Coupled Substitutions of Minor and Trace Elements in Co-Existing Sphalerite and Wurtzite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powder X-Ray Diffraction
2.2. Electron Probe Microanalysis
2.3. LA-ICP-MS Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Evans, H.T.; McKnight, E.T. New wurtzite polytypes from Joplin Missouri. Am. Mineral. 1959, 44, 1210–1218. [Google Scholar]
- Ramdohr, P. The Ore Minerals and Their Intergrowths, 3rd ed.; Pergamon Press: Oxford, UK, 1969; p. 1174. [Google Scholar]
- Vaughan, D.J.; Craig, J.R. Mineral Chemistry of Metal Sulfides; Cambridge University Press: Cambridge, UK, 1978; p. 493. [Google Scholar]
- Makeev, A.B.; Tauson, V.L. On the possible genesis of several ZnS polytypes (by data of study of Pai-Khoi sphalerites). In Crystal Chemistry and Structural Mineralogy; Frank-Kamenetsky, V.A., Ed.; Nauka: Moscow, Russia, 1979; pp. 18–25. (In Russian) [Google Scholar]
- Tauson, V.L.; Abramovich, M.G.; Akimov, V.V.; Scherbakov, V.A. Thermodynamics of real mineral crystals: Equilibrium crystal shape and phase size effect. Geochim. Cosmochim. Acta 1993, 57, 815–822. [Google Scholar] [CrossRef]
- Chaplygin, I.V.; Mozgova, N.N.; Mokhov, A.V.; Koporulia, E.V.; Bernhart, H.J.; Bryzgalov, I.A. Minerals of the system ZnS-CdS from fumaroles of the Kudriay volcano, Iturup Island, Kuriles, Russia. Can. Mineral. 2007, 45, 709–722. [Google Scholar] [CrossRef]
- Allen, E.T.; Crenshaw, J.L. The sulfides of zinc, cadmium and mercury; their crystalline forms and genetic conditions. Am. J. Sci. Ser. 1912, 34, 341–396. [Google Scholar] [CrossRef] [Green Version]
- Kremheller, A. Zinc sulfide single crystals for phosphor research. Sylvania Technol. 1955, 8, 11–15. [Google Scholar]
- Addamiano, A.; Aven, M. Some properties of zinc sulfide crystals grown from melt. J. Appl. Phys. 1960, 31, 36–39. [Google Scholar] [CrossRef]
- Samelson, H. Vapor phase growth and properties of zinc sulfide single crystals. J. Appl. Phys. 1961, 32, 309–317. [Google Scholar] [CrossRef]
- Samelson, H. Growth of cubic ZnS single crystals by chemical transport processes. J. Appl. Phys. 1962, 33, 1779–1783. [Google Scholar] [CrossRef]
- Kullerud, G. The FeS-ZnS system. A geologic thermometer. Norsk Geol. Tidsskr. 1953, 32, 61–147. [Google Scholar]
- Buerger, M.J. The pyrite-marcasite relation. Am. Mineral. 1934, 19, 37–61. [Google Scholar]
- Barton, P.B., Jr.; Toulmin, P., III. Phase relations involving sphalerite in the Fe-Zn-S system. Econ. Geol. 1966, 61, 815–849. [Google Scholar] [CrossRef]
- Pankratz, L.B.; King, E.G. High-Temperature Heat Contents and Entropies of Two Zinc Sulfides and Four Solid Solutions of Zinc and Iron Sulfides, Bureau of Mines. Rep. Investig. 1965, 1965, 6708. [Google Scholar]
- Scott, S.D.; Barnes, H.L. Sphalerite-wurtzite equilibria and stoichiometry. Geochim. Cosmochim. Acta 1972, 36, 1275–1295. [Google Scholar] [CrossRef]
- Lepetit, P.; Bente, K.; Doering, T.; Luckhaus, S. Crystal chemistry of Fe-containing sphalerites. Phys. Chem. Miner. 2003, 30, 185–191. [Google Scholar] [CrossRef]
- Knitter, S.; Binnewies, M. Chemical vapor transport of solid solutions. 5 Chemical vapor transport of MnS/ZnS, FeS/ZnS and FeS/MnS mixed crystals. Z. Anorgan. Allgem. Chem. 1999, 625, 1582–1588. [Google Scholar] [CrossRef]
- O’Keeffe, A.; Hyde, B.G. Non-bonded Interaction and the Crystal chemistry of tetrahedral structures related to the Wurtzite type (B4). Acta Cryst. 1978, B34, 3519–3528. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Saini-Eidukat, B.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Brugger, J.; Etschmann, B.; Howard, D.L.; de Jonge, M.D.; Paterson, D. Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via μ-XANES spectroscopy. Am. Mineral. 2012, 97, 476–479. [Google Scholar] [CrossRef]
- Cook, N.J.; Etschmann, B.; Ciobanu, C.L.; Geraki, K.; Howard, D.L.; Williams, T.; Rae, N.; Pring, A.; Chen, G.; Johannessen, B.; et al. Distribution and substitution mechanism of Ge in a Ge-(Fe)-bearing sphalerite. Minerals 2015, 5, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Ciobanu, C.L.; Cook, N.J.; Utsunomiya, S.; Pring, A.; Green, L. Focused ion beam–transmission electron microscopy application in ore mineralogy: Bridging micron and nanoscale observations. Ore Geol. Rev. 2011, 32, 6–31. [Google Scholar] [CrossRef]
- Pfaff, K.; Koenig, A.; Wenzel, T.; Ridley, I.; Hildebrandt, L.H.; Leach, D.L.; Markl, G. Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis. Chem. Geol. 2011, 286, 118–134. [Google Scholar] [CrossRef]
- Belissont, R.; Boiron, M.C.; Luais, B.; Cathelineau, M. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac–Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochim. Cosmochim. Acta 2014, 126, 518–540. [Google Scholar] [CrossRef]
- Bonnet, J.; Mosser-Ruck, R.; Caumon, M.-C.; Rouer, O.; Andre-Mayer, A.-S.; Cauzid, J.; Peifert, C. Trace element distribution (Cu, Ga, Ge, Cd and Fe) in sphalerite from the Tennessee MVT deposits, USA, by combined EMPA, LA-ICP-MS, Raman spectroscopy and crystallography. Can. Mineral. 2016, 54, 1261–1284. [Google Scholar] [CrossRef]
- Frenzel, M.; Hirsch, T.; Gutzmer, J. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—A meta-analysis. Ore Geol. Rev. 2016, 76, 52–78. [Google Scholar] [CrossRef]
- Goldmann, S.; Junge, M.; Wirth, R.; Schreiber, A. Distribution of trace elements in sphalerite and arsenopyrite on the nanometre-scale—Discrete phases versus solid solution. Eur. J. Mineral. 2019, 31, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Turneaure, F.S. The Bolivian Tin-Silver Province. Econ. Geol. 1971, 66, 215–225. [Google Scholar] [CrossRef]
- Sugaki, A.; Ueno, H.; Shimada, N.; Kusachi, I.; Kenichiro, A.; Hayashi, K.; Kojima, S.; Sanjines, O.; Sanches, A.; Veralde, O. Geological Study of the polymetallic ore deposits in the Quechisla District Bolivia. Sci. Rep. Tohoku Univ. Third Ser. 1985, 16, 35–129. [Google Scholar]
- Olivier, B. The Geology and Petrology of the Merelani Tanzanite Deposit, NE Tanzania. Unpublished. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2006; p. 322. [Google Scholar]
- Wilson, W.E.; Saul, J.M.; Pardieu, V.; Hughes, R.W. The Merelani tanzanite Mines. Mineral. Rec. 2009, 40, 347–408. [Google Scholar]
- Harrison, S.; Jaszczak, J.A.; Keim, M.; Rumsey, M.; Wise, M.A. Spectacular sulfides from the Merelani Tanzanite Deposit, Manyara Region, Tanzania. Mineral. Rec. 2014, 45, 553–570. [Google Scholar]
- Hunter, B.A. Rietica—A Visual Rietveld Program. Int. Union Crystallogr. Comm. Powder Diffr. Newsl. 2000, 20. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:31059005 (accessed on 7 February 2020).
- Muller, W.; Shelley, M.; Miller, P.; Broude, S. Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J. Anal. Atom. Spectrom. 2009, 24, 209–214. [Google Scholar] [CrossRef]
- Wilson, S.A.; Ridley, W.I.; Koenig, A.E. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J. Anal. Atom. Spectrom. 2002, 17, 406–409. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. Atom. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Hellstrom, J.; Paton, C.; Hergt, J.M.; Greig, A.; Maas, R. A guide to depth profiling and imaging applications of LA-ICP-MS. In Laser-ablation-ICPMS in the Earth Sciences: Current Practices and Outstanding Issues; Sylvester, P.J., Ed.; Mineralogical Association of Canada, Short Course Series: Vancouver, BC, Canada, 2008; Volume 40, pp. 135–145. [Google Scholar]
- Skinner, B.J. Unit -cell edges of natural and synthetic sphalerites. Am. Mineral. 1961, 46, 1399–1411. [Google Scholar]
- Skinner, B.J.; Bethke, P.M. The relationship between unit-cell edges and composition of synthetic wurtzites. Am. Mineral. 1961, 46, 1382–1398. [Google Scholar]
- Johan, Z. Indium and germanium in the structure of sphalerite: An example of coupled substitution with copper. Mineral. Petrol. 1988, 39, 211–235. [Google Scholar] [CrossRef]
- Slater, E.T.; McDonald, A.M.; Kontak, D.J. Resolving primary and retrograde sulfide and sulfosalt textures in the epithermal Ag-Zn-Pb-Sn-rich Cortaderas zone, Pirquitas Mine, Argentina. Can. Mineral. 2019, 57, 117–143. [Google Scholar] [CrossRef]
- Strunz, H.; Nickel, E.H. Strunz Mineralogical Tables, 9th ed.; E Schweizerbart’sche Verlagbunchhandlung: Stuttgart, Germany, 2001; p. 870. [Google Scholar]
- Kisi, E.H.; Elcombe, M.M. Parameters for wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Cryst. 1989, C45, 1867–1870. [Google Scholar] [CrossRef]
- Pring, A.; Tarantino, S.; Tenailleau, C.; Etschmann, B.; Carpenter, M.A.; Zhang, M.; Liu, Y.; Withers, R.L. The crystal chemistry of Fe-bearing sphalerites: An infrared spectroscopic study. Am. Mineral. 2008, 93, 591–597. [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Ciobanu, C.L. Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geol. Rev. 2016, 77, 97–116. [Google Scholar] [CrossRef]
Animas-Chocaya Mine G33739 | Merelani G34171 | |||
---|---|---|---|---|
Wurtzite | Sphalerite | Wurztite | Sphalerite | |
Unit Cell | a = 3.8136(1), | a = 5.4128(1)Å | a = 3.8504(2) | a = 5.4482(3)Å |
c = 6.2354(2)Å | c = 12.5804(7)Å | |||
Element | wt% | w% | wt% | wt% |
Points | (23) | (28) | (40) | (11) |
S | 32.9 | 32.9 | 33 | 32.8 |
(range) | (32.3–33.9) | (31.4–33.3) | (32.7–33.4) | (32.7–33.1) |
Fe | 4.9 | 2.3 | bld | bld |
(2.7–6.3) | (1.6–2.7) | |||
Mn | bd | bld | 9.1 | 7.9 |
(8.2–9.4) | (7.7–8.2) | |||
Cu | 0.1 | 0.1 | 0.1 | 0.3 |
(bld–0.2) | (0.0–0.2) | (0.0–0.4) | (0.3–0.4) | |
Zn | 59.9 | 63.3 | 55.5 | 56.5 |
(57.7–62.6) | (62.9–64.3) | (54.8–56.2) | (56.2–57.0) | |
Cd | 0.9 | 0.7 | 0.4 | 0.4 |
(0.5–1.3) | (0.5–1.0) | (0.2–0.5) | (0.3–0.5) | |
Pb | 0.1 | 0.1 | ||
(bld–0.4) | (bld–0.2) | |||
Total | 98.7 | 99.3 | 98.2 | 98.1 |
Trace Elements (ppm) | ||||
Mn (e.s.d) | 40 | 25 | ||
(5) | (1) | |||
Fe | >ulq | >ulq | 210 | 530 |
(1700) | (1300) | (30) | (170) | |
Co | 0 | 0 | 1 | 0 |
(0) | (0) | (0) | (0) | |
Cu | 850 | 3200 | 1300 | 1900 |
(90) | (420) | (30) | (80) | |
Ga | 400 | 400 | 1450 | 1750 |
(40) | (40) | (30) | (80) | |
As | 1 | 2 | 3 | 11 |
(0) | (1) | (1) | (5) | |
Se | 0 | 0 | 1500 | 1500 |
(0) | (1) | (25) | (25) | |
Ag | 1400 | 1500 | 2 | 2 |
(130) | (300) | (0) | (0) | |
Cd | 7500 | 8600 | 3600 | 53000 |
(360) | (570) | (60) | (70) | |
In | 150 | 600 | 40 | 40 |
(30) | (170) | (1) | (1) | |
Sn | 1100 | 2700 | 5 | 33 |
(110) | 400) | (0) | (5) | |
Sb | 30 | 170 | 1 | 2 |
(6) | (40) | (0) | (0) | |
Hg | 0 | 0 | 2 | 2 |
(0) | (0) | (0) | (0) | |
Tl | 0 | 0 | 0 | 1 |
(0) | (0) | (0) | (0) | |
Pb | 70 | 70 | 20 | 40 |
(10) | (10) | (5) | (10) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pring, A.; Wade, B.; McFadden, A.; Lenehan, C.E.; Cook, N.J. Coupled Substitutions of Minor and Trace Elements in Co-Existing Sphalerite and Wurtzite. Minerals 2020, 10, 147. https://doi.org/10.3390/min10020147
Pring A, Wade B, McFadden A, Lenehan CE, Cook NJ. Coupled Substitutions of Minor and Trace Elements in Co-Existing Sphalerite and Wurtzite. Minerals. 2020; 10(2):147. https://doi.org/10.3390/min10020147
Chicago/Turabian StylePring, Allan, Benjamin Wade, Aoife McFadden, Claire E. Lenehan, and Nigel J. Cook. 2020. "Coupled Substitutions of Minor and Trace Elements in Co-Existing Sphalerite and Wurtzite" Minerals 10, no. 2: 147. https://doi.org/10.3390/min10020147
APA StylePring, A., Wade, B., McFadden, A., Lenehan, C. E., & Cook, N. J. (2020). Coupled Substitutions of Minor and Trace Elements in Co-Existing Sphalerite and Wurtzite. Minerals, 10(2), 147. https://doi.org/10.3390/min10020147