Petrological Features of the Burlakski and Nizhne-Derbinsk Mafic-Ultramafic Plutons (East Sayan Mountains, Siberia, Russia)
Abstract
:1. Introduction
2. Geological Background
2.1. Geological Setting of Plutons
2.2. Pluton Structure
2.2.1. Burlakski Pluton
2.2.2. Nizhne-Derbinsk Pluton
3. Materials and Methods
4. Results
4.1. Petrology
4.1.1. Rocks of the Burlakski and Niznhe-Derbinsk Plutons
4.1.2. Mineral Description
4.2. Mineral Chemistry
5. Discussion
5.1. Pressure and Temperature Estimates
5.2. Petrological Features
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harker, A. The Tertiary Igneous Rocks of Skye; HM Stationery Office: Edinburgh, Scotland, 1904. [Google Scholar]
- Bowen, N.L. The Evolution of the Igneous Rocks; Princeton University Press: Princeton, NJ, USA, 1928. [Google Scholar]
- Wager, L.R.; Brown, G.M. Layered Igneous Rocks; Freeman: San Francisco, CA, USA, 1967. [Google Scholar]
- Cambell, I.H.; Naldrett, A.J.; Barnes, S.J. A Model for the Origin of the Platinum-Rich Sulfide Horizons in the Bushveld and Stillwater Complexes. J. Petrol. 1983, 24, 133–165. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Barnes, S.J.; Roeder, P.L. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Borghini, G.; Rampone, E.; Crispini, L.; De Ferrari, R.; Godard, M. Origin and emplacement of ultramafic-mafic intrusions in the Erro-Tobbio mantle peridotite (Ligurian Alps, Italy). Lithos 2007, 94, 210–229. [Google Scholar] [CrossRef]
- Zhou, M.-F.; Lightfoot, P.C.; Keays, R.R.; Moore, M.L.; Morrison, G.G.; Zhoua, M.-F.; Keays, R.R.; Lightfooe, P.C.; Morrison, G.G.; Moore, M.L. Petrogenetic significance of chromian spinels from the Sudbury Igneous Complex, Ontario, Canada. Can. J. Earth Sci. 1997, 34, 1405–1419. [Google Scholar] [CrossRef]
- Jamali, H.; Yaghubpur, A.; Mehrabi, B.; Dilek, Y.; Daliran, F.; Meshkani, A. Petrogenesis and Tectono-Magmatic Setting of Meso-Cenozoic Magmatism in Azerbaijan Province, Northwestern Iran. Petrology—New Perspectives and Applications. IntechOpen 2012, 39–56. [Google Scholar] [CrossRef] [Green Version]
- Barnes, S.J.; Tang, Z.L. Chrome spinels from the Jinchuan Ni-Cu sulfide deposit, Gansu Province, People’s Republic of China. Econ. Geol. 1999, 94, 343–356. [Google Scholar] [CrossRef]
- Naldrett, A.; Von Gruenewaldt, G. Association of platinum-group elements with chromitite in layered intrusions and ophiolite complexes. Econ. Geol. 1989, 84, 180–187. [Google Scholar] [CrossRef]
- Muroi, R.; Arai, S. Formation process of olivine-clinopyroxene cumulates inferred from Takashima xenoliths, Southwest Japan arc. J. Mineral. Petrol. Sci. 2014, 109, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Green, D.H.; Ringwood, A.E. The genesis of basaltic magmas. Contrib. Mineral. Petrol. 1967, 15, 103–190. [Google Scholar] [CrossRef]
- Wandji, P.; Tsafack, J.P.F.; Bardintzeff, J.M.; Nkouathio, D.G.; Kagou Dongmo, A.; Bellon, H.; Guillou, H. Xenoliths of dunites, wehrlites and clinopyroxenites in the basanites from Batoke volcanic cone (Mount Cameroon, Central Africa): Petrogenetic implications. Mineral. Petrol. 2009, 96, 81–98. [Google Scholar] [CrossRef]
- Mercier, J.C.C.; Benoit, V.; Girardeau, J. Equilibrium state of diopside-bearing harzburgites from ophiolites: Geobarometric and geodynamic implications. Contrib. Mineral. Petrol. 1984, 85, 391–403. [Google Scholar] [CrossRef]
- Alifirova, T.A.; Pokhilenko, L.N.; Ovchinnikov, Y.I.; Donnelly, C.L.; Riches, A.J.V.; Taylor, L.A. Petrologic origin of exsolution textures in mantle minerals: Evidence in pyroxenitic xenoliths from Yakutia kimberlites. Int. Geol. Rev. 2012, 54, 1071–1092. [Google Scholar] [CrossRef]
- Parlak, O.; Höck, V.; Delaloye, M. The supra-subduction zone Pozanti–Karsanti ophiolite, southern Turkey: Evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos 2002, 65, 205–224. [Google Scholar] [CrossRef]
- Fiorentini, M.L.; LaFlamme, C.; Denyszyn, S.; Mole, D.; Maas, R.; Locmelis, M.; Caruso, S.; Bui, T.H. Post-collisional alkaline magmatism as gateway for metal and sulfur enrichment of the continental lower crust. Geochim. Cosmochim. Acta 2018, 223, 175–197. [Google Scholar] [CrossRef]
- Larsen, R.B.; Grant, T.; Sørensen, B.E.; Tegner, C.; McEnroe, S.; Pastore, Z.; Fichler, C.; Nikolaisen, E.; Grannes, K.R.; Church, N.; et al. Portrait of a giant deep-seated magmatic conduit system: The Seiland Igneous Province. Lithos 2018, 296–299, 600–622. [Google Scholar] [CrossRef]
- Larsen, R.B.; Sørensen, B.E.; Nikolaisen, E. Formation and disruption of Cu-Ni-PGE deposits in a giant deep-seated mafic-ultramafic conduit system. In Proceedings of the 15th Biennial SGA Meeting, Glasgow, UK, 27–30 August 2019; pp. 528–531. [Google Scholar]
- Irvine, T.N. Chromian spinel as a petrogenetic indicator: Part 1. Theory. Can. J. Earth Sci. 1965, 2, 648–672. [Google Scholar] [CrossRef]
- Irvine, T.N. Chromian spinel as a petrogenetic indicatir: Part 2. Petrologic applications. Can. J. Earth Sci. 1967, 4, 71–103. [Google Scholar] [CrossRef]
- Liermann, H.-P.; Ganguly, J. Diffusion kinetics of Fe2+ and Mg in aluminous spinel. Geochim. Cosmochim. Acta 2002, 66, 2903–2913. [Google Scholar] [CrossRef]
- Baumgartner, R.J.; Zaccarini, F.; Garuti, G.; Thalhammer, O.A.R. Mineralogical and geochemical investigation of layered chromitites from the Bracco–Gabbro complex, Ligurian ophiolite, Italy. Contrib. Mineral. Petrol. 2013, 165, 477–493. [Google Scholar] [CrossRef]
- Dharma Rao, C.V.; Santosh, M.; Sajeev, K.; Windley, B.F. Chromite–silicate chemistry of the Neoarchean Sittampundi Complex, southern India: Implications for subduction-related arc magmatism. Precambrian Res. 2013, 227, 259–275. [Google Scholar] [CrossRef]
- Avcı, E.; Uysal, İ.; Akmaz, R.M.; Saka, S. Ophiolitic chromitites from the Kızılyüksek area of the Pozantı-Karsantı ophiolite (Adana, southern Turkey): Implication for crystallization from a fractionated boninitic melt. Ore Geol. Rev. 2017, 90, 166–183. [Google Scholar] [CrossRef]
- Xiong, F.; Yang, J.; Robinson, P.T.; Gao, J.; Chen, Y.; Lai, S. Petrology and geochemistry of peridotites and podiform chromitite in the Xigaze ophiolite, Tibet: Implications for a suprasubduction zone origin. J. Asian Earth Sci. 2017, 146, 56–75. [Google Scholar] [CrossRef]
- Grieco, G.; Bussolesi, M.; Tzamos, E.; Rassios, A.E.; Kapsiotis, A. Processes of primary and re-equilibration mineralization affecting chromitite ore geochemistry within the Vourinos ultramafic sequence, Vourinos ophiolite (West Macedonia, Greece). Ore Geol. Rev. 2018, 95, 537–551. [Google Scholar] [CrossRef]
- Burkhard, D.J.M. Accessory chromium spinels: Their coexistence and alteration in serpentinites. Geochim. Cosmochim. Acta 1993, 57, 1297–1306. [Google Scholar] [CrossRef]
- Barnes, S.J.; Kunilov, V.Y. Spinels and mg ilmenites from the noril’sk 1 and talnakh intrusions and other mafic rocks of the siberian flood basalt province. Econ. Geol. 2000, 95, 1701–1718. [Google Scholar] [CrossRef]
- Mellini, M.; Rumori, C.; Viti, C. Hydrothermally reset magmatic spinels in retrograde serpentinites: Formation of “ferritchromit” rims and chlorite aureoles. Contrib. Mineral. Petrol. 2005, 149, 266–275. [Google Scholar] [CrossRef]
- Harlov, D.; Tropper, P.; Seifert, W.; Nijland, T.; Förster, H.-J. Formation of Al-rich titanite (CaTiSiO4O–CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2. Lithos 2006, 88, 72–84. [Google Scholar] [CrossRef]
- Mukherjee, R.; Mondal, S.K.; Rosing, M.T.; Frei, R. Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India): Potential parental melts and implications for tectonic setting. Contrib. Mineral. Petrol. 2010, 160, 865–885. [Google Scholar] [CrossRef]
- Melluso, L.; de’ Gennaro, R.; Rocco, I. Compositional variations of chromiferous spinel in Mg-rich rocks of the Deccan Traps, India. J. Earth Syst. Sci. 2010, 119, 343–363. [Google Scholar] [CrossRef] [Green Version]
- Bliss, N.W.; MacLean, W.H. The paragenesis of zoned chromite from central Manitoba. Geochim. Cosmochim. Acta 1975, 39, 973–990. [Google Scholar] [CrossRef]
- Merlini, A.; Grieco, G.; Diella, V. Ferritchromite and chromian-chlorite formation in mélange-hosted Kalkan chromitite (Southern Urals, Russia). Am. Mineral. 2009, 94, 1459–1467. [Google Scholar] [CrossRef]
- Gervilla, F.; Padrón-Navarta, J.A.; Kerestedjian, T.; Sergeeva, I.; González-Jiménez, J.M.; Fanlo, I. Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: a two-stage process. Contrib. Mineral. Petrol. 2012, 164, 643–657. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R.K.B. Zn- and Mn-rich chrome-spinels in serpentinite of Tidding Suture Zone, Eastern Himalaya and their metamorphism and genetic significance. Curr. Sci. 2011, 100, 743–749. [Google Scholar]
- Wylie, A.G.; Candela, P.A.; Burke, T.M. Compositional zoning in unusual Zn-rich chromite from the Sykesville District of Maryland and its bearing on the origin of “ferritchromit”. Am. Mineral. 1987, 72, 413–422. [Google Scholar]
- Klingenberg, B.M.E.T.; Kushiro, I. Melting of a chromite-bearing harzburgite and generation of boninitic melts at low pressures under controlled oxygen fugacity. Lithos 1996, 37, 1–14. [Google Scholar] [CrossRef]
- Ravikant, V.; Pal, T.; Das, D. Chromites from the Nidar ophiolite and Karzok complex, Transhimalaya, eastern Ladakh: their magmatic evolution. J. Asian Earth Sci. 2004, 24, 177–184. [Google Scholar] [CrossRef]
- Arif, M.; Jan, M.Q. Petrotectonic significance of the chemistry of chromite in the ultramafic–mafic complexes of Pakistan. J. Asian Earth Sci. 2006, 27, 628–646. [Google Scholar] [CrossRef]
- Gahlan, H.A.; Arai, S. Genesis of peculiarly zoned Co, Zn and Mn-rich chromian spinel in serpentinite of Bou-Azzer ophiolite, Anti-Atlas, Morocco. J. Mineral. Petrol. Sci. 2007, 102, 69–85. [Google Scholar] [CrossRef] [Green Version]
- Barnes, S.J. Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. J. Petrol. 2000, 41, 387–409. [Google Scholar] [CrossRef] [Green Version]
- Kamenetsky, V.S.; Crawford, A.J.; Meffre, S. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 2001, 42, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Kornev, T.Y.; Romanov, A.P.; Knjazev, V.N.; Sharifulin, S.K. Platinum bearing greenstone belts of East Sayan Mountains and Yenissey Ringe. Platinum Russia 2004, 5, 358–380. (In Russian) [Google Scholar]
- Izokh, A.; Shelepaev, R.; Lavrenchuk, A.; Borodina, E.; Yegorova, V.V.; Vasjukova, E.; Gladkochub, D. Cambro-Ordovician Variety of ultramafic-mafic associations of the Central Asian fold belt as a reflection of the interaction of the plume and lithospheric mantle. Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt. In Proceedings of the scientific conference on the Programme of Basic Research, Irkutsk, Russia, 10–14 October 2005; pp. 106–108. (In Russian). [Google Scholar]
- Serdyk, S.S.; Kirilenko, V.A.; Lomaeva, G.R.; Babushkin, V.E.; Tarasov, A.E.; Zverev, A.I. Geology and Procpecting Cu-Ni-PGE-Mineralization of Earst Part of Altae-Sayan Fold Mountains; Siti: Krasnoyarsk, Russia, 2010; p. 184. [Google Scholar]
- Ekhanin, A.; Fillipov, G.; Anikeeva, A. Geological structure features and mineralization of the Burlakski basic-ultrabasic massif (East Sayan Mountains). Izv. Vyss. Uchebnykh Zaved. Geol. Razved. 1991, 9, 72–78. (In Russian) [Google Scholar]
- Volokhov, I.; Ivanov, V. Nizhne-Derbinsk gabbro-piroxenite-peridotite intrusive complex (Vostochnui Sayan). Russ. Geol. Geophys. 1964, 5, 52–67. (In Russian) [Google Scholar]
- Smagin, A.N.; Nozhkin, A.D.; Homichev, V.L. Working Correlation Scheme of Magmatic and Metamorphic Complexes of the East Sayan Mountains; SNIIGIMS: Novosibirsk, Russia, 1997. [Google Scholar]
- Smagin, A.N. Magmatism and metallogeny of the Altai-Sayan folded region; Nauka: Novosibirsk, Russia, 1971; p. 203. (In Russian) [Google Scholar]
- Semenov, M.I.; Dolzhkovoi, B.M.; Guseinov, I.F. Regional geologic map. Scale 1:200000. Seria East-Sayan. In Shirt N-46-X; VSEGEI: St. Peterburg, Russia, 2002; 204p. (In Russian) [Google Scholar]
- Dobretsov, N.L.; Berzin, N.A.; Buslov, M.M. Opening and tectonic evolution of the Paleo-Asian Ocean. Int. Geol. Rev. 1995, 37, 335–360. [Google Scholar] [CrossRef]
- Izokh, A.E.; Polyakov, G.V.; Mal’kovets, V.G.; Shelepaev, R.A.; Travin, A.V.; Litasov, Y.D.; Gibsher, A.A. The late Ordovician age of camptonites from the Agardag Complex of southeastern Tuva as an indicator of the plume-related magmatism during collision processes. Dokl. Earth Sci. 2001, 379, 511–514. [Google Scholar]
- Cherkasova, T.; Chernishov, A.; Goltsova, Y.; Timkin, T.; Abramova, R. Petrogenetic characteristics of mafic-ultramafic massifs in Nizhne-Derbinsk complex (East Sayan Mountains). IOP Conf. Ser. Earth Environ. Sci. 2015, 27, 012002. [Google Scholar] [CrossRef]
- Izokh, A.E. Stratified Ultramafic-Mafic Associations as Indicators of Geodynamic Settings (for Example, the Central Asian Folding Belt). Ph.D. dissertation, Sobolev Institute of Geology and Mineralogy, Novosibirsk, Russia, 1999; p. 36. [Google Scholar]
- Izokh, A.; Kargopolov, S.; Shelepaev, R.; Travin, V.; Yegorova, V. Mafic magmatism of Cambro-Ordovician stage of the Altai-Sayan folded area and the connection of metamorphism of high temperatures and low pressures. In Proceedings of the Аctual issues of geology and minerageny of Southern Siberia, Novosibirsk, Russia, 31 October–2 November 2001; pp. 68–72. (In Russian). [Google Scholar]
- Cherkasova, T.; Chernyshov, A. Petrochemical characteristics of the stratified mafic-ultramafic massifs of the Nizhnederbinskiy complex (NW of the Eastern Sayan Mountains). Tomsk. State Univ. J. 2009, 324, 390–394. (In Russian) [Google Scholar]
- Gongalsky, B.I.; Krivolutskaya, N.A.; Ariskin, A.A.; Nikolaev, G.S. The Chineysky gabbronorite-anorthosite layered massif (NorthernTransbaikalia, Russia): its structure, Fe-Ti-V and Cu-PGE deposits, and parental magma composition. Miner. Depos. 2016, 51, 1013–1034. [Google Scholar] [CrossRef]
- Howarth, R.J. Improved estimators of uncertainty in proportions, point-counting, and pass-fail test results. Am. J. Sci. 1998, 298, 594–607. [Google Scholar] [CrossRef]
- Droop, G.T.R. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. 1987, 51, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Perchuk, L.; Aranovich, L.; Kosyakova, N. Thermodynamic models of the origination and evolution of basaltic magmas. Vestn. Mosk. Univ. Ser. Geol. 1982, 4, 3–26. (In Russian) [Google Scholar]
- Brey, G.P.; Köhler, T. Geothermobarometry in four-phase lherzolites. II. new thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 1990, 31, 1353–1378. [Google Scholar] [CrossRef]
- Nimis, P.; Taylor, W.R. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Mineral. Petrol. 2000, 139, 541–554. [Google Scholar] [CrossRef]
- Su, B.-X.; Qin, K.-Z.; Zhou, M.-F.; Sakyi, P.A.; Thakurta, J.; Tang, D.-M.; Liu, P.-P.; Xiao, Q.-H.; Sun, H. Petrological, geochemical and geochronological constraints on the origin of the Xiadong Ural–Alaskan type complex in NW China and tectonic implication for the evolution of southern Central Asian Orogenic Belt. Lithos 2014, 200–201, 226–240. [Google Scholar] [CrossRef]
- Cherkasova, T.; Mazurov, A. Ore minerals in mafic-ultramafic rocks of Burlaksky and Nizhnederbinsky massifs (the East Sayan). Zap. RMO 2012, 141, 77–82. [Google Scholar]
- Hawthorne, F.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Biagiony, C.; Pasero, M. The systematics of the spinel-type minerals: An overview. Am. Mineral. 2014, 99, 1254–1264. [Google Scholar] [CrossRef]
- Obata, M.; Banno, S.; Mori, T. The iron-magnesium partitioning between naturally occurring coexisting olivine and Ca-rich clinopyroxene: An application of the simple mixture model to olivine solid solution. Bull. Minéralogie 1974, 97, 101–107. [Google Scholar]
- Evans, B.W.; Frost, B.R. Chrome-spinel in progressive metamorphism—A preliminary analysis. Geochim. Cosmochim. Acta 1975, 39, 959–972. [Google Scholar] [CrossRef]
- Presnall, D.C.; Dixon, S.A.; Dixon, J.R.; O’Donnell, T.H.; Brenner, N.L.; Schrock, R.L.; Dycus, D.W. Liquidus phase relations on the join diopside-forsterite-anorthite from 1 atm to 20 kbar: Their bearing on the generation and crystallization of basaltic magma. Contrib. Mineral. Petrol. 1978, 66, 203–220. [Google Scholar] [CrossRef]
- Arai, S. Dunite–harzburgite–chromitite complexes as refractory residue in the sangun–yamaguchi zone, Western Japan. J. Petrol. 1980, 21, 141–165. [Google Scholar] [CrossRef]
- Mysen, B.; Boettcher, A. Melting of a hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen. J. Petrol. 1975, 16, 520–548. [Google Scholar] [CrossRef]
- Boyd, F. A pyroxene geotherm. Geochim. Cosmochim. Acta 1973, 37, 2533–2546. [Google Scholar] [CrossRef]
- Mysen, B.O.; Kushiro, I. Compositional Variations of Coexisting Phases with Degrees of Melting of Peridotite in the Upper Mantle. Am. Mineral. 1977, 62, 843–865. [Google Scholar]
- Medaris, J.G. High-pressure peridotites in southwestern Oregon. Bull. Geol. Soc. Am. 1972, 83, 41–58. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A.; Puerini, M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib. Mineral. Petrol. 2010, 160, 45–66. [Google Scholar] [CrossRef]
- Hollister, L.S.; Grissom, G.C.; Peters, E.K.; Stowell, H.H.; Sisson, V.B. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am. Mineral. 1987, 72, 231–239. [Google Scholar]
- Schmidt, M.W. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol. 1992, 110, 304–310. [Google Scholar] [CrossRef]
- Metcalf, R.V.; Shervais, J.W. Suprasubduction-zone ophiolites: Is there really an ophiolite conundrum? Spec. Pap. Geol. Soc. Am. 2008, 438, 191–222. [Google Scholar]
- Kapsiotis, A. Composition and alteration of Cr-spinels from Milia and Pefki serpentinized mantle peridotites (Pindos Ophiolite Complex, Greece). Geol. Carpathica 2014, 65, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Grieco, G.; Merlini, A. Chromite alteration processes within Vourinos ophiolite. Int. J. Earth Sci. 2012, 101, 1523–1533. [Google Scholar] [CrossRef]
- Mussallam, K.; Jung, D.; Burgath, K. Textural features and chemical characteristics of chromites in ultramafic rocks, Chalkidiki Complex (Northeastern Greece). TMPM Tschermaks Mineral. Petrogr. Mitt. 1981, 29, 75–101. [Google Scholar] [CrossRef]
- Arai, S.; Uesugi, J.; Ahmed, A.H. Upper crustal podiform chromitite from the northern Oman ophiolite as the stratigraphically shallowest chromitite in ophiolite and its implication for Cr concentration. Contrib. Mineral. Petrol. 2004, 147, 145–154. [Google Scholar] [CrossRef]
- Freitas Suita, M.T.D.; Strieder, A.J. Cr-Spinels from Brazilian Mafic-Ultramafic Complexes: Metamorphic Modifications. Int. Geol. Rev. 1996, 38, 245–267. [Google Scholar] [CrossRef]
- Johan, Z.; Ohnenstetter, D. Zinco-chromite from the Guaniamo river diamond and ferous plasers, Venezuela: Evidence of its metasomatic origin. Can. Mineral. 2010, 48, 361–374. [Google Scholar] [CrossRef]
- Peltonen, P. Petrogenesis of ultramafic rocks in the Vammala Nickel Belt: Implications for crustal evolution of the early Proterozoic Svecofennian arc terrane. Lithos 1995, 34, 253–274. [Google Scholar] [CrossRef]
- Paktunc, A.D.; Cabri, L.J. A proton- and electron-microprobe study of gallium, nickel and zinc distribution in chromian spinel. Lithos 1995, 35, 261–282. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakich, T.; Brzozowski, M.; Chernishov, A.; Grieco, G.; Savinova, O.; Timkin, T.; Marfin, A. Petrological Features of the Burlakski and Nizhne-Derbinsk Mafic-Ultramafic Plutons (East Sayan Mountains, Siberia, Russia). Minerals 2020, 10, 119. https://doi.org/10.3390/min10020119
Yakich T, Brzozowski M, Chernishov A, Grieco G, Savinova O, Timkin T, Marfin A. Petrological Features of the Burlakski and Nizhne-Derbinsk Mafic-Ultramafic Plutons (East Sayan Mountains, Siberia, Russia). Minerals. 2020; 10(2):119. https://doi.org/10.3390/min10020119
Chicago/Turabian StyleYakich, Tamara, Matthew Brzozowski, Alexey Chernishov, Giovanni Grieco, Olesya Savinova, Timofey Timkin, and Alexander Marfin. 2020. "Petrological Features of the Burlakski and Nizhne-Derbinsk Mafic-Ultramafic Plutons (East Sayan Mountains, Siberia, Russia)" Minerals 10, no. 2: 119. https://doi.org/10.3390/min10020119