High Specific Activity of Radium Isotopes in Baryte from the Czech Part of the Upper Silesian Basin—An Example of Spontaneous Mine Water Treatment
Abstract
:1. Introduction
2. Geological Setting
2.1. The Upper Silesian Basin
2.2. Geochemical and Hydrogeochemical Background
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rutherford, E.V. Bakerian lecture: The succession of changes in radioactive bodies. Phil. Trans. A 1904, 204, 169–219. [Google Scholar]
- Calabrese, E.J. Excessive barium and radium-226 in Illinois drinking water. J. Environ. Health. 1977, 39, 366–369. [Google Scholar] [PubMed]
- Mokrik, R.; Karro, E.; Savitskaja, L.; Drevaliene, G. The origin of barium in the Cambrian-Vendian aquifer system, North Estonia. Est. J. Earth Sci. 2009, 58, 193–208. [Google Scholar] [CrossRef]
- Fry, L.M. Radium and fission products radioactivity in thermal waters. Nature 1962, 195, 375–376. [Google Scholar] [CrossRef]
- Laboutka, M.; Vylita, B. Mineral and thermal waters of Western Bohemia. GeoJournal 1983, 7, 403–411. [Google Scholar] [CrossRef]
- Sturchio, N.C.; Bohlke, J.K.; Markun, F.J. Radium isotope geochemistry of thermal waters, Yellowstone National Park, Wyoming, USA. Geochim. Cosmochim. Acta 1993, 57, 1203–1214. [Google Scholar] [CrossRef]
- Bayés, J.C.; Gómez, E.; Garcias, F.; Casas, M.; Cerdá, V. Radium determination in mineral waters. Appl. Radiat. Isot. 1996, 47, 849–853. [Google Scholar] [CrossRef]
- Bituh, T.; Marovic, G.; Petrinec, B.; Sencar, J.; Franulovic, I. Natural radioactivity of 226Ra and 228Ra thermal and mineral waters in Croatia. Radiat. Prot. Dosim. 2009, 133, 119–123. [Google Scholar] [CrossRef]
- Condomines, M.; Gourdin, E.; Gataniou, D.; Seidel, J.-L. Geochemical behavior of radium isotopes and radon in a coastal thermal system (Balaruc-les-Bains, South of France). Geochim. Cosmochim. Acta 2012, 98, 160–176. [Google Scholar] [CrossRef]
- Kamenova-Totzeva, R.; Totzev, A.; Kotova, R. Radium content in Bulgarian mineral waters. Nucl. Technol. Radiat. 2018, 33, 133–138. [Google Scholar] [CrossRef]
- Herczog, A.L.; Simpson, H.J.; Anderson, R.F.; Trier, R.M.; Mathieu, G.G.; Deck, B.L. Uranium and radium mobility in groundwaters and brines within the Delaware Basin, Southeastern New Mexico, U.S.A. Chem. Geol. 1988, 72, 181–196. [Google Scholar]
- Dickson, B.L. Radium in groundwater. In The Environmental Behavior of Radium; International Atomic Energy Agency: Vienna, Austria, 1990; Volume 1, pp. 335–372. [Google Scholar]
- Kozłowska, B.; Walencik, A.; Przylibski, T.A.; Dorda, J.; Zipper, W. Uranium, radium and radon isotopes in selected brines of Poland. Nukleonika 2010, 55, 519–522. [Google Scholar]
- Kraemer, T.F.; Wood, W.W.; Sanford, W.E. Distinguishing seawater from geologic brine in saline coastal groundwater using radium-226; an example from the Sabkha of the UAE. Chem. Geol. 2014, 371, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Řanda, Z.; Ulrych, J.; Turek, K.; Mihaljevič, M.; Adamovič, J.; Mizera, J. Radiobarites from the Cenozoic volcanic region of the Bohemian Massif: Radiochemical study, history, and leas isotopic composition. J. Radioanal. Nucl. Chem. 2010, 283, 89–94. [Google Scholar] [CrossRef]
- Ulrych, J.; Adamovič, J.; Žák, K.; Frána, J.; Řanda, Z.; Langrová, A.; Skála, R.; Chvátal, M. Cenozoic "radiobarite" occurrences in the Ohře (Eger) Rift, Bohemian Massif: Mineralogical and geochemical revision. Chem. der Erde-Geochem. 2007, 67, 301–312. [Google Scholar] [CrossRef]
- Grandia, F.; Merino, J.; Amphos, J.B. Assessment of the Radium-Barium Co-Precipitation and its Potential Influence on the Solubility of Ra in the Near-Field; Svensk Kärnbränslehantering AB: Stockholm, Sweden, 2008. [Google Scholar]
- Zielinski, R.A.; Otton, J.K. Naturally Occurring Radioactive Material (NORM) in Produced Water and Oil-Field Equipment—An Issue for the Energy Industry; U.S. Geological Survey: Reston, VA, USA, 1999.
- Zielinski, R.A.; Otton, J.K.; Budahn, J.R. Use of radium isotopes to determine the age and origin of radioactive barite at oil-field production sites. Environ. Pollut. 2001, 113, 299–309. [Google Scholar] [CrossRef]
- Matta, L.E.; Godoy, J.M.; Reis, M.C. 226Ra, 228Ra and 228Th in scale and sludge samples from the Campos Basin oilfield E&P activities. Radiat. Prot. Dosim. 2002, 102, 175–178. [Google Scholar]
- Omar, M.; Ali, H.M.; Abu, M.P.; Kontol, K.M.; Ahmad, Z.; Ahmad, S.H.S.S.; Sulaiman, I.; Hamzah, R. Distribution of radium in oil and gas industry wastes from Malaysia. Appl. Radioact. Isotopes 2004, 60, 779–782. [Google Scholar] [CrossRef]
- Parmaksiz, A.; Ağuş, Y.; Bulgurlu, F.; Bulur, T.; Öncü, T.; Özkök, Y.Ö. Measurement of enhanced radium isotopes in oil production wastes in Turkey. J. Environ. Radioactiv. 2015, 141, 82–89. [Google Scholar] [CrossRef]
- Seeley, F.G. Problems in the separation of radium from uranium ore tailings. Hydrometallurgy 1977, 2, 249–263. [Google Scholar] [CrossRef]
- Nirdosh, I.; Muthuswami, S.V.; Baird, M.H.I. Radium in uranium mill tailings—Some observations on retention and removal. Hydrometallurgy 1984, 12, 151–176. [Google Scholar] [CrossRef]
- de Jesus, A.S.M. Technological enhancement. In The Behavior of Radium in Waterways and Aquifers; International Atomic Energy Agency: Vienna, Austria, 1984; pp. 87–115. [Google Scholar]
- Martin, A.; Crusius, J.; McNee, J.J.; Yanful, E. The mobility of radium-226 and trace metals in pre-oxidized subaqueous uranium mill tailings. Appl. Geochem. 2003, 18, 1095–1110. [Google Scholar] [CrossRef]
- Lardinoye, M.H.; Weterings, K.; van de Berg, W.B. Unexpected 226Ra build-up in wet-process phosphoric-acid plants. Health Phys. 1982, 42, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, P.M.; Dudas, M.J.; Arocena, J.M. Heterogenous distribution of radionuclides, barium and strontium in phosphogypsum by-product. Sci. Total Environ. 1996, 180, 201–209. [Google Scholar] [CrossRef]
- Burnett, W.C.; Elzerman, A.W. Nuclide migration and the environmental radiochemistry of Florida phosphogypsum. J. Environ. Radioactiv. 2001, 54, 27–51. [Google Scholar] [CrossRef]
- Sahu, S.K.; Ajmal, P.Y.; Bhangare, R.C.; Tiwari, M.; Pandit, G.G. Natural radioactivity assessment of a phosphate fertilizer plant area. J. Radiat. Res. Appl. Sci. 2014, 7, 123–128. [Google Scholar] [CrossRef]
- Martin, P.; Akber, R.A. Radium isotopes as indicators of adsorption-desorption interactions and barite formation in groundwater. J. Environ. Radioactiv. 1999, 46, 271–286. [Google Scholar] [CrossRef]
- Zhu, C. Coprecipitation in the barite isostructural family: 1. Binary mixing properties. Geochim. Cosmochim. Acta 2004, 68, 3327–3337. [Google Scholar] [CrossRef]
- Curti, E.; Fujiwara, K.; Iijima, K.; Tits, J.; Cuesta, C.; Kitamura, A.; Glaus, M.A.; Müller, W. Radium uptake during barite recrystallization at 23 ± 2 °C as a function of solution composition: An experimental 133Ba and 226Ra tracer study. Geochim. Cosmochim. Acta 2010, 74, 3553–3570. [Google Scholar] [CrossRef]
- Rosenberg, Y.O.; Metz, V.; Oren, Y.; Volkman, Y.; Ganor, J. Co-precipitation of radium in high ionic strength systems: 2. Kinetic and ionic strength effect. Geochim. Cosmochim. Acta 2011, 75, 5403–5422. [Google Scholar] [CrossRef]
- Kumpera, O.; Martinec, P. The development of the Carboniferous accretionary wedge in the Moravian-Silesian Paleozoic Basin. J. Czech Geol. Soc. 1995, 40, 47–64. [Google Scholar]
- Dopita, M.; Kumpera, O. Geology of the Ostrava-Karviná coalfield, Upper Silesian Basin, Czech Republic, and its influence on mining. Int. J. Coal Geol. 1993, 23, 291–321. [Google Scholar] [CrossRef]
- Dopita, M. (Ed.) Geology of the Czech part of the Upper Silesian Basin; Ministerstvo životního prostředí ČR: Praha, Czech Republic, 1997; (In Czech with English summary).
- Pešek, J.; Sivek, M. Coal-Bearing Basins and Coal Deposits of the Czech Republic; Czech Geological Survey: Prague, Czech Republic, 2016. [Google Scholar]
- Jirásek, J.; Opluštil, S.; Sivek, M.; Schmitz, M.D.; Abels, H.A. Astronomical forcing of Carboniferous paralic sedimentary cycles in the Upper Silesian Basin, Czech Republic (Serpukhovian, latest Mississippian): New radiometric ages afford an astronomical age model for European biozonations and substages. Earth-Sci. Rev. 2018, 177, 715–741. [Google Scholar] [CrossRef]
- Jirásek, J.; Hýlová, L.; Sivek, M.; Jureczka, J.; Martínek, K.; Sýkorová, I.; Schmitz, M. The Main Ostrava Whetstone: Composition, sedimentary processes, palaeogeography and geochronology of a major Mississippian volcaniclastic unit of the Upper Silesin Basin (Poland and Czech Republic). Int. J. Earth Sci. 2013, 102, 989–1006. [Google Scholar] [CrossRef] [Green Version]
- Opluštil, S.; Lojka, R.; Rosenau, N.; Strnad, L.; Kędzior, A. Climatically-driven cyclicity and peat formation in fluvial setting of the Moscovian—Early Kasimovian Cracow Sandstone Series, Upper Silesia (Poland). Int. J. Coal Geol. 2019, 212, 103234. [Google Scholar] [CrossRef]
- Kalvoda, J.; Babek, O.; Fatka, O.; Leichmann, J.; Melichar, R.; Nehyba, S.; Spacek, P. Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: A review. Int. J. Earth Sci. 2008, 97, 497–518. [Google Scholar] [CrossRef]
- Buła, Z.; Habryn, R.; Jachowict-Zdanowska, M.; Żaba, J. Precambrian and Lower Paleozoic of the Brunovistulicum (eastern part of the Upper Silesian Block, southern Poland)—The state of the art. Geol. Q. 2015, 59, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Pešek, J.; Sýkorová, I.; Jelínek, J.; Michna, O.; Forstová, J.; Martínek, K.; Vašíček, M.; Havelcová, M. Major and minor elements in the hard coal from the Czech Upper Paleozoic basins. Czech Geol. Surv. Spec. Pap. 2010, 20, 1–40. [Google Scholar]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- René, M. Distribution of uranium, thorium and gold in Carboniferous sediments in the NE part of the Bohemian Massif. Čas. Slez. Muz. Ser. A 1992, 41, 151–157, (In Czech with English abstract). [Google Scholar]
- Dopita, M.; Králík, J. Coal tonsteins of Ostrava-Karviná Coal Basin; OKD: Ostrava, Czechoslovakia, 1977; (In Czech with English and Russian summary). [Google Scholar]
- Grmela, A. Hydrogeological conditions. In Geologie České Části Hornoslezské Pánve; Dopita, M., Ed.; Ministerstvo životního prostředí České republiky: Praha, Czech Republic, 1997; pp. 198–204, (In Czech with English summary). [Google Scholar]
- Pluta, I.; Zuber, A. Origin of brines in the Upper Silesian Coal Basin (Poland) inferred from stable isotope and chemical data. Appl. Geochem. 1995, 10, 447–460. [Google Scholar] [CrossRef]
- Gilmore, G. Practical Gamma-Ray Spectrometry, 2nd ed.; John Willey & Sons Ltd.: Chichester, England, 2007. [Google Scholar]
- Goldish, E. X-ray diffraction analysis of barium-strontium sulfate (barite-celestite) solid solutions. Powder Diffr. 1989, 4, 214–216. [Google Scholar] [CrossRef]
- Hennessy, A.J.B.; Graham, G.M. The effect of additives on the co-crystalisation of calcium with barium sulphate. J. Cryst. Growth 2002, 237–239, 2153–2159. [Google Scholar] [CrossRef]
- Miyake, M.; Minato, I.; Morikawa, H.; Iwai, S. Crystal structures and sulphate force constants of barite, celestite, and anglesite. Am. Mineral. 1978, 63, 506–510. [Google Scholar]
- Antao, S.M. Structural trends for celestite (SrSO4), anglesite (PbSO4), and barite (BaSO4): Confirmation of expected variations within the SO4 groups. Am. Mineral. 2012, 97, 661–665. [Google Scholar] [CrossRef]
- Knoll, G.F. Radiation Detection and Measurement, 3rd ed.; John Willey & Sons Inc.: New York, NY, USA, 2000. [Google Scholar]
- Eggeling, L.; Genter, A.; Kölbel, T.; Münch, W. Impact of natural radionuclides on geothermal exploitation in the Upper Rhine Graben. Geothermics 2013, 47, 80–88. [Google Scholar] [CrossRef]
- Matýsek, D.; Jirásek, J.; Osovský, M.; Skupien, P. Minerals formed by the weathering of sulfides in miners of the Czech part of the Upper Silesian Basin. Mineral. Mag. 2014, 78, 1265–1286. [Google Scholar] [CrossRef]
- Wysocka, M.; Chalupnik, S.; Chmiellewska, I.; Janson, E.; Radziejowski, W.; Samolej, K. Natural radioactivity in Polish coal mines: An attempt to assess the trend of radium release into the environment. Mine Water Environ. 2019, 38, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Courbet, C.; Wysocka, M.; Martin, L.; Chmielewska, I.; Bonczyk, M.; Michalik, B.; Barker, E.; Zebracki, M.; Mangeret, A. Fate of radium in river and lake sediments impacted by coal mining sites in Silesia (Poland). In Proceedings IMWA 2016—Mining Meets Water—Conflicts and Solutions; Drebenstedt, C., Paul, M., Eds.; TU Bergakademie Freiberg: Freiberg, Germany, 2016; pp. 1249–1253. [Google Scholar]
- Hanor, J.S. Barite–celestine geochemistry and environments of formation. Rev. Mineral. Geochem. 2000, 40, 193–275. [Google Scholar] [CrossRef]
- Ptacek, C.; Blowees, D. Predicting sulfate-mineral solubility in concentrated waters. Rev. Mineral. Geochem. 2000, 40, 513–540. [Google Scholar] [CrossRef]
- Chałupnik, S.; Wysocka, M. Radium removal from mine waters in underground treatment installations. J. Environ. Radioactiv. 2008, 99, 1548–1552. [Google Scholar] [CrossRef] [PubMed]
- Singleton, R. The sulfate-reducing bacteria: An overview. In The Sulfate-Reducing Bacteria: Contemporary Perspectives; Odom, J.M., Singleton, R., Eds.; Brock/Springer Series in Contemporary Bioscience; Springer: New York, NY, USA, 1993; pp. 1–20. [Google Scholar]
- Landa, E.R. Mobilization of radionuclides from uranium mill tailings and related waste materials in anaerobic environmens. J. Radioanal. Nucl. Chem. 2003, 255, 559–563. [Google Scholar] [CrossRef]
- Larock, P.; Hyun, J.-H.; Boutelle, S.; Burnett, W.C.; Hull, C.D. Bacterial mobilization of polonium. Geochim. Cosmochim. Acta 1996, 60, 4321–4328. [Google Scholar] [CrossRef]
- Phillips, E.J.P.; Landa, E.R.; Kraemer, T.F.; Zielinski, R.A. Sulfate-reducing bacteria release barium and radium from naturally occurring radioactive material in oil-field barite. Geomicrobiol. J. 2001, 18, 167–182. [Google Scholar] [CrossRef]
- Iyengar, M.A.R. The natural distribution of radium. In The Environmental Behavior of Radium; International Atomic Energy Agency: Vienna, Austria, 1990; Volume 1, pp. 59–128. [Google Scholar]
- Kondash, A.J.; Warner, N.R.; Lahav, O.; Vengosh, A. Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage. Environ. Sci. Technol. 2014, 48, 1334–1342. [Google Scholar] [CrossRef] [PubMed]
Source | a (Å) | b (Å) | c (Å) |
---|---|---|---|
this study | 8.8089(2) | 5.4457(1) | 7.1231(1) |
[53] | 8.884(2) 1 | 5.457(3) 1 | 7.157(2) 1 |
[54] | 8.88101(3) 1 | 5.45447(1) 1 | 7.15505(1) 1 |
Constituent | Mean | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
BaO | 57.06 | 55.73 | 57.19 | 58.85 | 58.30 | 56.44 | 57.30 | 55.60 |
SrO | 2.37 | 2.37 | 2.63 | 2.15 | 2.35 | 2.23 | 2.56 | 2.32 |
RbO | 0.02 | b.d.l.1 | b.d.l.1 | b.d.l.1 | b.d.l.1 | b.d.l.1 | 0.11 | b.d.l.1 |
MgO | 0.05 | 0.02 | 0.07 | 0.04 | 0.03 | 0.03 | 0.04 | 0.08 |
CaO | 1.14 | 1.07 | 1.06 | 1.11 | 1.25 | 1.26 | 1.08 | 1.15 |
K2O | 0.19 | 0.27 | 0.20 | 0.14 | 0.16 | 0.22 | 0.13 | 0.18 |
Al2O3 | 1.01 | 1.53 | 1.17 | 0.71 | 0.71 | 1.00 | 0.90 | 1.07 |
Fe2O3 | 2.72 | 3.39 | 2.25 | 1.43 | 1.61 | 2.86 | 2.70 | 4.81 |
SiO2 | 1.23 | 1.65 | 1.37 | 0.73 | 0.74 | 1.24 | 1.40 | 1.47 |
SO3 | 31.41 | 30.27 | 30.69 | 32.43 | 32.71 | 31.37 | 32.15 | 30.25 |
Cl | 0.15 | 0.17 | 0.11 | 0.16 | 0.10 | 0.20 | 0.05 | 0.25 |
Σ | 97.35 | 96.47 | 96.76 | 97.79 | 97.97 | 96.85 | 98.43 | 97.20 |
Ba2+ | 0.934 | 0.944 | 0.951 | 0.936 | 0.921 | 0.927 | 0.921 | 0.941 |
Sr2+ | 0.058 | 0.059 | 0.065 | 0.051 | 0.055 | 0.054 | 0.061 | 0.058 |
Rb2+ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | 0.000 |
Mg2+ | 0.003 | 0.001 | 0.004 | 0.002 | 0.002 | 0.002 | 0.002 | 0.005 |
Ca2+ | 0.051 | 0.050 | 0.048 | 0.048 | 0.054 | 0.056 | 0.048 | 0.053 |
S6+ | 0.985 | 0.982 | 0.977 | 0.988 | 0.989 | 0.987 | 0.989 | 0.981 |
Nuclide | Energy | R1 | R2 | RB | A | Am |
---|---|---|---|---|---|---|
(keV) | s–1 | s–1 | s–1 | Bq | Bq/g | |
214Pb | 295.22 | 20.372(62) | 1.2509(51) | not detected | 177.4(19) | 39.69(48) |
214Pb | 351.93 | 34.229(69) | 2.1115(64) | 0.00192(62) | 178.1(18) | 39.84(43) |
214Bi | 609.31 | 23.502(71) | 1.4378(58) | 0.00154(55) | 176.5(20) | 39.49(47) |
214Bi | 1120.29 | 4.663(33) | 0.2883(32) | not detected | 178.7(29) | 39.98(67) |
214Bi | 1764.49 | 3.780(23) | 0.2295(21) | 0.00159(26) | 174.1(27) | 38.95(61) |
Nuclide | Energy | A1 | A2 | A1m | A2m |
---|---|---|---|---|---|
(keV) | Bq | Bq | Bq/g | Bq/g | |
212Pb | 238.63 | 48.6(20) | 49.6(15) | 10.87(46) | 11.10(34) |
212Pb | 300.09 | not detected | 49.1(25) | - | 10.98(57) |
228Ac | 911.20 | 110.8(67) | 105.4(14) | 24.8(15) | 23.56(33) |
228Ac | 968.97 | 101.3(81) | 103.0(18) | 22.7(19) | 23.04(42) |
212Bi | 1620.74 | not detected | 53.9(76) | - | 12.1(18) |
Sample No. | Unit | P2307 | P41 | P2111 | P1804 | P4505 |
---|---|---|---|---|---|---|
pH | 7.1 | 6.0 | 6.4 | 7.4 | 7.3 | |
mineralization | mg/L | 112,000 | 127,000 | 39,100 | 281,000 | 35,900 |
anions | ||||||
Cl– | mg/L | 68,900 | 79,900 | 23,900 | 134,000 | 21,200 |
Br– | mg/L | 369 | 391 | 111 | 217 | 100 |
I– | mg/L | 10.1 | 8.9 | 11.3 | 14.1 | 7.9 |
SO42– | mg/L | <10 | <10 | 113 | 222 | 677 |
HCO3– | mg/L | 62.2 | <24 | 293 | 48.2 | 162 |
CO32– | mg/L | <24 | <24 | <24 | <24 | <24 |
cations | ||||||
Na+ | mg/L | 32,400 | 34,900 | 12,400 | 142,000 | 12,000 |
K+ | mg/L | 554 | 515 | 214 | 438 | 284 |
Ca2+ | mg/L | 7340 | 8690 | 1370 | 3000 | 1250 |
Mg2+ | mg/L | 1810 | 2100 | 604 | 642 | 249 |
Fetot | mg/L | <0.05 | 4.62 | 41.20 | <0.05 | 0.075 |
Mn2+ | mg/L | 2.69 | 7.20 | 2.18 | 4.45 | 0.67 |
Sr2+ | mg/L | 286 | 286 | 47 | 84 | 32 |
Ba2+ | mg/L | 521 | 323 | 2 | 5 | 0.7 |
Li+ | mg/L | 11.2 | 9.1 | 3.5 | 9.6 | 3.0 |
Al3+ | mg/L | <0.03 | <0.15 | <0.03 | <0.03 | <0.03 |
NH4+ | mg/L | 18.59 | 33.93 | 13.48 | 22.45 | 15.45 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jirásek, J.; Matýsek, D.; Alexa, P.; Osovský, M.; Uhlář, R.; Sivek, M. High Specific Activity of Radium Isotopes in Baryte from the Czech Part of the Upper Silesian Basin—An Example of Spontaneous Mine Water Treatment. Minerals 2020, 10, 103. https://doi.org/10.3390/min10020103
Jirásek J, Matýsek D, Alexa P, Osovský M, Uhlář R, Sivek M. High Specific Activity of Radium Isotopes in Baryte from the Czech Part of the Upper Silesian Basin—An Example of Spontaneous Mine Water Treatment. Minerals. 2020; 10(2):103. https://doi.org/10.3390/min10020103
Chicago/Turabian StyleJirásek, Jakub, Dalibor Matýsek, Petr Alexa, Michal Osovský, Radim Uhlář, and Martin Sivek. 2020. "High Specific Activity of Radium Isotopes in Baryte from the Czech Part of the Upper Silesian Basin—An Example of Spontaneous Mine Water Treatment" Minerals 10, no. 2: 103. https://doi.org/10.3390/min10020103
APA StyleJirásek, J., Matýsek, D., Alexa, P., Osovský, M., Uhlář, R., & Sivek, M. (2020). High Specific Activity of Radium Isotopes in Baryte from the Czech Part of the Upper Silesian Basin—An Example of Spontaneous Mine Water Treatment. Minerals, 10(2), 103. https://doi.org/10.3390/min10020103