Exploring the End-Liner Forces Using DEM Software
Abstract
:1. Introduction
2. Materials and Methods
Simulation Procedure
- Overview of forces on shell lifters and mill end lifters
- Full analysis of forces on the 50 mm × 50 mm square end lifters at 20% ball filling
- 25 mm × 25 mm square end lifters compared with 50 mm × 50 mm square end lifters
- 40% ball filling compared with 20% ball filling
- 25 mm balls size compared with 35 mm balls size.
3. Results and Discussion
3.1. Overview of Forces Acting on the Shell and Mill End Liners
3.1.1. Comparison of Radial and Tangential Forces on Shell Lifters
3.1.2. Radial Forces on the 3 Sections of the Long End Lifters
3.1.3. Comparison of Tangential Forces on the Two Mill Ends
3.1.4. Average Forces Acting per Unit Surface
3.2. Comparison of 25 mm × 25 mm with 50 mm × 50 mm End Liners Both at 20% Ball Filling
3.3. Comparison of 40% Ball Filling with 20% Ball Filling
3.4. Effect of Ball Size on the Forces Profiles (25 mm Balls Compared with 35 mm Balls)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parks, J.L. The influence of designs, maintenance practices, and operating conditions on SAG and AG mill liner performance. In Comminution Practices; SME: Englewood, CO, USA, 1998. [Google Scholar]
- Hasankhoei, A.; Maleki-Moghaddam, M.; Haji-Zadeh, A.; Barzgar, M.; Banisi, S. On dry SAG mills end liners: Physical modeling, DEM-based characterization and industrial outcomes of a new design. Miner. Eng. 2019, 141, 105835. [Google Scholar] [CrossRef]
- Royston, D. Semi-autogenous grinding (SAG) mill liner design and development. Min. Metall. Explor. 2007, 24, 121–132. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.L. A distinct element model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Mishra, B.K.; Rajamani, R.K. Motion analysis in tumbling mills by the discrete element method. KONA Powder Part. J. 1990, 8, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Cleary, P.W. Modelling comminution devices using DEM. Int. J. Numer. Anal. Methods Géoméch. 2001, 25, 83–105. [Google Scholar] [CrossRef]
- Weerasekara, N.; Powell, M.; Cleary, P.W.; Tavares, L.M.; Evertsson, M.; Morrison, R.; Quist, J.; Carvalho, R. The contribution of DEM to the science of comminution. Powder Technol. 2013, 248, 3–24. [Google Scholar] [CrossRef]
- Tavares, L.M. A Review of Advanced Ball Mill Modelling. KONA Powder Part. J. 2017, 34, 106–124. [Google Scholar] [CrossRef] [Green Version]
- Rajamani, R.K.; Mishra, B.K. Three dimensional simulation of charge motion in plant size SAG mills. In Proceedings of the International Conference on Autogenous and Semiautogenous Grinding Technology (SAG2001), Vancouver, BC, Canada, 30 September–3 October 2001; Volume 4, pp. 48–57. [Google Scholar]
- Rajamani, R.K.; Latchireddi, S.; Mishra, B.K. Discrete element simulation of ball and rock charge and slurry flow through grate and pulp lifters. Presented at the SME Annual Meeting, Cincinnati, OH, USA, 24–26 February 2003. [Google Scholar]
- Nordell, L.K.; Potapov, A.Y.; Herbst, J.A. Comminution simulation using discrete element method (DEM) approach—From single particle breakage to full-scale sag mill operation. In Proceedings of the International Conference on Autogenous and Semiautogenous Grinding Technology (SAG2001), Vancouver, BC, Canada, 30 September–3 October 2001; Volume 4, pp. 235–251. [Google Scholar]
- Cleary, P.W.; Sinnott, M.; Morrison, R. Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media. Miner. Eng. 2006, 19, 1517–1527. [Google Scholar] [CrossRef]
- Cleary, P.W.; Prakash, M.; Ha, J.; Stokes, N.; Scott, C. Smooth particle hydrodynamics: Status and future potential. Prog. Comput. Fluid Dyn. Int. J. 2007, 7, 70. [Google Scholar] [CrossRef]
- Herbst, J.A.; Lichter, J.K. Use of multi-physics models for the optimization of comminution operations. In Advances in Comminution; Kawatra, S.K., Ed.; Society for Mining, Metallurgy, and Exploration, Inc. (SME): Littleton, CO, USA, 2006; pp. 193–204. [Google Scholar]
- Powell, M.; Smit, I.; Radziszewski, P.; Cleary, P.; Rattray, B.; Eriksson, K.-G.; Schaeffer, L. Selection and design of mill liners. In Advances in Comminution; Kawatra, S.K., Ed.; Society for Mining, Metallurgy, and Exploration, Inc. (SME): Littleton, CO, USA, 2006; pp. 331–376. [Google Scholar]
- Bian, X.; Wang, G.; Wang, H.; Wang, S.; Lv, W. Effect of lifters and mill speed on particle behaviour, torque, and power consumption of a tumbling ball mill: Experimental study and DEM simulation. Miner. Eng. 2017, 105, 22–35. [Google Scholar] [CrossRef]
- Xu, L.; Luo, K.; Zhao, Y. Numerical prediction of wear in SAG mills based on DEM simulations. Powder Technol. 2018, 329, 353–363. [Google Scholar] [CrossRef]
- Cleary, P.W. Predicting charge motion, power draw, segregation, wear and particle breakage in ball mills using discrete element methods. Miner. Eng. 1998, 11, 1061–1080. [Google Scholar] [CrossRef]
- Navarro, H.A.; Braun, M.P.D.S. Determination of the normal spring stiffness coefficient in the linear spring–dashpot contact model of discrete element method. Powder Technol. 2013, 246, 707–722. [Google Scholar] [CrossRef]
- Blithe, K.J.; Wilson, E.L. Numerical Methods in Finite Element Methods; Prentice-Hall: Englewood Cliffs, NJ, USA, 1976. [Google Scholar]
- Bwalya, M.M. Using the Discrete Element Method to Guide the Modelling of Semi and Fully Autogenous Milling. Ph.D. Dissertation, School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa, 2005. [Google Scholar]
- Moys, M.; Van Nierop, M.; Smit, I. Progress in measuring and modelling load behaviour in pilot and industrial mills. Miner. Eng. 1996, 9, 1201–1214. [Google Scholar] [CrossRef]
- Owen, P.; Cleary, P.W. The relationship between charge shape characteristics and fill level and lifter height for a SAG mill. Miner. Eng. 2015, 83, 19–32. [Google Scholar] [CrossRef]
- Moys, M.H.; Powell, M.S. Lifter bars save costs for Lindum. In Mintek Bulletin, No. 77; Mintek: Randburg, South Africa, 1994. [Google Scholar]
- Kalala, J.T.; Bwalya, M.; Moys, M. Discrete element method (DEM) modelling of evolving mill liner profiles due to wear. Part II. Industrial case study. Miner. Eng. 2005, 18, 1392–1397. [Google Scholar] [CrossRef]
Mill Parameters | Specifications |
No. of shell liner: 8 trapezium lifters | Base 75 mm height 50 mm and top 25 mm Face angle 63° |
No. of end liners: 6 square lifters | Two types: 25 mm × 25 mm or 50 mm × 50 mm |
% Mill filling | 20 or 40 |
Speed % of Nc | 75 |
Ball size | 25 (0.06 kg) or 35 (0.18 kg) mm. (One ball size in each specific simulation) |
Ball density | 7800 kg/m3 |
No of sampled revs | 4 (3rd revolution is used for all the reviews) |
DEM Parameters | Values |
Friction coefficient | 0.5 |
Coefficient of restitution | 0.5 |
Normal stiffness | 4 × 106 N |
Shear stiffness | 3 × 106 N |
Parameters | Section 1 | Section 2 | Section 3 |
---|---|---|---|
Lifter area (m2) | 0.06 | 0.06 | 0.06 |
Peak shear force (N/m2) | 855.6 | 655.7 | 296.3 |
Average shear force (N/m2) | 578.2 | 360.9 | 94.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chimwani, N.; Bwalya, M.M. Exploring the End-Liner Forces Using DEM Software. Minerals 2020, 10, 1047. https://doi.org/10.3390/min10121047
Chimwani N, Bwalya MM. Exploring the End-Liner Forces Using DEM Software. Minerals. 2020; 10(12):1047. https://doi.org/10.3390/min10121047
Chicago/Turabian StyleChimwani, Ngonidzashe, and Murray M. Bwalya. 2020. "Exploring the End-Liner Forces Using DEM Software" Minerals 10, no. 12: 1047. https://doi.org/10.3390/min10121047
APA StyleChimwani, N., & Bwalya, M. M. (2020). Exploring the End-Liner Forces Using DEM Software. Minerals, 10(12), 1047. https://doi.org/10.3390/min10121047