Potential Reference Materials for Hematite Oxygen Isotope Analysis
Abstract
:1. Introduction
2. Experimental Section
2.1. Samples
2.2. Laser Fluorination Extraction System and Oxygen Isotope Analysis
2.3. Chemical Treatment
2.4. Measument of CO32−
3. Results and Discussions
3.1. Oxygen Isotope of Bulk Rocks (δ18OBulk)
3.2. Oxygen Isotopes of Residues After HCl Dissolution
3.3. Oxygen Isotope of Iron Oxides (δ18OOxides)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bao, H.; Koch, P.L.; Rumble, D. Paleocene–Eocene climatic variation in western North America: Evidence from the δ18O of pedogenic hematite. GSA Bull. 1999, 111, 1405–1415. [Google Scholar] [CrossRef]
- Yapp, C.J. Oxygen and hydrogen isotope variations among goethites (α-FeOOH) and the determination of paleotemperatures. Geochim. Cosmochim. Acta 1987, 51, 355–364. [Google Scholar] [CrossRef]
- Yapp, C.J. The stable isotope geochemistry of low temperature Fe(III) and Al “oxides” with implications for continental paleoclimates. In Climate Change in Continental Isotopic Records; American Geophysical Union (AGU): Washington, DC, USA, 1993; pp. 285–294. ISBN 978-1-118-66402-5. [Google Scholar]
- Yapp, C.J. Oxygen isotopes in synthetic goethite and a model for the apparent pH dependence of goethite–water 18O/16O fractionation. Geochim. Cosmochim. Acta 2007, 71, 1115–1129. [Google Scholar] [CrossRef]
- Yapp, C.J. Oxygen isotopes in iron (III) oxides: 2. Possible constraints on the depositional environment of a Precambrian quartz-hematite banded iron formation. Chem. Geol. 1990, 85, 337–344. [Google Scholar] [CrossRef]
- Gutzmer, J.; Mukhopadhyay, J.; Beukes, N.J.; Pack, A.; Hayashi, K.; Sharp, Z.D. Oxygen isotope composition of hematite and genesis of high-grade BIF-hosted iron ores. In Evolution of Early Earth’s Atmosphere, Hydrosphere, and Biosphere—Constraints from Ore Deposits; Geological Society of America: Washington, DC, USA, 2006; ISBN 978-0-8137-1198-0. [Google Scholar]
- Galili, N.; Shemesh, A.; Yam, R.; Brailovsky, I.; Sela-Adler, M.; Schuster, E.M.; Collom, C.; Bekker, A.; Planavsky, N.; Macdonald, F.A.; et al. The geologic history of seawater oxygen isotopes from marine iron oxides. Science 2019, 365, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Yapp, C.J. Recovery and interpretation of the 18O/16O of Miocene oolitic goethites in multi-generational mixtures of Fe (III) oxides from a channel iron deposit of Western Australia. Geochim. Cosmochim. Acta 2020, 279, 143–164. [Google Scholar] [CrossRef]
- Miller, H.B.D.; Farley, K.A.; Vasconcelos, P.M.; Mostert, A.; Eiler, J.M. Intracrystalline site preference of oxygen isotopes in goethite: A single-mineral paleothermometer. Earth Planet. Sci. Lett. 2020, 539, 116237. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, K.M.; Wostbrock, J.A.G.; Hansel, C.M.; Sharp, Z.D.; Hein, J.R.; Wankel, S.D. Ferromanganese crusts as recorders of marine dissolved oxygen. Earth Planet. Sci. Lett. 2020, 533, 116057. [Google Scholar] [CrossRef]
- Gao, B.F.; Wu, C.Z.; Yang, T.; Santosh, M.; Dong, L.H.; Zhao, T.Y.; Ye, H.; Lei, R.X.; Li, W. The neoproterozoic “blood falls” in Tarim Craton and their possible connection with snowball earth. J. Geophys. Res. Earth Surf. 2019, 124, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Mandernack, K.W.; Bazylinski, D.A.; Shanks, W.C.; Bullen, T.D. Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria. Science 1999, 285, 1892–1896. [Google Scholar] [CrossRef] [PubMed]
- Nyström, J.O.; Billström, K.; Henríquez, F.; Fallick, A.E.; Naslund, H.R. Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden. GFF 2010. [Google Scholar] [CrossRef]
- Sjostrom, D.J.; Hren, M.T.; Chamberlain, C.P. Oxygen isotope records of goethite from ferricrete deposits indicate regionally varying holocene climate change in the Rocky Mountain region, U.S.A. Quat. Res. 2004, 61, 64–71. [Google Scholar] [CrossRef]
- Troll, V.R.; Weis, F.A.; Jonsson, E.; Andersson, U.B.; Majidi, S.A.; Högdahl, K.; Harris, C.; Millet, M.-A.; Chinnasamy, S.S.; Kooijman, E.; et al. Global Fe–O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores. Nat. Commun. 2019, 10, 1712. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Huang, J.; Lu, D.; Zhang, Q. Major and trace element geochemistry of the Neoproterozoic syn-glacial Fulu iron formation, South China. Geol. Mag. 2017, 154, 1371–1380. [Google Scholar] [CrossRef]
- Dymek, R.F.; Klein, C. Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 MA isua supracrustal belt, West Greenland. Precambrian Res. 1988, 39, 247–302. [Google Scholar] [CrossRef]
- Cloud, P. Paleoecological significance of the banded iron-formation. Econ. Geol. 1973, 68, 1135–1143. [Google Scholar] [CrossRef]
- Gole, M.J.; Klein, C. Banded iron-formations through much of Precambrian time. J. Geol. 1981, 89, 169–183. [Google Scholar] [CrossRef]
- Becker, R.H.; Clayton, R.N. Oxygen isotope study of a Precambrian banded iron-formation, Hamersley Range, Western Australia. Geochim. Cosmochim. Acta 1976, 40, 1153–1165. [Google Scholar] [CrossRef]
- Hagemann, S.G.; Angerer, T.; Duuring, P.; Rosière, C.A.; e Silva, R.F.; Lobato, L.; Hensler, A.S.; Walde, D.H.G. BIF-hosted iron mineral system: A review. Ore Geol. Rev. 2016, 76, 317–359. [Google Scholar] [CrossRef]
- Pecoits, E.; Gingras, M.K.; Barley, M.E.; Kappler, A.; Posth, N.R.; Konhauser, K.O. Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry. Precambrian Res. 2009, 172, 163–187. [Google Scholar] [CrossRef]
- Sharp, Z.D. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta 1990, 54, 1353–1357. [Google Scholar] [CrossRef]
- Huberty, J.M.; Kita, N.T.; Kozdon, R.; Heck, P.R.; Fournelle, J.H.; Spicuzza, M.J.; Xu, H.; Valley, J.W. Crystal orientation effects in δ18O for magnetite and hematite by SIMS. Chem. Geol. 2010, 276, 269–283. [Google Scholar] [CrossRef]
- Li, W.; Huberty, J.M.; Beard, B.L.; Kita, N.T.; Valley, J.W.; Johnson, C.M. Contrasting behavior of oxygen and iron isotopes in banded iron formations revealed by in situ isotopic analysis. Earth Planet. Sci. Lett. 2013, 384, 132–143. [Google Scholar] [CrossRef]
- Li, X.-H.; Long, W.-G.; Li, Q.-L.; Liu, Y.; Zheng, Y.-F.; Yang, Y.-H.; Chamberlain, K.R.; Wan, D.-F.; Guo, C.-H.; Wang, X.-C.; et al. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age. Geostand. Geoanal. Res. 2010, 34, 117–134. [Google Scholar] [CrossRef]
- Gong, B.; Zheng, Y.-F.; Chen, R.-X. TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys. Chem. Miner. 2007, 34, 687–698. [Google Scholar] [CrossRef]
- Schwertmann, U.; Cornell, R.M. General preparative techniques. In Iron Oxides in the Laboratory; John Wiley & Sons, Ltd.: London, UK, 2007; pp. 19–25. ISBN 978-3-527-61322-9. [Google Scholar]
- McGuire, A.V.; Francis, C.A.; Dyar, M.D. Mineral standards for electron microprobe analysis of oxygen. Am. Mineral. 1992, 77, 1087–1091. [Google Scholar]
- Smalley, P.C.; Stijfhoorn, D.E.; Råheim, A.; Johansen, H.; Dickson, J.A.D. The laser microprobe and its application to the study of C and O isotopes in calcite and aragonite. Sediment. Geol. 1989, 65, 211–221. [Google Scholar] [CrossRef]
- Dickson, J.A.D.; Smalley, P.C.; Råheim, A.; Stijfhoorn, D.E. Intracrystalline carbon and oxygen isotope variations in calcite revealed by laser microsampling. Geology 1990, 18, 809–811. [Google Scholar] [CrossRef]
- Powell, M.D.; Kyser, T.K. Analysis of δ13C and δ18O in calcite, dolomite, rhodochrosite and siderite using a laser extraction system. Chem. Geol. 1991, 94, 55–66. [Google Scholar] [CrossRef]
Sample Number | Reaction Temperature | Residue Content (%) | Oxygen Content of Residue (%) | δ18OResidue (‰, SMOW) | δ18OOxides* (‰, SMOW) |
---|---|---|---|---|---|
GBW07223a | 25 °C | 32.8 | 30.04 ± 0.55 | 4.53 ± 0.2 | 1.33 ± 0.12 |
GBW07223a | 90 °C | 8.5 | 45.3 ± 1.3 | 11.74 ± 0.04 | 1.2 ± 0.08 |
GBW07825 | 25 °C | 19.6 | 35.7 ± 1.8 | 10.87 ± 0.18 | −0.29± 0.13 |
GBW07825 | 90 °C | 17.0 | 45.6 ± 1.2 | 11.84 ± 0.16 | −0.89 ± 0.11 |
YSBC28740-95 | 25 °C | 58.2 | 31.7 ± 1.33 | 0.57 ± 0.42 | 1.09 ± 0.7 |
YSBC28740-95 | 90 °C | 13.0 | 33.8 ± 0.7 | 5.59 ± 0.16 | −0.01 ± 0.34 |
YSBC28756-2008 | 25 °C | 15.9 | 42 ± 1.02 | 9.8 ± 0.2 | 9.08 ± 0.28 |
YSBC28756-2008 | 90 °C | 14.3 | 46.6 ± 0.5 | 10.21 ± 0.12 | 8.81 ± 0.28 |
Chuan | 90 °C | 16.1 | 48.7 ± 0.1 | 12.68 ± 0.3 | −4.71 ± 0.07 |
Sample Number | Analytical Number | δ18OBulk (‰, SMOW) | Oxygen Content a (%) | Iron Content b (%) | Oxygen Content from CO32− (%) |
---|---|---|---|---|---|
GBW07223a | 3 | 2.20 ± 0.02 | 32.43 ± 1.06 | 61.73 | 0.04 |
GBW07825 | 3 | 2.25 ± 0.08 | 31.02 ± 0.51 | 49.50 | 3.90 |
YSBC28740-95 | 3 | 0.76 ± 0.26 | 31.93 ± 0.77 | 66.15 | ND |
YSBC28756-2008 | 3 | 9.51 ± 0.03 | 31.01 ± 0.68 | 55.81 | 0.45 |
Chuan | 3 | −0.57 ± 0.05 | 34.09 ± 0.76 | NM | 0.03 |
Harvard 92649 | 4 | −1.12 ± 0.07 | 30.87 ± 0.50 | 69.06 | NM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Li, H.; Li, T. Potential Reference Materials for Hematite Oxygen Isotope Analysis. Minerals 2020, 10, 987. https://doi.org/10.3390/min10110987
Feng L, Li H, Li T. Potential Reference Materials for Hematite Oxygen Isotope Analysis. Minerals. 2020; 10(11):987. https://doi.org/10.3390/min10110987
Chicago/Turabian StyleFeng, Lianjun, Hongwei Li, and Tiejun Li. 2020. "Potential Reference Materials for Hematite Oxygen Isotope Analysis" Minerals 10, no. 11: 987. https://doi.org/10.3390/min10110987
APA StyleFeng, L., Li, H., & Li, T. (2020). Potential Reference Materials for Hematite Oxygen Isotope Analysis. Minerals, 10(11), 987. https://doi.org/10.3390/min10110987