Identifying Geochemical Anomalies Associated with Gold Mineralization Using Factor Analysis and Spectrum–Area Multifractal Model in Laowan District, Qinling-Dabie Metallogenic Belt, Central China
Abstract
:1. Introduction
2. Geological Setting
3. Dataset and Methods
3.1. Sampling
3.2. Factor Analysis
3.3. Spectrum–Area Multifractal Model
4. Results and Discussion
4.1. Statistical Analysis
4.2. Elemental Association
4.3. S–A Multifractal Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clarke, D.S.; Govett, G.J.S. Southwest Pacific epithermal gold: A rock-geochemistry perspective. J. Geochem. Explor. 1990, 35, 225–240. [Google Scholar] [CrossRef]
- Gray, J.E.; Goldfarb, R.J.; Detra, D.E.; Slaughter, K.E. Geochemistry and exploration criteria for epithermal cinnabar and stibnite vein deposits in the Kuskokwim River region, southwestern Alaska. J. Geochem. Explor. 1991, 41, 363–386. [Google Scholar] [CrossRef]
- Hronsky, J.M.A.; Groves, D.I. Science of targeting: Definition, strategies, targeting and performance measurement. Aust. J. Earth Sci. 2008, 55, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Carranza, E.J.M.; Sadeghi, M. Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore. Geol. Rev. 2010, 38, 219–241. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. J. Geochem. Explor. 2011, 110, 167–185. [Google Scholar] [CrossRef]
- Pazand, K.; Hezarkhani, A.; Ataei, M.; Ghanbari, Y. Application of multifractal modeling technique in systematic geochemical stream sediment survey to identify copper anomalies: A case study from Ahar, Azarbaijan, Northwest Iran. Chem. der Erde Geochem. 2011, 71, 397–402. [Google Scholar] [CrossRef]
- Zuo, R. Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). J. Geochem. Explor. 2011, 111, 13–22. [Google Scholar] [CrossRef]
- Cheng, Q. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. J. Geochem. Explor. 2012, 122, 55–70. [Google Scholar] [CrossRef]
- Zuo, R.; Wang, J.; Chen, G.; Yang, M. Identification of weak anomalies: A multifractal perspective. J. Geochem. Explor. 2015, 148, 12–24. [Google Scholar] [CrossRef]
- Parsa, M.; Maghsoudi, A.; Yousefi, M.; Sadeghi, M. Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran. J. Geochem. Explor. 2016, 165, 111–124. [Google Scholar] [CrossRef]
- Zuo, R. Selection of an elemental association related to mineralization using spatial analysis. J. Geochem. Explor. 2018, 184, 150–157. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K.; Reimann, C.; Garrett, R. Robust factor analysis for compositional data. Comput. Geosci. UK 2009, 35, 1854–1861. [Google Scholar] [CrossRef] [Green Version]
- Reimann, C.; Filzmoser, P.; Garrett, R.G. Factor analysis applied to regional geochemical data: Problems and possibilities. Appl. Geochem. 2002, 17, 185–206. [Google Scholar] [CrossRef]
- Kumru, M.N.; Bakac, M. R-mode factor analysis applied to the distribution of elements in soils from the Aydın basin, Turkey. J. Geochem. Explor. 2003, 77, 81–91. [Google Scholar] [CrossRef]
- El-Makky, A.M. Statistical analyses of La, Ce, Nd, Y, Nb, Ti, P, and Zr in bedrocks and their significance in geochemical exploration at the Um Garayat Gold mine area, Eastern Desert, Egypt. Nat. Resour. Res. 2011, 20, 157–176. [Google Scholar] [CrossRef]
- Sadeghi, M.; Billay, A.; Carranza, E.J.M. Analysis and mapping of soil geochemical anomalies: Implications for bedrock mapping and gold exploration in Giyani area, South Africa. J. Geochem. Explor. 2015, 154, 180–193. [Google Scholar] [CrossRef]
- He, J.; Yao, S.; Zhang, Z.; You, G. Complexity and productivity differentiation models of metallogenic indicator elements in rocks and supergene media around Daijiazhuang Pb–Zn deposit in Dangchang County, Gansu Province. Nat. Resour. Res. 2013, 22, 19–36. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Fang, C.; Wang, L.; Geng, X. Identification and assessment of Sn-polymetallic prospects in the Gejiu western district, Yunnan (China). J. Geochem. Explor. 2014, 145, 106–113. [Google Scholar] [CrossRef]
- Levitski, A.F.B.B. “Dipole” CHIM:Concept and application. J. Geochem. Explor. 1996, 57, 101–114. [Google Scholar] [CrossRef]
- Bajc, A.F. A comparative analysis of enzyme leach and mobile metal ion selective extractions; case studies from glaciated terrain, northern Ontario. J. Geochem. Explor. 1998, 1–3, 113–148. [Google Scholar] [CrossRef]
- Singer, D.A.; Kouda, R. Some Simple Guides to Finding Useful Information in Exploration Geochemical Data. Nat. Resour. Res. 2001, 2, 137–147. [Google Scholar] [CrossRef]
- Williams, T.M.; Gunn, A.G. Application of enzyme leach soil analysis for epithermal gold exploration in the Andes of Ecuador. Appl. Geochem. 2002, 17, 367–385. [Google Scholar] [CrossRef]
- Cheng, Q.; Agterberg, F.P.; Ballantyne, S.B. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor. 1994, 51, 109–130. [Google Scholar] [CrossRef]
- Grunsky, E.C.; Smee, B.W. The differentiation of soil types and mineralization from multi-element geochemistry using multivariate methods and digital topography. J. Geochem. Explor. 1999, 67, 287–299. [Google Scholar] [CrossRef]
- Harris, J.R.; Wilkinson, L.; Grunsky, E.; Heather, K.; Ayer, J. Techniques for analysis and visualization of lithogeochemical data with applications to the Swayze greenstone belt, Ontario. J. Geochem. Explor. 1999, 67, 301–334. [Google Scholar] [CrossRef]
- Zuo, R.; Xia, Q.; Wang, H. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Appl. Geochem. 2013, 28, 202–211. [Google Scholar] [CrossRef]
- Sinclair, A.J. Selection of threshold values in geochemical data using probability graphs. J. Geochem. Explor. 1974, 3, 129–149. [Google Scholar] [CrossRef]
- Miesch, A.T. Estimation of the geochemical threshold and its statistical significance. J. Geochem. Explor. 1981, 16, 49–76. [Google Scholar] [CrossRef]
- Stanley, C.R.; Sinclair, A.J. Comparison of probability plots and the gap statistic in the selection of thresholds for exploration geochemistry data. J. Geochem. Explor. 1989, 32, 355–357. [Google Scholar] [CrossRef]
- Kürzl, H. Exploratory data analysis: Recent advances for the interpretation of geochemical data. J. Geochem. Explor. 1988, 30, 309–322. [Google Scholar] [CrossRef]
- Bounessah, M.; Atkin, B.P. An application of exploratory data analysis (EDA) as a robust non-parametric technique for geochemical mapping in a semi-arid climate. Appl. Geochem. 2003, 18, 1185–1195. [Google Scholar] [CrossRef]
- Reimann, C. Geochemical mapping: Technique or art? Geochem. Explor. Environ. Anal. 2005, 5, 359–370. [Google Scholar] [CrossRef]
- Chiprés, J.A.; Castro-Larragoitia, J.; Monroy, M.G. Exploratory and spatial data analysis (EDA-SDA) for determining regional background levels and anomalies of potentially toxic elements in soils from Catorce-Matehuala, Mexico. Appl. Geochem. 2009, 24, 1579–1589. [Google Scholar] [CrossRef]
- Mandelbrot, B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bölviken, B.; Stokke, P.R.; Feder, J.; Jössang, T. The fractal nature of geochemical landscapes. J. Geochem. Explor. 1992, 43, 91–109. [Google Scholar] [CrossRef]
- Rantitsch, G. The fractal properties of geochemical landscapes as an indicator of weathering and transport processes within the Eastern Alps. J. Geochem. Explor. 2001, 73, 27–42. [Google Scholar] [CrossRef]
- Cheng, Q. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore. Geol. Rev. 2007, 32, 314–324. [Google Scholar] [CrossRef]
- Zuo, R.; Cheng, Q.; Agterberg, F.P.; Xia, Q. Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. J. Geochem. Explor. 2009, 101, 225–235. [Google Scholar] [CrossRef]
- Afzal, P.; Khakzad, A.; Moarefvand, P.; Omran, N.R.; Esfandiari, B.; Alghalandis, Y.F. Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. J. Geochem. Explor. 2010, 104, 34–46. [Google Scholar] [CrossRef]
- Cheng, Q.; Xia, Q.; Li, W.; Zhang, S.; Chen, Z.; Zuo, R.; Wang, W. Density/area power-law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China. Biogeosciences 2010, 7, 3019–3025. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, M.; Carranza, E.J.M. Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Comput. Geosci. UK 2015, 79, 69–81. [Google Scholar] [CrossRef]
- Zhao, J.; Zuo, R.; Chen, S.; Kreuzer, O.P. Application of the tectono-geochemistry method to mineral prospectivity mapping: A case study of the Gaosong tin-polymetallic deposit, Gejiu district, SW China. Ore. Geol. Rev. 2015, 71, 719–734. [Google Scholar] [CrossRef]
- Parsa, M.; Maghsoudi, A.; Carranza, E.J.M.; Yousefi, M. Enhancement and mapping of weak multivariate stream sediment geochemical anomalies in Ahar Area, NW Iran. Nat. Resour. Res. 2017, 26, 443–455. [Google Scholar] [CrossRef]
- Xiong, Y.; Zuo, R.; Wang, K.; Wang, J. Identification of geochemical anomalies via local RX anomaly detector. J. Geochem. Explor. 2018, 189, 64–71. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, Y.; Zuo, R. Mapping geochemical anomalies related to Fe–polymetallic mineralization using the maximum margin metric learning method. Ore. Geol. Rev. 2019, 107, 258–265. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, S.; Zuo, R.; Zhou, M. Controls on and prospectivity mapping of volcanic-type uranium mineralization in the Pucheng district, NW Fujian, China. Ore. Geol. Rev. 2019, 112, 103028. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, S.; Zuo, R. Identifying geochemical anomalies associated with Au-Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. J. Geochem. Explor. 2016, 164, 54–64. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P. Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ. Geol. 2000, 39, 1001–1014. [Google Scholar] [CrossRef]
- Agterberg, F.P. Multifractal Simulation of Geochemical Map Patterns; Springer: New York, NY, USA, 2001; pp. 327–346. [Google Scholar]
- Cheng, Q.; Xu, Y.; Grunsky, E. Integrated Spatial and Spectrum Method for Geochemical Anomaly Separation. Nat. Resour. Res. 2000, 9, 43–52. [Google Scholar] [CrossRef]
- Li, C.; Ma, T.; Shi, J. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J. Geochem. Explor. 2003, 77, 167–175. [Google Scholar] [CrossRef]
- Afzal, P.; Alghalandis, Y.F.; Khakzad, A.; Moarefvand, P.; Omran, N.R. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J. Geochem. Explor. 2011, 108, 220–232. [Google Scholar] [CrossRef]
- Xie, Q.; Xu, X.; Yue, S. Isochron age of the Laowan gold deposit and Laowan granite, Tongbai region, Henan Province and its implications. Geol. J. China Univ. 2000, 25, 546–553. [Google Scholar]
- Xie, Q.; Xu, X.; Yue, S.; Pan, C.; Li, Y. Metallogenisis of Laowan gold deposit from Tongbai, Henan Province. Miner. Depos. 2002, 21, 47–52. [Google Scholar]
- Zhang, G.; Li, H.; Wang, C. 40Ar-39Ar age of muscovite from the Laowan gold deposit in Henan and its significance. Acta Geosci. Sin. 2008, 25, 45–50. [Google Scholar]
- Chen, J.; Sun, B.B.; Li, P.; Pei, M.; Ren, Q. The properties of ore-forming fluids and isotope geochemical tracing of the Laowan gold deposit, Henan Province. Acta Petrol. Min. 2017, 36, 713–724. [Google Scholar]
- Pan, C.; Yue, S. Research on the forming era of Laowan gold deposit in Henan Province and its lead isotope. J. Hefei Univ. Technol. 2002, 25, 9–13. [Google Scholar]
- Yang, M.; Fu, J.; Ren, A. Recognition of Yanshanian magmatic-hydrothermal gold and polymetallic gold mineralization in the Laowan gold metallogenic belt, Tongbai Mountains: New evidence from structural controls, geochronology and geochemistry. Ore. Geol. Rev. 2015, 69, 58–72. [Google Scholar] [CrossRef]
- Zhang, G.; Meng, Q.; Lai, S. Tectonics and structure of Qinling orogenic belt. Sci. China Chem. 1995, 38, 1379–1394. [Google Scholar]
- Chen, Y.J.; Pirajno, F.; Qi, J.P.; Jing, L.; Wang, H.H. Ore geology, fluid geochemistry and genesis of the Shanggong gold deposit, eastern Qinling Orogen, China. Resour. Geol. 2010, 56, 99–116. [Google Scholar] [CrossRef]
- Deng, J.; Yang, L.; Gao, B.; Sun, Z.; Guo, C.; Wang, Q.; Wang, J. Fluid Evolution and Metallogenic Dynamics during Tectonic Regime Transition: Example from the Jiapigou Gold Belt in Northeast China. Resour. Geol. 2010, 59, 140–152. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y. Fluid inclusion study of the Tangjiaping Mo deposit, Dabie Shan, Henan Province: Implications for the nature of the porphyry systems of post-collisional tectonic settings. Int. Geol. Rev. 2011, 53, 635–655. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.; Xiao, C.; Yang, L.; Liu, H.; Gong, Q.; Zhang, J. Tectonic-magmatic-metallogenic system, Tongling ore cluster region, Anhui Province, China. Int. Geol. Rev. 2011, 53, 449–476. [Google Scholar] [CrossRef]
- Mao, J.; Xie, G.; Zhang, Z.; Li, X.; Wang, Y.; Zhang, C.; Li, Y. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrol. Sin. 2005, 21, 169–188. [Google Scholar]
- Liu, W.; Wang, G. Mesozoic thrust and nape tectonic in northern Huaiyang Region. Geosci. (J. Grad. Sch. China Univ. Geosci.) 1999, 13, 143–149. [Google Scholar]
- Song, C.Z.; Zhang, G.W.; Ren, S.; Li, J.; Huang, W. The research on deformation features of some structural zones in the Qinling-Dabieshan orogenic belt. J. Northwest Univ. (Nat. Sci. Ed.) 2009, 39, 368–380. [Google Scholar]
- Chen, L.; Dai, L.; Wang, T.; Luo, P.; Xia, G. Geochemical characteristics and genesis of the Laowan gold deposit in Henan Province. Geoscience 2009, 23, 277–284. [Google Scholar]
- Liu, Y.F.; Jiang, S.H.; Fang, D.H.; Liu, Y. Zircon SHRIMP U-Pb dating of Laowan granite in Tongbai area, Henan Province, and its geological implications. Acta Petrol. Mineral. 2008, 27, 519–523. [Google Scholar]
- Tripathi, V.S. Factor analysis in geochemical exploration. J. Geochem. Explor. 1979, 11, 263–275. [Google Scholar] [CrossRef]
- Basilevsky, A.T. Statistical Factor Analysis and Related Methods: Theory and Applications; John Wiley & Sons: New York, NY, USA, 1994; p. 737. [Google Scholar]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice-Hall: Upper Saddle River, NJ, USA; London, UK, 2007; Volume 5, p. 816. [Google Scholar]
- Dong, Q.; Chen, J.; Tang, Y. Application of R type factor analysis in mineralization prognosis: By an example of Huangbuling gold deposit, Shandong Province. Geol. Prospect. 2008, 44, 64–68. [Google Scholar]
- Van Helvoort, P.J.; Filzmoser, P.; van Gaans, P.F. Sequential Factor Analysis as a new approach to multivariate analysis of heterogeneous geochemical datasets: An application to a bulk chemical characterization of fluvial deposits (Rhine-Meuse delta, The Netherlands). Appl. Geochem. 2005, 20, 2233–2251. [Google Scholar] [CrossRef]
- Ijmker, J.; Stauch, G.; Kai, H.; Diekmann, B.; Dietze, E.; Opitz, S.; Wünnemann, B.; Lehmkuhl, F. Environmental conditions in the Donggi Cona lake catchment, NE Tibetan Plateau, based on factor analysis of geochemical data. J. Asian Earth Sci. 2012, 44, 176–188. [Google Scholar] [CrossRef]
- Li, T.; Xia, Q.; Chang, L.; Wang, X.; Liu, Z.; Wang, S. Deposit density of tungsten polymetallic deposits in the eastern Nanling metallogenic belt, China. Ore. Geol. Rev. 2018, 94, 73–92. [Google Scholar] [CrossRef]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Bartlett, M.S. Tests of Significance in Factor Analysis. Br. J. Psychol. 1950, 3, 77–85. [Google Scholar] [CrossRef]
- Zuo, R.; Xia, Q.; Zhang, D. A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas. Appl. Geochem. 2013, 33, 165–172. [Google Scholar] [CrossRef]
- Zuo, R.; Xia, Q. Application fractal and multifractal methods to mapping prospectivity for metamorphosed sedimentary iron deposits using stream sediment geochemical data in eastern Hebei province, China. Geochmica Cosmochim. Acta 2009, 73, 827–833. [Google Scholar]
- Zuo, R.; Carranza, E.J.M.; Cheng, Q. Fractal/multifractal modelling of geochemical exploration data. J. Geochem. Explor. 2012, 122, 1–3. [Google Scholar] [CrossRef]
- Parsa, M.; Maghsoudi, A.; Yousefi, M.; Carranza, E.J.M. Multifractal interpolation and spectrum–area fractal modeling of stream sediment geochemical data: Implications for mapping exploration targets. J. Afr. Earth Sci. 2017, 128, 5–15. [Google Scholar] [CrossRef]
- Gao, S.; Luo, T.C.; Zhang, B.R.; Zhang, H.F.; Han, Y.; Zhao, Z.D.; Hu, Y.K. Chemical composition of the continental crust as revealed by studies in East China. Geochim. Cosmochim. Acta 1998, 62, 1959–1975. [Google Scholar] [CrossRef]
- Cheng, Q. Spatial and scaling modelling for geochemical anomaly separation. J. Geochem. Explor. 1999, 65, 175–194. [Google Scholar] [CrossRef]
- Kung, S.Y.; Diamantaras, K. A Neural Network Learning Algorithm for Adaptive Principal Component Extraction (APEX). In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Albuquerque, NM, USA, 3–6 April 1990; Volume 2, pp. 861–864. [Google Scholar]
- Hartmann, K.; Wünnemann, B. Hydrological changes and Holocene climate variations in NW China, inferred from lake sediments of Juyanze palaeolake by factor analyses. Quat. Int. 2009, 194, 28–44. [Google Scholar] [CrossRef]
- Mao, J.; Ye, H.; Wang, R.; Dai, J.; Jian, W.; Xiang, J.; Zhou, K.; Meng, F. Mineral deposit model of Mesozoic porphyry Mo and vein-type Pb-Zn-Ag ore deposits in the eastern Qinling, Central China and its implication for prospecting. Geol. Bull. China 2009, 28, 72–79. [Google Scholar]
- Wang, J.; Zuo, R. A MATLAB-based program for processing geochemical data using fractal/multifractal modeling. Earth Sci. Inform. 2015, 8, 937–947. [Google Scholar] [CrossRef]
No. | Analytical Scheme | Elements | Detecting Instrument | Detection Limit (μg/g) |
---|---|---|---|---|
1 | ICP-MS | Au | Thermo X Series2 | 0.3 (ng/g) |
2 | ICP-MS | Co | Thermo X Series2 | 1 |
3 | ICP-MS | Ni | Thermo X Series2 | 2 |
4 | ICP-MS | Cu | Thermo X Series2 | 1 |
5 | ICP-MS | Pb | Thermo X Series2 | 2 |
6 | ICP-MS | Zn | Thermo X Series2 | 3 |
7 | ICP-MS | Mo | Thermo X Series2 | 0.24 |
8 | ICP-MS | W | Thermo X Series2 | 0.4 |
9 | AFS | As | AFS-8330 | 0.6 |
10 | AFS | Sb | AFS-8330 | 0.04 |
11 | AFS | Bi | AFS-8330 | 0.04 |
12 | AFS | Hg | AFS-8330 | 0.5 (ng/g) |
13 | ES | Ag | WP1 plane-grating spectrograph | 0.02 |
14 | ES | Sn | WP1 plane-grating spectrograph | 1 |
15 | ISE | F | PXJ-1B digital ion analyzer | 96 |
Lithology | Au (ng/g) | Ag | Cu | Pb | Zn | As | Sb | Bi | Hg (ng/g) | F | Mo | W | Sn | Co | Ni | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All samples | Mean | 1232.14 | 4.19 | 157.20 | 131.93 | 127.85 | 24.21 | 24.66 | 1.51 | 15.50 | 1038.68 | 9.56 | 35.25 | 2.41 | 17.85 | 48.62 |
Std. Dev. | 10,708.61 | 28.77 | 1123.13 | 528.26 | 350.05 | 80.04 | 288.02 | 7.29 | 61.31 | 1098.08 | 64.04 | 241.86 | 5.17 | 12.22 | 74.91 | |
n = 368 | CV | 8.69 | 6.87 | 7.14 | 4.00 | 2.74 | 3.31 | 11.68 | 4.83 | 3.95 | 1.06 | 6.70 | 6.86 | 2.15 | 0.68 | 1.54 |
Granite | Mean | 12.52 | 0.10 | 11.18 | 35.64 | 54.93 | 6.56 | 0.37 | 0.18 | 8.16 | 741.09 | 21.78 | 2.36 | 1.91 | 6.88 | 7.54 |
Std. Dev. | 31.67 | 0.08 | 10.08 | 21.33 | 19.47 | 21.25 | 0.53 | 0.10 | 6.16 | 358.95 | 111.89 | 4.25 | 0.35 | 2.55 | 5.74 | |
n = 32 | CV | 2.53 | 0.78 | 0.90 | 0.60 | 0.35 | 3.24 | 1.44 | 0.58 | 0.76 | 0.48 | 5.14 | 1.80 | 0.18 | 0.37 | 0.76 |
Plagioclase-hornblende schist | Mean | 158.01 | 0.56 | 93.16 | 78.43 | 124.22 | 23.28 | 1.67 | 0.58 | 9.57 | 1144.10 | 3.29 | 13.68 | 2.03 | 26.99 | 75.70 |
Std. Dev. | 694.07 | 1.41 | 232.98 | 516.78 | 340.95 | 81.30 | 6.22 | 1.24 | 9.56 | 1107.73 | 20.20 | 29.61 | 1.23 | 11.00 | 53.95 | |
n = 127 | CV | 4.39 | 2.53 | 2.50 | 6.59 | 2.74 | 3.49 | 3.72 | 2.16 | 1.00 | 0.97 | 6.15 | 2.16 | 0.61 | 0.41 | 0.71 |
Mica-quartz schist | Mean | 205.60 | 1.03 | 86.51 | 64.73 | 136.86 | 31.07 | 2.07 | 0.70 | 9.66 | 944.67 | 0.62 | 9.29 | 3.02 | 18.81 | 42.25 |
Std. Dev. | 688.32 | 3.54 | 160.46 | 85.81 | 308.23 | 49.83 | 7.58 | 1.26 | 8.52 | 644.95 | 0.60 | 12.18 | 1.00 | 8.43 | 25.22 | |
n = 32 | CV | 3.35 | 3.43 | 1.85 | 1.33 | 2.25 | 1.60 | 3.66 | 1.82 | 0.88 | 0.68 | 0.97 | 1.31 | 0.33 | 0.45 | 0.60 |
Marble | Mean | 67.96 | 5.13 | 28.76 | 207.15 | 170.31 | 19.25 | 6.57 | 0.79 | 14.07 | 689.33 | 4.72 | 18.83 | 1.60 | 8.74 | 18.70 |
Std. Dev. | 142.36 | 20.94 | 48.35 | 564.63 | 175.85 | 35.40 | 19.20 | 2.15 | 15.80 | 543.20 | 15.94 | 45.35 | 0.95 | 8.92 | 19.08 | |
n = 34 | CV | 2.09 | 4.08 | 1.68 | 2.73 | 1.03 | 1.84 | 2.92 | 2.71 | 1.12 | 0.79 | 3.38 | 2.41 | 0.59 | 1.02 | 1.02 |
Fracture zone | Mean | 907.54 | 2.66 | 88.23 | 90.43 | 178.31 | 30.67 | 6.56 | 0.66 | 11.04 | 1075.82 | 2.30 | 20.89 | 2.52 | 24.75 | 100.41 |
Std. Dev. | 2131.15 | 5.49 | 91.04 | 164.59 | 482.73 | 48.47 | 20.69 | 0.73 | 5.46 | 631.54 | 3.74 | 78.97 | 1.70 | 11.76 | 214.79 | |
n = 28 | CV | 2.35 | 2.06 | 1.03 | 1.82 | 2.71 | 1.58 | 3.16 | 1.11 | 0.49 | 0.59 | 1.62 | 3.78 | 0.67 | 0.47 | 2.14 |
Quartz-feldspathic vein | Mean | 76.54 | 0.97 | 30.11 | 64.37 | 55.15 | 8.12 | 0.56 | 0.97 | 9.21 | 882.39 | 4.53 | 12.04 | 2.63 | 8.69 | 19.52 |
Std. Dev. | 169.74 | 2.25 | 49.44 | 93.66 | 67.61 | 13.58 | 0.51 | 2.03 | 10.97 | 1578.91 | 12.30 | 34.55 | 6.49 | 9.48 | 26.16 | |
n = 23 | CV | 2.22 | 2.31 | 1.64 | 1.46 | 1.23 | 1.67 | 0.91 | 2.10 | 1.19 | 1.79 | 2.72 | 2.87 | 2.47 | 1.09 | 1.34 |
Upper crust of south Qinling [82] | 1.10 | 0.06 | 31.00 | 20.00 | 69.00 | 6.30 | 0.42 | 0.14 | 26.60 | 499.00 | 0.74 | 1.07 | 1.64 | 15.00 | 45.00 |
Element | Factor1 | Factor2 | Factor3 | Factor4 | Communalities |
---|---|---|---|---|---|
Au | 0.212 | 0.841 | 0.130 | −0.070 | 0.774 |
Ag | −0.063 | 0.853 | 0.272 | 0.239 | 0.863 |
Cu | 0.540 | 0.597 | 0.107 | 0.106 | 0.670 |
Pb | −0.160 | 0.368 | 0.270 | 0.765 | 0.819 |
Zn | 0.541 | 0.133 | 0.204 | 0.659 | 0.785 |
As | 0.257 | 0.756 | −0.064 | 0.171 | 0.671 |
Sb | 0.150 | 0.837 | 0.058 | 0.193 | 0.764 |
Bi | −0.010 | 0.503 | 0.711 | 0.109 | 0.771 |
F | 0.508 | 0.266 | 0.636 | −0.033 | 0.734 |
S | 0.201 | 0.630 | 0.322 | −0.426 | 0.723 |
Mo | −0.128 | −0.020 | 0.670 | 0.352 | 0.590 |
Sn | 0.125 | 0.039 | 0.690 | 0.019 | 0.493 |
Co | 0.924 | 0.112 | −0.008 | −0.018 | 0.868 |
Ni | 0.857 | 0.172 | 0.062 | −0.029 | 0.769 |
V | 0.958 | 0.067 | 0.046 | −0.024 | 0.925 |
Fe | 0.934 | 0.218 | 0.076 | 0.030 | 0.927 |
Explained variance | 6.387 | 3.018 | 1.599 | 1.141 | |
Probability of total variance Contribution (%) | 39.920 | 18.865 | 9.997 | 7.129 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Chen, J.; Zhao, J.; Chen, J.; Chen, S. Identifying Geochemical Anomalies Associated with Gold Mineralization Using Factor Analysis and Spectrum–Area Multifractal Model in Laowan District, Qinling-Dabie Metallogenic Belt, Central China. Minerals 2020, 10, 229. https://doi.org/10.3390/min10030229
Wu R, Chen J, Zhao J, Chen J, Chen S. Identifying Geochemical Anomalies Associated with Gold Mineralization Using Factor Analysis and Spectrum–Area Multifractal Model in Laowan District, Qinling-Dabie Metallogenic Belt, Central China. Minerals. 2020; 10(3):229. https://doi.org/10.3390/min10030229
Chicago/Turabian StyleWu, Ruoyu, Jianli Chen, Jiangnan Zhao, Jinduo Chen, and Shouyu Chen. 2020. "Identifying Geochemical Anomalies Associated with Gold Mineralization Using Factor Analysis and Spectrum–Area Multifractal Model in Laowan District, Qinling-Dabie Metallogenic Belt, Central China" Minerals 10, no. 3: 229. https://doi.org/10.3390/min10030229
APA StyleWu, R., Chen, J., Zhao, J., Chen, J., & Chen, S. (2020). Identifying Geochemical Anomalies Associated with Gold Mineralization Using Factor Analysis and Spectrum–Area Multifractal Model in Laowan District, Qinling-Dabie Metallogenic Belt, Central China. Minerals, 10(3), 229. https://doi.org/10.3390/min10030229