process. 2014, 132, 26–33. [Google Scholar] [CrossRef]
- Haavisto, O.; Kauppinen, T.; Häkkänen, H. Laser-Induced Breakdown Spectroscopy for Rapid Elemental Analysis of Drillcore. IFAC Proc. Vol. 2013, 46, 87–91. [Google Scholar] [CrossRef]
- Wells, M.A.; Ramanaidou, E.R. Raman Spectroscopic Core Scanning for Iron Ore and BIF Characterization. In Proceedings of the 11th International Congress for Applied Mineralogy (ICAM); Dong, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 387–396. [Google Scholar] [CrossRef]
- Kyle, J.R.; Mote, A.S.; Ketcham, R.A. High resolution X-ray computed tomography studies of Grasberg porphyry Cu-Au ores, Papua, Indonesia. Miner. Depos. 2008, 43, 519–532. [Google Scholar] [CrossRef]
- Munteanu, M.; Sädbom, S.; Paaso, J.; Bergqvist, M.; Arvanitidis, N.; Arvidsson, R.; Kolacz, J.; Bakalis, E.; Ivanov, D.; Grammi, K.; et al. X-MINE project (H2020): Testing the capabilities of X-ray techniques in drill core scanning and ore sorting. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 4–8 May 2020. [Google Scholar] [CrossRef]
- Bergqvist, M.; Landström, E.; Hansson, A.; Luth, S. Access to geological structures, density, minerals and textures through novel combination of 3D tomography, XRF and sample weight. ASEG Ext. Abstr. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Sahlström, F.; Jonsson, E.; Högdahl, K.; Ghaderidosst, J.; Luth, S.; Lynch, E.; Landström, E.; Sädbom, S. Textural evolution of the Lovisa Zn-Pb-(Ag) deposit, Bergslagen, Sweden: Insights from microscopy and 3D X-ray tomography. In Proceedings of the 15th Biennial SGA Biennial Meeting, Glasgow, UK, 27–30 August 2019; Volume 1, pp. 443–446. [Google Scholar]
- Luth, S.; Sahlström, F.; Jansson, N.; Jönberger, J.; Sädbom, S.; Landström, E.; Bergqvist, M.; Arvanitidis, N.; Arvidsson, R. Building 3D geomodels using XRF-XCT-generated drillcore data: The Lovisa-Håkansboda base metal-and Stråssa-Blanka iron deposits in Bergslagen, Sweden. In Proceedings of the 15th Biennial SGA Meeting, Glasgow, UK, 27–30 August 2019; Volume 3, pp. 1282–1285. [Google Scholar]
- Högdahl, K.; Johnsson, E.; Roško, S.; Wlodek, A.; Zack, T.; Landström, E.; Lynch, E.P.; Sahlström, F.; Tsitsanis, P.; Bacalis, V. Ore mineralogy, trace element distribution and 3D X-ray tomography of the polymetallic sulphide deposits at Mavres Petres and Piavitsa, Greece. In Proceedings of the 15th Biennial SGA Meeting, Glasgow, UK, 27–30 August 2019; Volume 1, pp. 279–282. [Google Scholar]
- Andersson, J.; Warlo, M.; Bauer, T.E.; Bergqvist, M.; Hansson, A. Structural controls on sulphide (re)-distribution in Kiruna. In Proceedings of the 15th Biennial SGA Meeting, Glasgow, UK, 27–30 August 2019; Volume 1, pp. 115–118. [Google Scholar]
- Delgado Yáñez, D. Geochemical and Mineralogical Comparison of XRT-XRF Scanning Technology Versus Traditional Analysis of Drill Core from the Assarel Porphyry Copper-Gold Deposit (Panagyurishte District, Bulgaria). Master’s Thesis, Uppsala University, Uppsala, Sweden, 2020; p. 133. [Google Scholar]
- Berza, T.; Constantinescu, E.; Vlad, S.N. Upper Cretaceous magmatic series and associated mineralisation in the Carpatho-Balkan orogeny. Resour. Geol. 1998, 48, 291–306. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Stein, H. Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenic Belt. Miner. Depos. 2002, 37, 541–567. [Google Scholar] [CrossRef]
- Tarkian, M.; Hunken, U.; Tokmakchieva, M.; Bogdanov, K. Precious-metal distribution and fluid-inclusion petrography of the Elatsite porphyry copper deposit, Bulgaria. Miner. Depos. 2003, 38, 261–281. [Google Scholar] [CrossRef]
- Handler, R.; Neubauer, F.; Velichkova, S.H. 40Ar/39Ar age constraints on the timing of magmatism and post-magmatic cooling in the Panagyurishte region, Bulgaria. Bull. Suisse Mineral. Petrogr. 2004, 84, 119–132. [Google Scholar]
- Von Cotta, B. Erzlagerstätten im Banat und in Serbien; W. Braumüller: Vienna, Austria, 1864; p. 108. [Google Scholar]
- Kamenov, K.B.; Yanev, Y.; Nedialkov, R.; Moritz, R.; Peytcheva, I.; von Quadt, A.; Stoykov, S.; Zartova, A. Petrology of Upper Cretaceous island-arc ore-magmatic centers from Central Srednogorie, Bulgaria: Magma evolution and paths. Geochem. Mineral. Petrol. 2007, 45, 39–77. [Google Scholar]
- Popov, P.; Strashimirov, S.; Popov, K.; Petrunov, R.; Kanazirski, M.; Tzonev, D. Main features in geology and metallogeny of the Panagyurishte ore region. An. Univ. Min. Geol. 2003, 46, 119–125. [Google Scholar]
- Popov, P.; Strashimirov, S.; Popov, K.; Kanazirski, M.; Bogdanov, K.; Radichev, R.; Stoykov, S. Geology and Metallogeny of the Panagyurishte ore Region; St. Ivan Rilski University of Mining and Geology: Sofia, Bulgaria, 2012; pp. 191–228. [Google Scholar]
- Zimmerman, A.; Stein, H.J.; Hannah, J.L.; Koželj, D.; Bogdanov, K.; Berza, T. Tectonic configuration of the Apuseni-Banat--Timok-Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re-Os molybdenite ages. Miner. Depos. 2008, 43, 1–21. [Google Scholar] [CrossRef]
- Strashimirov, S.; Bogdanov, K.; Popov, K.; Kehayov, R. Porphyry system of the Panagyurishte ore region. In Cretaceous Porphyry-Epithermal Systems of the Srednogorie Zone, Bulgaria; Society of Economic Geologists Guidebook Series; Bogdanov, K., Strashimirov, S., Eds.; Society of Economic Geologists: Sofia, Bulgaria, 2003; Volume 36, pp. 47–78. [Google Scholar]
- Chambefort, I.; Moritz, R. Late Cretaceous structural control and Alpine overprint of the high-sulfidation Cu–Au epithermal Chelopech deposit, Srednogorie Belt, Bulgaria. Miner. Depos. 2006, 41, 259–280. [Google Scholar] [CrossRef] [Green Version]
- Boccaletti, M.; Manetti, P.; Peccerillo, A. The Balkanids as an instance of back-arc thrust belt: Possible relation with the Hellenids. Geol. Soc. Am. Bull. 1974, 85, 1077–1084. [Google Scholar] [CrossRef]
- Drew, L.J. A tectonic model for the spatial occurrence of porphyry copper and polymetallic vein deposits—Applications to Central Europe. In U.S. Geological Survey Scientific Investigations Report 2005-5272; U.S. Geological Survey: Reston, VA, USA, 2006; p. 36. Available online: https://pubs.usgs.gov/sir/2005/5272/index.html (accessed on 9 September 2020).
- Gallhofer, D.; von Quadt, A.; Peytcheva, I.; Schmid, S.M.; Heinrich, C.A. Tectonic, magmatic, and metallogenic evolution of the Late Cretaceous arc in the Carpathian-Balkan orogen. Tectonics 2015, 34, 1813–1836. [Google Scholar] [CrossRef] [Green Version]
- Chambefort, I.; Moritz, R.; von Quadt, A. Petrology, geochemistry and U-Pb geochronology of magmatic rocks from the high-sulfidation epithermal Au-Cu Chelopech deposit, Srednogorie zone, Bulgaria. Miner. Depos. 2007, 42, 665–690. [Google Scholar] [CrossRef] [Green Version]
- Dabovski, C.; Harkovska, A.; Kamenov, B.; Mavrudchiev, B.; Stanisheva-Vassileva, G.; Yanev, Y. A geodynamic model of the Alpine magmatism in Bulgaria. Geol. Balc. 1991, 21, 3–15. [Google Scholar]
- Strashimirov, S.; Petrunov, R.; Kanazirski, M. Porphyry-copper mineralisation in the central Srednogorie zone, Bulgaria. Miner. Depos. 2002, 37, 587–598. [Google Scholar] [CrossRef]
- Zartova, A.; Nedialkov, R.; Moritz, R. Petrology of magmatism of the Assarel copper porphyry deposit. In Proceedings of the Annual Conference Geology 2004, Sofia, Bulgaria, 16–17 December 2004; pp. 113–115. [Google Scholar]
- Popov, P.; Popov, K. General geologic and metallogenic features of the Panagyurishte ore region. In Geodynamic and Ore Deposits Evolution of the Alpine-Balkan-Carpathian-Dinaride Province. Guide to Excursions A and C. ABCD-GEODE Workshop. Borovets, Bulgaria, Guide to Excursions; Strashimirov, S., Popov, P., Eds.; Publishing house “St. Ivan Rilski”, University of Mining and Geology “St. Ivan Rilski”: Sofia, Bulgaria, 2000; pp. 1–7. [Google Scholar]
- Kouzmanov, K.; Moritz, R.; von Quadt, A.; Chiaradia, M.; Peytcheva, I.; Fontignie, D.; Ramboz, C.; Bogdanov, K. Late Cretaceous porphyry Cu and epithermal Cu-Au association in the Southern Panagyurishte District, Bulgaria: The paired Vlaykov Vruh and Elshitsa deposits. Miner. Depos. 2009, 44, 611–646. [Google Scholar] [CrossRef] [Green Version]
- von Quadt, A.; Moritz, R.; Peytcheva, I.; Heinrich, C. Geochronology and geodynamics of Late Cretaceous magmatism and Cu-Au mineralisation in the Panagyurishte region of the Apuseni-Banat-Timok-Srednogorie belt, Bulgaria. Ore Geol. Rev. 2005, 27, 95–127. [Google Scholar] [CrossRef]
- Peytcheva, I.; von Quadt, A.; Heinrich, C.A.; Nedialkov, R.; Neubeaur, F.; Moritz, R. Medet and Assarel Cu-porphyry deposits in Central Srednogorie, SE Europe: Were they a common magmatic and hydrothermal system? In Proceedings of the 9th Biennial SGA Meeting, Dublin, Ireland, 20–23 August 2007; pp. 881–884. [Google Scholar]
- Bogdanov, B.D. Porphyry-copper deposits of Bulgaria. Int. Geol. Rev. 1983, 25, 178–188. [Google Scholar] [CrossRef]
- Popov, P.; Petrunov, R.; Kohachev, V.; Stashimirov, S.; Kanazirski, M. Elatsite-Chelopech ore field. In Geodynamic and Ore Deposits Evolution of the Alpine-Balkan-Carpathian-Dinaride Province. Guide to Excursions A and C. ABCD-GEODE Workshop. Borovets, Bulgaria, Guide to Excursions; Strashimirov, S., Popov, P., Eds.; Publishing house “St. Ivan Rilski”, University of Mining and Geology “St. Ivan Rilski”: Sofia, Bulgaria, 2000; pp. 8–18. [Google Scholar]
- Popov, P.; Strashimirov, S.; Kanazirski, M. Assarel-Medet ore field. In Geodinynamic and Ore Deposits Evolution of the Alpine-Balkan-Carpathian-Dinaride Province. Guide to Excursions A and C. ABCD-GEODE Workshop. Borovets, Bulgaria, Guide to Excursions; Strashimirov, S., Popov, P., Eds.; Publishing house “St. Ivan Rilski”, University of Mining and Geology “St. Ivan Rilski”: Sofia, Bulgaria, 2000; pp. 19–25. [Google Scholar]
- Popov, K. 3D modelling of the geochemical associations in the Assarel porphyry copper deposit (Bulgaria). Comptes Rendus l’Acad. Bulg. Sci. 2016, 69, 1175–1182. [Google Scholar]
- Tsonev, D.; Popov, K.; Kanazirski, M. Krasen-Petelovo ore field. In Geodinynamic and Ore Deposits Evolution of the Alpine-Balkan-Carpathian-Dinaride Province. Guide to Excursions A and C. ABCD-GEODE Workshop. Borovets, Bulgaria, Guide to Excursions; Strashimirov, S., Popov, P., Eds.; Publishing house “St. Ivan Rilski”, University of Mining and Geology “St. Ivan Rilski”: Sofia, Bulgaria, 2000; pp. 26–31. [Google Scholar]
- Tsonev, D.; Popov, K.; Kanazirski, M.; Stashimirov, S. Radka ore field. In Geodynamics and Ore Deposits Evolution of the Alpine-Balkan-Carpathian-Dinaride Province. Guide to Excursions A and C. ABCD-GEODE Workshop. Borovets, Bulgaria, Guide to Excursions; Strashimirov, S., Popov, P., Eds.; Publishing house “St. Ivan Rilski”, University of Mining and Geology “St. Ivan Rilski”: Sofia, Bulgaria, 2000; pp. 32–39. [Google Scholar]
- Bogdanov, K.; Ciobanu, C.L.; Cook, N.J. Porphyry-epithermal Bi-Te-Se assemblages as a guide for gold ore enrichment. In Au-Ag-Telluride Deposits of the Golden Quadritrilateral, Apuseni Mt., Romania; Intern. Field Workshop of IGCP Project 486: Alba Iulia, Romania, 2004; pp. 211–214. [Google Scholar]
- Nedialkov, R.; Zartova, A.; Moritz, R.; Bussey, F.; von Quadt, A.; Peytcheva, I.; Fontignie, D. Magmatic petrology and exsolution of ore bearing fluid in the magmatic center Assarel, Central Srednogorie, Bulgaria. In Proceedings of the XVIII Congress CBGA, Belgrade, Serbia, 3–6 September 2006; pp. 411–414. [Google Scholar]
- Hikov, A. Geochemistry of hydrothermally altered rocks from the Assarel porphyry copper deposit, Central Srednogorie. Geol. Balc. 2013, 42, 3–28. [Google Scholar]
- Sillitoe, R.H. The Carpathian-Balkan Porphyry Copper Belt—A Cordilleran Perspective. In European Copper Deposits, Proceedings of International Symposium, Bor, Yugoslavia, 18–22 September 1979; Jankovic, S., Sillitoe, R.H., Eds.; Department of Economic Geology, Faculty of Mining and Geology, Belgrade University: Belgrade, Serbia, 1980; pp. 26–34. [Google Scholar]
- Tarkian, M.; Stribrny, B. Platinum-group elements in porphyry copper deposits: A reconnaissance study. Miner. Petrol. 1999, 65, 161–183. [Google Scholar] [CrossRef]
- Nedialkov, R.; Zartova, A.; Moritz, R. Magmatic rocks and evolution of the Late Cretaceous magmatism in the region of the Asarel porphyry copper deposit, Central Srednogorie, Bulgaria. Rev. Bulg. Geol. Soc. 2007, 68, 57–76. [Google Scholar]
- Iliev, K.; Katckov, N. Geological Map of Bulgaria—Panagyurishte; 1: 100 000-Scale; Bulgarian Committee on Geology, Enterprise for Geophysical Studies and Geological Mapping: Sofia, Bulgaria, 1990. [Google Scholar]
- Gifkins, C.; Herrmann, W.; Large, R. Altered Volcanic Rocks. A Guide to Description and Interpretation; Centre for Ore Deposit Research, University of Tasmania: Tasmania, Australia, 2005; p. 275. [Google Scholar]
- Thompson, A.J.B.; Thompson, J.F.H. Atlas of Alteration. A Field and Petrographic Guide to Hydrothermal Alteration Minerals; Geological Association of Canada, Mineral Deposits Division: St. John’s NL, Canada, 1996; p. 119. [Google Scholar]
- Singer, D.A.; Berger, V.I.; Moring, B.C. Porphyry Copper Deposits of the World: Database and Grade and Tonnage Models, 2008; Open-File Report 2008-1155; United States Geological Survey: Reston, VA, USA, 2008; p. 45. Available online: https://pubs.usgs.gov/of/2008/1155/ (accessed on 9 September 2020).
- Seedorf, E.; Dilles, J.H.; Proffett, J.M., Jr.; Einaudi, M.T.; Zurcher, L.; Stavast, W.J.A.; Johnson, D.A.; Barton, M.D. Porphyry deposits: Characteristics and origin of hypogene features. In Economic Geology 100th Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists, INC.: Littleton, CO, USA, 2005; pp. 251–298. Available online: https://pubs.usgs.gov/of/2008/1155/ (accessed on 9 September 2020).
- Zhao, J.; Brugger, J.; Chen, G.; Ngothai, Y.; Pring, A. Experimental study of the formation of chalcopyrite and bornite via the sulfidation of hematite: Mineral replacements with a large volume increase. Am. Miner. 2014, 99, 343–354. [Google Scholar] [CrossRef]
- Keith, M.; Smith, D.J.; Jenkin, G.R.T.; Holwell, D.A.; Dye, M.D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geol. Rev. 2018, 96, 269–282. [Google Scholar] [CrossRef]
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability; European Commission: Brussels, Belgium, 2020; COM (2020), 474 Final; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52020DC0474&from=EN (accessed on 9 September 2020).
- Cook, N.J.; Ciobanu, C.L.; Spry, P.G.; Voudouris, P. and the participants of IGCP-486. Understanding gold-(silver)-telluride-(selenide) mineral deposits. Episodes 2009, 32, 249–263. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cioacă, M.-E.; Munteanu, M.; Lynch, E.P.; Arvanitidis, N.; Bergqvist, M.; Costin, G.; Ivanov, D.; Milu, V.; Arvidsson, R.; Iorga-Pavel, A.; et al. Mineralogical Setting of Precious Metals at the Assarel Porphyry Copper-Gold Deposit, Bulgaria, as Supporting Information for the Development of New Drill Core 3D XCT-XRF Scanning Technology. Minerals 2020, 10, 946. https://doi.org/10.3390/min10110946
Cioacă M-E, Munteanu M, Lynch EP, Arvanitidis N, Bergqvist M, Costin G, Ivanov D, Milu V, Arvidsson R, Iorga-Pavel A, et al. Mineralogical Setting of Precious Metals at the Assarel Porphyry Copper-Gold Deposit, Bulgaria, as Supporting Information for the Development of New Drill Core 3D XCT-XRF Scanning Technology. Minerals. 2020; 10(11):946. https://doi.org/10.3390/min10110946
Chicago/Turabian StyleCioacă, Mihaela-Elena, Marian Munteanu, Edward P. Lynch, Nikolaos Arvanitidis, Mikael Bergqvist, Gelu Costin, Desislav Ivanov, Viorica Milu, Ronald Arvidsson, Adina Iorga-Pavel, and et al. 2020. "Mineralogical Setting of Precious Metals at the Assarel Porphyry Copper-Gold Deposit, Bulgaria, as Supporting Information for the Development of New Drill Core 3D XCT-XRF Scanning Technology" Minerals 10, no. 11: 946. https://doi.org/10.3390/min10110946
APA StyleCioacă, M.-E., Munteanu, M., Lynch, E. P., Arvanitidis, N., Bergqvist, M., Costin, G., Ivanov, D., Milu, V., Arvidsson, R., Iorga-Pavel, A., Högdahl, K., & Stoilov, V. (2020). Mineralogical Setting of Precious Metals at the Assarel Porphyry Copper-Gold Deposit, Bulgaria, as Supporting Information for the Development of New Drill Core 3D XCT-XRF Scanning Technology. Minerals, 10(11), 946. https://doi.org/10.3390/min10110946