Reverse Combined Microflotation of Fine Magnetite from a Mixture with Glass Beads
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Chemicals
2.3. Facilities
2.4. Measurement Procedure
3. Results
3.1. Dependence of Iron Recovery and Concentrate Grade on Collector Dose
3.2. Dependence of Iron Recovery and Concentrate Grade on Microbubble Dosage Supplied Before Starting Flotation
3.3. Dependencies of Iron Recovery and Concentrate Grade on Timing the Introduction of Collector and Microbubble Dose
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Holmes, R.J.; Lu, L. Introduction: Overview of the global iron ore industry. In Iron Ore: Mineralogy, Processing and Environmental Sustainability; Liming, L., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 1–42. [Google Scholar] [CrossRef]
- Ma, M. Froth Flotation of Iron Ores. Int. J. Min. Eng. Miner. Process. 2012, 1, 56–61. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, X.; Han, Y.; Parra-Álvarez, N.; Claremboux, V.; Kawatra, S.K. Flotation of Iron Ores: A Review. Miner. Process. Extr. Met. Rev. 2019, 1–29. [Google Scholar] [CrossRef]
- Clemmer, J.B. Flotation of iron ore. In Proceedings of the 8th Annual Mining Symposium, Duluth, MN, USA, 15 January 1947. [Google Scholar]
- Filippov, L.; Severov, V.V.; Filippova, I.V. An overview of the beneficiation of iron ores via reverse cationic flotation. Int. J. Miner. Process. 2014, 127, 62–69. [Google Scholar] [CrossRef]
- Filippov, L.; Filippova, I.; Severov, V. The use of collectors mixture in the reverse cationic flotation of magnetite ore: The role of Fe-bearing silicates. Miner. Eng. 2010, 23, 91–98. [Google Scholar] [CrossRef]
- Iwasaki, I. Iron ore flotation, theory and practice. Min. Eng. 1983, 35, 622–631. [Google Scholar]
- Filippov, L.O.; Severov, V.V.; Filippova, I.V. Mechanism of starch adsorption on Fe–Mg–Al-bearing amphiboles. Int. J. Miner. Process. 2013, 123, 120–128. [Google Scholar] [CrossRef]
- Peres, A.; Correa, M. Depression of iron oxides with corn starches. Miner. Eng. 1996, 9, 1227–1234. [Google Scholar] [CrossRef]
- Papini, R.M.; Brandão, P.R.G.; Peres, A.E.C. Cationic flotation of iron ores: Amine characterization and performance. Min. Met. Explor. 2001, 18, 5–9. [Google Scholar] [CrossRef]
- Farrokhpay, S.; Filippov, L.; Fornasiero, D. Flotation of Fine Particles: A Review. Miner. Process. Extr. Met. Rev. 2020, 1–11. [Google Scholar] [CrossRef]
- Fornasiero, D.; Filippov, L. Innovations in the flotation of fine and coarse particles. J. Phys. Conf. Ser. 2017, 879, 012002. [Google Scholar] [CrossRef] [Green Version]
- Rulyov, N.N. Combined microflotation of fine minerals: Theory and experiment. Miner. Process. Extr. Met. 2016, 125, 1–5. [Google Scholar] [CrossRef]
- Rulyov, N.N.; Tussupbayev, N.K.; Kravtchenko, O.V. Combined Microflotation of Fine Quartz, Mineral Processing and Extractive Metallurgy. Trans. Inst. Min. Metall. C 2015, 124, 217–223. [Google Scholar]
- Farrokhpay, S.; Filippova, I.; Filippov, L.; Picarra, A.; Rulyov, N.; Fornasiero, D. Flotation of fine particles in the presence of combined microbubbles and conventional bubbles. Miner. Eng. 2020, 155, 106439. [Google Scholar] [CrossRef]
- Nickolaj, R. Fine Iron Ore Beneficiation by Combine Reverse Microflotation. In Proceedings of the 16th International Mineral Processing Symposium (IMPS 2018), Antalya, Turkey, 23–25 October 2018; pp. 254–259. [Google Scholar]
- Rulyov, N.; Nessipbay, T.; Dulatbek, T.; Larissa, S.; Zhamikhan, K. Effect of microbubbles as flotation carriers on fine sulphide ore beneficiation. Miner. Process. Extr. Met. 2017, 127, 133–139. [Google Scholar] [CrossRef]
- Tussupbayev, N.K.; Rulyov, N.; Kravtchenco, O.V. Microbubble augmented flotation of ultrafine chalcopyrite from quartz mixtures. Miner. Process. Extr. Met. 2016, 125, 5–9. [Google Scholar] [CrossRef]
- Rulyov, N.; Filippov, L.; Kravchenko, O. Combined microflotation of glass beads. Colloids Surf. A Physicochem. Eng. Asp. 2020, 598, 124810. [Google Scholar] [CrossRef]
- Albino, K.I.P.; Toledo, D.B.; Lima, O.A. New etheramine based collector for the reverse flotation of iron ore effective on the overfrothing prevention. XXVII Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa Belém-PA, 23 a 27 de Outubro de 2017. Available online: https://www.researchgate.net/publication/321198348 (accessed on 23 October 2017).
- Hoang, H.D.; Heitkam, S.; Kupka, N.; Hassanzadeh, A.; Peuker, U.A.; Rudolph, M. Froth properties and entrainment in lab-scale flotation: A case of carbonaceous sedimentary phosphate ore. Chem. Eng. Res. Des. 2019, 142, 100–110. [Google Scholar] [CrossRef]
Collector Dose, g/t | 20 | 40 | 100 |
---|---|---|---|
Concentrate grade, Fe, % | 66.44 | 69.86 | 71.73 |
Total recovery of iron, % | 85.99 | 51.50 | 12.04 |
Iron content in tailings, % | 50.62 | 58.34 | 62.80 |
Iron flotation recovery into froth, % | 7.48 | 40.70 | 75.63 |
Iron entrainment into froth, % | 6.53 | 7.80 | 12.33 |
Column No. | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Microbubble dose, mL/g | 0 | 0.018 | 0.035 | 0.053 | 0.07 |
Concentrate grade, Fe, % | 66.74 | 67.5 | 67.03 | 66.98 | 67.72 |
Total recovery of iron, % | 92.26 | 89.25 | 88.81 | 90.47 | 85.36 |
Iron content in tailings, % | 41.61 | 43.67 | 45.97 | 43.76 | 47.52 |
Flotation report of iron into froth, % | 6.37 | 8.62 | 8.86 | 7.61 | 12.29 |
Iron entrainment into froth, % | 1.37 | 2.13 | 2.33 | 1.92 | 2.35 |
Column No. | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Timing (min) of collector (g/t) and microbubble (mL/g) introduction | 20 + [0/0(0)] | 15 + 5(6)/[0/0(0)] | 15 + [5/0.018(0)] | 15 + [5/0.018(6)] | 15 + [5/0.018(11)] | 15 + [2.5/0.009(6)] + [2.5/0.009(11)] |
Concentrate grade, Fe, % | 66.74 | 67.07 | 67.50 | 67.63 | 67.38 | 67.08 |
Total recovery of iron, % | 92.26 | 88.07 | 89.25 | 91.16 | 90.36 | 90.06 |
Iron content in tailings, % | 41.61 | 46.73 | 43.67 | 40.07 | 42.4 | 44.02 |
Iron flotation report into froth, % | 6.37 | 8.62 | 8.57 | 6.51 | 6.87 | 5.94 |
Iron entrainment, % | 1.37 | 3.31 | 2.18 | 2.33 | 3.82 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rulyov, N.N.; Filippov, L.O.; Sadovskyi, D.Y.; Lukianova, V.V. Reverse Combined Microflotation of Fine Magnetite from a Mixture with Glass Beads. Minerals 2020, 10, 1078. https://doi.org/10.3390/min10121078
Rulyov NN, Filippov LO, Sadovskyi DY, Lukianova VV. Reverse Combined Microflotation of Fine Magnetite from a Mixture with Glass Beads. Minerals. 2020; 10(12):1078. https://doi.org/10.3390/min10121078
Chicago/Turabian StyleRulyov, Nickolaj N., Lev O. Filippov, Dmytro Y. Sadovskyi, and Vitalina V. Lukianova. 2020. "Reverse Combined Microflotation of Fine Magnetite from a Mixture with Glass Beads" Minerals 10, no. 12: 1078. https://doi.org/10.3390/min10121078
APA StyleRulyov, N. N., Filippov, L. O., Sadovskyi, D. Y., & Lukianova, V. V. (2020). Reverse Combined Microflotation of Fine Magnetite from a Mixture with Glass Beads. Minerals, 10(12), 1078. https://doi.org/10.3390/min10121078