Geochemistry and Origin of Scheelites from the Xiaoyao Tungsten Skarn Deposit in the Jiangnan Tungsten Belt, SE China
Abstract
:1. Introduction
2. Geologic Setting
3. Samples and Analytical Methods
3.1. Sample Descriptions
3.2. Cathodoluminescence
3.3. Electron Microprobe Analysis
3.4. In situ LA-ICP-MS Trace Element Analysis
4. Analytical Results
4.1. Major Element Geochemistry
4.2. Trace Element Geochemistry.
5. Discussion
5.1. Oxidation State of Ore-Forming Fluids
5.2. Disequilibrium Processes in Scheelite.
5.2.1. Dissolution and Re-Precipitation
5.2.2. Recrystallization
5.3. Control of Chemical Variation in Scheelite.
5.4. Implication for Ore-Forming Processes
6. Conclusions
- (1)
- Scheelite can record the following complex growth histories based on CL images: homogeneous Sch1a and Sch1b, dissolution and re-precipitation Sch2a and Sch2b, oscillatory zoning Sch3, and Sch4 in micro-fractures. These four types of scheelite have different MoO3 and Cd contents, indicating fluctuating changes in the oxygen fugacity from the skarn stage to the quartz vein stage;
- (2)
- Variations in REE patterns in scheelite are influenced by the REE patterns of ore-related granodiorite, the precipitation of hydrothermal minerals with low LREE/HREE ratios, and changing oxygen fugacity during fluid–rock interaction;
- (3)
- The increasing Sr contents and Y/Ho ratios of scheelite from the skarn stage to the quartz vein stage indicate continuing fluid–rock interaction. This fluid–rock interaction may be an important enrichment mechanism underlying the generation the Xiaoyao tungsten deposit.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allen, C.C.; Folinsbee, R.E. Scheelite veins related to porphyry intrusives Hollinger Mine. Econ. Geol. 1944, 39, 340–348. [Google Scholar] [CrossRef]
- Noble, S.; Spooner, E.T.; Harris, F. The Logtung large tonnage, low-grade W (scheelite)-Mo porphyry deposit, south-central Yukon Territory. Econ. Geol. 1984, 79, 848–868. [Google Scholar] [CrossRef]
- Brugger, J.; Bettiol, A.; Costa, S.; Lahaye, Y.; Bateman, R.; Lambert, D.; Jamieson, D. Mapping REE distribution in scheelite using luminescence. Mineral. Mag. 2000, 64, 891–903. [Google Scholar] [CrossRef]
- Hazarika, P.; Mishra, B.; Pruseth, K.L. Scheelite, apatite, calcite and tourmaline compositions from the late Archean Hutti orogenic gold deposit: Implications for analogous two stage ore fluids. Ore Geol. Rev. 2016, 72, 989–1003. [Google Scholar] [CrossRef]
- Ghaderi, M.; Palin, J.M.; Campbell, I.H.; Sylvester, P.J. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia. Econ. Geol. 1999, 94, 423–437. [Google Scholar] [CrossRef]
- Dostal, J.; Kontak, D.J.; Chatterjee, A. Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada, Genetic implications. Mineral. Petrol. 2009, 97, 95–109. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Xie, G.Q.; Mao, J.W.; Liu, W.G.; Olin, P.; Li, W. Sm-Nd dating and in-situ LA-ICP-MS trace element analyses of scheelite from the Longshan Sb-Au deposit, Xiangzhong metallogenic Province, South China. Minerals 2019, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.Y.; Jiang, S.Y.; Chen, R.S.; Ma, Y. Origin of the Shangfang Tungsten deposit in the Fujian Province of Southeast China: Evidence from scheelite Sm-Nd geochronology, H-O isotopes and fluid inclusions studies. Minerals 2019, 9, 713. [Google Scholar] [CrossRef] [Green Version]
- Song, G.X.; Qin, K.Z.; Li, G.M.; Evans, N.J.; Chen, L. Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou Area, Anhui Province, Eastern China. Am. Mineral. 2014, 99, 303–317. [Google Scholar] [CrossRef]
- Poulin, R.S.; McDonald, A.M.; Kontak, D.J.; McClenaghan, M.B. On the relationship between cathodoluminescence and the chemical composition of scheelite from geologically diverse ore-deposit environments. Can. Mineral. 2016, 54, 1147–1173. [Google Scholar] [CrossRef]
- Sciuba, M.; Beaudoin, G.; Grzela, D.; Makvandi, S. Trace element composition of scheelite in orogenic gold deposits. Miner. Depos. 2019, 1–24. [Google Scholar] [CrossRef]
- Li, J.D.; Li, X.F.; Xiao, R. Multiple-Stage tungsten mineralization in the Silurian Jiepai W skarn deposit, South China: Insights from cathodoluminescence images, trace elements, and fluid inclusions of scheelite. J. Asian Earth Sci. 2019, 181, 1–22. [Google Scholar] [CrossRef]
- Yuan, L.L.; Chi, G.X.; Wang, M.Q.; Li, Z.H.; Xu, D.R.; Deng, T.; Geng, J.Z.; Hu, MY.; Zhang, L. Characteristics of REEs and trace elements in scheelite from the Zhuxi W deposit, South China: Implications for the ore-forming conditions and processes. Ore Geol. Rev. 2019, 109, 585–597. [Google Scholar] [CrossRef]
- Wu, S.H.; Mao, J.W.; Ireland, T.R.; Zhao, Z.; Yao, F.J.; Yang, Y.P.; Sun, W.D. Comparative geochemical study of scheelite from the Shizhuyuan and Xianglushan tungsten skarn deposits, South China: Implications for scheelite mineralization. Ore Geol. Rev. 2019, 109, 448–464. [Google Scholar] [CrossRef]
- Sun, K.K.; Chen, B.; Deng, J. Ore genesis of the Zhuxi supergiant W-Cu skarn polymetallic deposit, South China: Evidence from scheelite geochemistry. Ore Geol. Rev. 2019, 107, 14–29. [Google Scholar] [CrossRef]
- Kwak, T.A.P.; Tan, T.H. The geochemistry of zoning in skarn minerals at the King Island (Dolphin) mine. Econ. Geol. 1981, 76, 468–497. [Google Scholar] [CrossRef]
- Newberry, R.J. W-and Sn-Skarn Deposits: A 1998 Status Report. Miner. Intrusion-Relat. skarn Syst. 1998, 26, 289–335. [Google Scholar]
- Meinert, L.D.; Dipple, G.M.; Nicolescu, S. World skarn deposits. Econ. Geol. 2005, 100, 299–336. [Google Scholar]
- Wang, D.E.; Zhou, X.; Yu, X.Q.; Du, Y.D.; Yang, H.M.; Fu, J.Z.; Dong, H.M. SHRIMP zircon U-Pb dating and characteristics of Hf isotopes of the granodiorite porphyries in the Dongyuan W-Mo ore district, Qimen area, southern Anhui. Geol. Bull. China 2011, 30, 1514–1529. (In Chinese) [Google Scholar]
- Xiang, X.K.; Wang, P.; Sun, D.M.; Zhong, B. Re-Os isotopic age of molybdeinte from the Shimensi tungsten polymetallic deposit in northern Jiangxi province and its geological implications. Geol. Bull. China 2013, 32, 1824–1831. (In Chinese) [Google Scholar]
- Mao, J.W.; Xiong, B.K.; Liu, J.; Pirajno, F.; Cheng, Y.B.; Ye, H.S.; Song, S.W.; Dai, P. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting. Lithos 2017, 286–287, 35–52. [Google Scholar] [CrossRef]
- Mao, Z.H.; Cheng, Y.B.; Liu, J.J.; Yuan, S.D.; Wu, S.H.; Xiang, X.K.; Luo, X.H. Geology and molybdenite Re-Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxin Province, China. Ore Geol. Rev. 2013, 53, 422–433. [Google Scholar] [CrossRef]
- Chen, G.H.; Shu, L.S.; Shu, L.M.; Zhang, C.; Ouyang, Y.P. Geological characteristics and mineralization setting of the Zhuxi tungsten (copper) polymetallic deposit in the Eastern Jiangnan Orogen. Sci. China Earth Sci. 2015, 45, 1799–1818. (In Chinese) [Google Scholar] [CrossRef]
- Mao, Z.H.; Liu, J.J.; Mao, J.W.; Deng, J.; Zhang, F.; Meng, X.Y.; Xiong, B.K.; Xiang, X.K.; Luo, X.H. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten polymetallic deposit, middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization. Gondwana Res. 2015, 28, 816–836. [Google Scholar] [CrossRef]
- Song, S.W.; Mao, J.W.; Xie, G.Q.; Chen, L.; Santosh, M.; Chen, G.H.; Rao, J.F.; Ouyang, Y.P. In situ LA-ICP-MS U-Pb geochronology and trace element analysis of hydrothermal titanite from the giant Zhuxi W (Cu) skarn deposit, South China. Miner. Depos. 2019, 54, 569–590. [Google Scholar] [CrossRef]
- Song, S.W.; Mao, J.W.; Zhu, Y.F.; Yao, Z.Y.; Chen, G.H.; Rao, J.F.; Ouyang, Y.P. Partial-Melting of fertile metasedimentary rocks controlling the ore formation in the Jiangnan porphyry-skarn tungsten belt, South China: A upcletn, case study at the giant Zhuxi W-Cu skarn deposit. Lithos 2018, 304, 180–199. [Google Scholar] [CrossRef]
- Team, No. 332. Exploration Report of the Xiaoyao Tungsten Polymetallic Deposit, Jixi County, Anhui Province; Anhui Bureau of Geology and Mineral Resources: Anhui, China, 2011. [Google Scholar]
- Su, Q.W.; Mao, J.W.; Wu, S.H.; Zhang, Z.C.; Xu, S.F. Geochronology and geochemistry of the granitoids and ore-forming age in the Xiaoyao tungsten polymetallic skarn deposit in the Jiangnan Massif tungsten belt, China: Implications for their petrogenesis, geodynamic setting, and mineralization. Lithos 2018, 296–299, 365–381. [Google Scholar] [CrossRef]
- Chen, F.; Wang, D.H.; Du, J.G.; Xu, W.; Hu, H.F.; Yu, Y.L.; Tang, J.L. New dating of the fuling granite body with LA-ICP-MS zircon U-Pb in Jixi, Anhui Province and their geological significance. Rock Miner. Anal. 2013, 32, 970–977. (In Chinese) [Google Scholar]
- Sun, K.K.; Chen, B. Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China. Am. Mineral. 2017, 102, 1114–1128. [Google Scholar]
- Zaw, K.; Singoyi, B. Formation of magnetite-scheelite skarn mineralization at Kara, Northwestern Tasmania: Evidence from mineral chemistry and stable Isotopes. Econ. Geol. 2000, 95, 1215–1230. [Google Scholar] [CrossRef]
- Timon, S.S.M.; Moro, B.M.C.; Cembranos, P.M.L. Mineralogical and physiochemical evolution of the Los Santos scheelite skarn, Salamanca, NW Spain. Econ. Geol. 2009, 104, 961–995. [Google Scholar]
- Sun, S.S.; Mcdonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Hsu, L.C.; Galli, P.E. Origin of the scheelite-powellite series of minerals. Econ. Geol. 1973, 68, 681–696. [Google Scholar] [CrossRef]
- Rempel, K.U.; Williams-Jones, A.E.; Migdisov, A.A. The partitioning of molybdenum (VI) between aqueous liquid and vapour at temperatures up to 370 °C. Geochim. Cosmochim. Acta 2009, 73, 3381–3392. [Google Scholar] [CrossRef]
- Xu, J.; Ciobanu, C.L.; Cook, N.J.; Slattery, A. Crystals from the powellite-scheelite series at the nanoscale: A case study from the Zhibula Cu Skarn, Gangdese Belt, Tibet. Minerals 2019, 9, 340. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cao, L.; Li, Z.; Wang, H.; Chu, T.; Zhang, J. Element Geochemistry; Science Press: Beijing, China, 1984; p. 548. [Google Scholar]
- Liu, B.; Li, H.; Wu, Q.H.; Evans, N.J.; Cao, J.Y.; Jiang, J.B.; Wu, J.H. Fluid evolution of Triassic and Jurassic W mineralization in the Xitian ore field, South China: Constraints from scheelite geochemistry and microthermometry. Lithos 2019, 330–331, 1–15. [Google Scholar] [CrossRef]
- Guo, S.; Chen, Y.; Liu, C.; Wang, J.; Su, B.; Gao, Y.; Wu, F.; Sein, K.; Yang, Y.; Mao, Q. Scheelite and coexisting F-rich zoned garnet, vesuvianite, fluorite, and apatite in calc-silicate rocks from the Mogok metamorphic belt, Myanmar: Implications for metasomatism in marble and the role of halogens in W mobilization and mineralization. J. Asian Earth Sci. 2016, 117, 82–106. [Google Scholar] [CrossRef]
- Poulin, R.S.; Kontak, D.J.; McDonald, A.; Beth, M.; McCLenaghan, B.M. Assessing Scheelite as an ore-deposit discriminator using its trace-element REE chemistry. Can. Mineral. 2018, 56, 265–302. [Google Scholar] [CrossRef]
- Ismail, R.; Ciobanu, C.; Cook, N.J.; Teale, G.S.; Giles, D.; Mumm, A.S.; Wade, B. Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide-copper-gold deposit, Yorke Peninsula, South Australia. Lithos 2014, 184–187, 456–477. [Google Scholar] [CrossRef]
- Kinsman, D.J.J. Interpretation of Sr2+ concentrations in carbonate minerals and rocks. J. Sediment. Petrol. 1969, 39, 486–508. [Google Scholar]
- Friedmann, I.; O’Neil, J.R. Compilation of stable isotope fractionation factors of geochemical interest: Chapter KK. In Data of Geochemistry, 6th ed.; Fleischer, M., Ed.; U.S. Geological Survey Professional Paper; U.S. Government Printing Office: Washington, DC, USA, 1977; Volume 440, p. 12. [Google Scholar]
- Lecumberri-Sanchez, P.; Vieira, R.; Heinrich, C.A.; Pinto, F.; Wälle, M. Fluid-Rock interaction is decisive for the formation of tungsten deposits. Geology 2017, 45, 579–582. [Google Scholar] [CrossRef]
- Kozlik, M.; Gerdes, A.; Raith, J.G. Strontium isotope systematics of scheelite and apatite from the Felbertal tungsten deposit, Austria-results of in-situ LA-MC-ICP-MS analysis. Miner. Pet. 2016, 110, 11–27. [Google Scholar] [CrossRef]
- Burt, D.M. Compositional and phase relations among rare earth elements. Rev. Mineral. 1989, 21, 259–307. [Google Scholar]
- Schmidt, M.W.; Dardon, A.; Chazot, G.; Vannucci, R. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth Planet Sci. Lett. 2004, 226, 415–432. [Google Scholar] [CrossRef]
- Yaxley, G.M.; Green, D.H.; Kamenetsky, V. Carbonatite metasomatism in the southeastern Australian lithosphere. J. Petrol. 1998, 39, 1917–1930. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; p. 312. [Google Scholar]
- Dostal, J.; Chatterjee, A.K. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chem. Geol. 2000, 123, 67–88. [Google Scholar] [CrossRef]
- Du, Y.D.; Liu, J.J.; Yu, X.Q.; Zhou, X.; Yang, H.M.; Yang, L.B.; Huang, Y.H. The sources of metallogenic materials and mineralization of the Xiaoyao W polymetallic deposit in Anhui Province: Evidence from carbon, sulfur and lead isotopes. Geol. China 2013, 40, 566–579. (In Chinese) [Google Scholar]
- Song, G.X.; Qin, K.Z.; Li, G.M.; Li, X.H.; Qu, W.J. Geochronology and ore-forming fluids of the Baizhangyan W-Mo deposit in the Chizhou area, middle-lower Yangtze valley, SE-China. Resour. Geol. 2012, 63, 57–71. [Google Scholar] [CrossRef]
Sample | Scheelite Type | Location | Sample Description |
---|---|---|---|
15XY-31 | Sch1a, 2a | 353m, ZK4704 | Proximal skarn tungsten ore |
15XY-14 | Sch1b, 2b | 208m, ZK4704 | Distal skarn tungsten ore |
15XY-28 | Sch1a, 2a | 313m, ZK4704 | Retrograde skarn tungsten ore |
15XY-25 | Sch1a, 3, 4 | 300m, ZK4704 | Scheelite-rich quartz veins |
15XY-29 | Sch3, 4 | 320m, ZK4704 | Scheelite-rich quartz veins |
15XY-24 | Sch3, 4 | 290m, ZK4704 | Scheelite-rich quartz veins |
No. | Type | WO3 | P2O5 | CaO | FeO | MnO | V2O3 | TiO2 | MoO3 | Total |
---|---|---|---|---|---|---|---|---|---|---|
15XY-31-1-1 | Sch1a | 72.41 | 0.03 | 20.85 | 0.02 | 0 | 0 | 0.02 | 5.77 | 99.11 |
15XY-31-1-2 | Sch1a | 71.06 | 0.05 | 20.97 | 0.07 | 0.02 | 0.02 | 0.01 | 7.26 | 99.49 |
15XY-31-1-3 | Sch1a | 68.95 | 0 | 19.99 | 0 | 0 | 0.02 | 0.02 | 10.3 | 99.32 |
15XY-31-1-4 | Sch1a | 69.38 | 0.1 | 20.26 | 0.04 | 0 | 0 | 0.01 | 10.23 | 100.06 |
15XY-31-1-5 | Sch1a | 72.03 | 0.04 | 20.86 | 0 | 0 | 0.01 | 0 | 7.05 | 100.05 |
15XY-31-1-6 | Sch2a | 77.76 | 0.02 | 19.7 | 0.17 | 0.03 | 0.09 | 0.03 | 1.71 | 99.53 |
15XY-28-2-5 | Sch2a | 76.59 | 0.06 | 18.89 | 0 | 0 | 0 | 0.02 | 3.51 | 99.1 |
15XY-28-2-6 | Sch1a | 71.23 | 0.02 | 19.04 | 0.02 | 0 | 0.04 | 0.02 | 8.7 | 99.12 |
15XY-28-2-7 | Sch1a | 73.87 | 0.03 | 18.75 | 0.01 | 0 | 0 | 0 | 8.03 | 100.76 |
15XY-28-2-8 | Sch2a | 78.13 | 0.08 | 18.7 | 0 | 0.01 | 0.01 | 0 | 2.14 | 99.12 |
15XY14-3-1 | Sch1b | 79.79 | 0 | 19.59 | 0 | 0 | 0 | 0 | 0.42 | 99.84 |
15XY14-3-2 | Sch2b | 70.71 | 0.04 | 19.25 | 0 | 0 | 0 | 0 | 10.17 | 100.22 |
15XY14-3-3 | Sch2b | 70.03 | 0.05 | 20.93 | 0.03 | 0 | 0.04 | 0.02 | 8.07 | 99.2 |
15XY14-3-4 | Sch1b | 79.88 | 0.01 | 19.51 | 0 | 0 | 0 | 0 | 0.38 | 99.86 |
15XY-25-2-1 | Sch1a | 69.79 | 0.11 | 20.06 | 0 | 0 | 0.08 | 0.01 | 9.34 | 99.46 |
15XY-25-2-2 | Sch1a | 73.79 | 0 | 18.95 | 0 | 0.01 | 0 | 0 | 7.61 | 100.39 |
15XY-25-2-3 | Sch3 | 69.28 | 0.05 | 20.09 | 0 | 0.02 | 0 | 0 | 9.78 | 99.23 |
15XY-25-2-4 | Sch3 | 66.67 | 0.05 | 20.36 | 0.1 | 0.04 | 0 | 0 | 8.98 | 96.19 |
15XY-25-2-5 | Sch4 | 79.8 | 0.06 | 19.44 | 0.02 | 0.03 | 0 | 0.01 | 0.33 | 99.7 |
15XY-25-2-6 | Sch1a | 71.29 | 0.07 | 20.25 | 0.07 | 0 | 0.04 | 0 | 8.13 | 99.87 |
15XY-25-2-7 | Sch3 | 71.44 | 0.09 | 20.52 | 0 | 0.04 | 0.03 | 0.02 | 6.88 | 99.01 |
15XY29-3-1 | Sch3 | 72.53 | 0.04 | 20.83 | 0 | 0 | 0 | 0.01 | 6.61 | 100.06 |
15XY29-3-2 | Sch3 | 74.43 | 0.02 | 19.09 | 0 | 0.07 | 0.03 | 0.03 | 5.63 | 99.32 |
15XY29-3-3 | Sch3 | 74.55 | 0.09 | 20.24 | 0 | 0 | 0.03 | 0.01 | 4.09 | 99.01 |
15XY29-3-4 | Sch4 | 79.13 | 0.08 | 19.7 | 0.22 | 0.05 | 0 | 0 | 0.76 | 99.95 |
15XY-24-2-1 | Sch3 | 72.15 | 0.02 | 19 | 0.04 | 0 | 0 | 0 | 8.05 | 99.29 |
15XY-24-2-2 | Sch3 | 72.6 | 0 | 19.07 | 0.01 | 0 | 0 | 0 | 8.17 | 99.95 |
15XY-24-2-3 | Sch3 | 71.81 | 0.06 | 19.39 | 0.1 | 0.08 | 0 | 0 | 9.37 | 100.83 |
15XY-24-2-4 | Sch3 | 71.83 | 0 | 19 | 0 | 0.03 | 0 | 0.01 | 9.49 | 100.46 |
15XY-24-2-5 | Sch3 | 71.58 | 0.08 | 19.07 | 0.03 | 0 | 0 | 0 | 9.35 | 100.15 |
15XY-24-2-6 | Sch3 | 72.66 | 0.01 | 19.02 | 0.07 | 0.02 | 0 | 0 | 9.06 | 100.88 |
15XY-24-2-7 | Sch4 | 80.48 | 0.02 | 18.73 | 0 | 0 | 0 | 0 | 0.19 | 99.44 |
Sample | Sch Type | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ΣREE | ΣLREE | ΣHREE | LREE/HREE | Eu/Eu* | (La/Sm)N | (Gd/Lu)N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15XY-31-1 | Sch 1a | 67.15 | 95.30 | 8.99 | 26.66 | 2.44 | 0.19 | 1.66 | 0.18 | 0.63 | 0.10 | 0.20 | 0.01 | 0.03 | 0.04 | 203.58 | 200.74 | 4.89 | 41.02 | 0.27 | 17.30 | 6.05 |
15XY-31-3 | Sch 1a | 32.09 | 42.05 | 3.64 | 11.69 | 1.50 | 0.15 | 1.21 | 0.12 | 0.70 | 0.13 | 0.25 | 0.02 | 0.18 | 0.07 | 93.80 | 91.13 | 5.39 | 16.92 | 0.33 | 13.44 | 2.33 |
15XY-31-6 | Sch 1a | 100.86 | 132.39 | 10.89 | 28.48 | 3.01 | 0.20 | 2.30 | 0.24 | 1.14 | 0.20 | 0.34 | 0.03 | 0.14 | 0.04 | 280.23 | 275.82 | 7.90 | 34.91 | 0.22 | 21.09 | 7.21 |
15XY-31-2 | Sch 2a | 3.74 | 11.48 | 1.17 | 3.67 | 0.47 | 0.06 | 0.28 | 0.04 | 0.18 | 0.03 | 0.06 | 0.00 | 0.02 | 0.05 | 21.24 | 20.59 | 1.10 | 18.68 | 0.50 | 4.97 | 0.75 |
15XY-31-4 | Sch 2a | 6.67 | 13.41 | 1.60 | 5.68 | 0.44 | 0.16 | 0.69 | 0.07 | 0.22 | 0.04 | 0.09 | 0.00 | 0.01 | 0.04 | 29.10 | 27.95 | 1.75 | 16.01 | 0.88 | 9.62 | 2.48 |
15XY-31-5 | Sch 2a | 67.51 | 89.28 | 7.42 | 18.38 | 1.46 | 0.43 | 0.84 | 0.09 | 0.40 | 0.09 | 0.17 | 0.04 | 0.27 | 0.07 | 186.46 | 184.48 | 3.86 | 47.83 | 1.09 | 29.15 | 1.49 |
15XY-14-1 | Sch 1b | 18.80 | 47.68 | 10.41 | 82.40 | 27.55 | 5.60 | 48.25 | 6.68 | 41.76 | 10.02 | 25.00 | 2.38 | 11.10 | 1.45 | 339.07 | 192.44 | 392.51 | 0.49 | 0.47 | 0.43 | 4.27 |
15XY-14-2 | Sch 1b | 10.46 | 43.04 | 11.58 | 100.64 | 36.65 | 5.98 | 74.58 | 11.22 | 78.54 | 18.72 | 42.84 | 3.85 | 15.01 | 1.30 | 454.41 | 208.36 | 742.83 | 0.28 | 0.34 | 0.18 | 7.38 |
15XY-14-3 | Sch 1b | 22.51 | 47.86 | 9.02 | 65.83 | 19.21 | 4.92 | 34.92 | 4.55 | 26.67 | 6.34 | 17.42 | 1.41 | 5.60 | 0.73 | 266.99 | 169.34 | 252.57 | 0.67 | 0.57 | 0.74 | 6.14 |
15XY-14-8 | Sch 1b | 22.17 | 50.06 | 9.11 | 57.93 | 19.15 | 3.74 | 31.07 | 4.17 | 24.67 | 6.07 | 14.41 | 1.49 | 6.16 | 0.86 | 251.06 | 162.16 | 232.21 | 0.70 | 0.47 | 0.73 | 4.62 |
15XY-14-11 | Sch 1b | 20.08 | 42.94 | 7.95 | 54.98 | 16.77 | 2.65 | 32.10 | 3.87 | 25.73 | 5.63 | 14.38 | 1.49 | 7.93 | 0.85 | 237.34 | 145.37 | 237.37 | 0.61 | 0.34 | 0.75 | 4.85 |
15XY-14-6 | Sch 2b | 24.74 | 52.76 | 9.13 | 60.83 | 16.06 | 3.69 | 30.55 | 4.50 | 25.67 | 6.00 | 14.14 | 1.41 | 6.55 | 0.67 | 256.72 | 167.22 | 234.35 | 0.71 | 0.50 | 0.97 | 5.87 |
15XY-14-7 | Sch 2b | 40.06 | 102.91 | 17.54 | 96.14 | 20.94 | 4.69 | 22.11 | 2.68 | 15.36 | 3.06 | 9.00 | 0.86 | 5.87 | 0.56 | 341.78 | 282.29 | 164.99 | 1.71 | 0.66 | 1.20 | 5.04 |
15XY-14-9 | Sch 2b | 67.73 | 152.26 | 23.47 | 134.49 | 26.30 | 6.04 | 31.48 | 4.74 | 27.44 | 6.08 | 15.42 | 1.97 | 12.10 | 1.42 | 510.94 | 410.28 | 296.12 | 1.39 | 0.64 | 1.62 | 2.85 |
15XY-14-10 | Sch 2b | 69.51 | 151.71 | 23.51 | 117.75 | 20.09 | 5.60 | 24.78 | 3.09 | 15.86 | 3.92 | 10.33 | 1.12 | 6.83 | 0.85 | 454.97 | 388.17 | 185.41 | 2.09 | 0.77 | 2.18 | 3.72 |
15XY-14-12 | Sch 2b | 87.42 | 199.19 | 30.75 | 146.76 | 28.05 | 6.91 | 30.70 | 4.28 | 26.68 | 5.96 | 16.53 | 2.11 | 13.95 | 1.53 | 600.82 | 499.06 | 295.67 | 1.69 | 0.72 | 1.96 | 2.57 |
15XY-29-2-1 | Sch 3 | 139.81 | 171.97 | 12.56 | 30.53 | 2.44 | 1.05 | 1.48 | 0.15 | 0.75 | 0.11 | 0.27 | 0.02 | 0.21 | 0.07 | 361.43 | 358.37 | 6.41 | 55.87 | 1.56 | 35.98 | 2.71 |
15XY-29-2-2 | Sch 3 | 240.02 | 314.24 | 22.89 | 54.09 | 5.66 | 3.83 | 4.82 | 0.56 | 2.66 | 0.47 | 0.70 | 0.08 | 0.32 | 0.04 | 650.38 | 640.73 | 21.28 | 30.11 | 2.19 | 26.67 | 14.12 |
15XY-29-2-3 | Sch 3 | 303.46 | 434.53 | 26.56 | 62.70 | 5.40 | 5.55 | 3.77 | 0.37 | 1.91 | 0.26 | 0.30 | 0.07 | 0.10 | 0.05 | 845.03 | 838.19 | 15.62 | 53.66 | 3.58 | 35.38 | 9.84 |
15XY-29-2-4 | Sch 3 | 298.57 | 434.24 | 23.49 | 49.60 | 3.17 | 3.92 | 1.44 | 0.17 | 0.91 | 0.18 | 0.30 | 0.01 | 0.11 | 0.04 | 816.14 | 812.98 | 8.45 | 96.24 | 4.89 | 59.24 | 4.29 |
15XY-29-2-5 | Sch 3 | 248.33 | 290.72 | 16.92 | 33.88 | 2.89 | 1.27 | 1.79 | 0.16 | 0.88 | 0.13 | 0.37 | 0.04 | 0.25 | 0.06 | 597.68 | 594.00 | 9.30 | 63.90 | 1.59 | 54.13 | 4.08 |
15XY-29-2-6 | Sch 3 | 208.14 | 222.83 | 16.58 | 42.95 | 4.65 | 1.16 | 3.23 | 0.37 | 2.33 | 0.45 | 1.09 | 0.12 | 0.33 | 0.08 | 504.32 | 496.31 | 22.86 | 21.71 | 0.87 | 28.18 | 5.29 |
15XY-29-2-7 | Sch 3 | 116.48 | 178.67 | 21.28 | 95.76 | 18.06 | 3.57 | 20.30 | 2.41 | 13.77 | 2.52 | 5.40 | 0.48 | 1.45 | 0.14 | 480.28 | 433.82 | 120.94 | 3.59 | 0.57 | 4.06 | 18.20 |
15XY-29-2-8 | Sch 3 | 264.81 | 373.44 | 35.97 | 123.47 | 21.39 | 4.75 | 23.86 | 3.41 | 19.29 | 4.42 | 10.28 | 1.02 | 3.65 | 0.35 | 890.13 | 823.84 | 208.97 | 3.94 | 0.64 | 7.79 | 8.87 |
15XY-29-2-9 | Sch 4 | 67.12 | 110.26 | 12.48 | 41.43 | 5.23 | 0.69 | 5.12 | 0.62 | 3.20 | 0.62 | 1.58 | 0.12 | 0.58 | 0.10 | 249.14 | 237.20 | 28.28 | 8.39 | 0.40 | 8.07 | 6.71 |
15XY-29-2-10 | Sch 4 | 46.74 | 84.89 | 10.06 | 34.66 | 4.08 | 0.93 | 3.57 | 0.33 | 2.14 | 0.36 | 0.67 | 0.03 | 0.11 | 0.06 | 188.64 | 181.37 | 15.20 | 11.93 | 0.73 | 7.20 | 7.07 |
15XY-29-1-1 | Sch 3 | 91.01 | 143.56 | 14.00 | 50.63 | 6.56 | 1.42 | 5.93 | 0.70 | 3.88 | 0.72 | 1.40 | 0.14 | 0.30 | 0.07 | 320.32 | 307.18 | 32.20 | 9.54 | 0.68 | 8.72 | 11.59 |
15XY-29-1-2 | Sch 3 | 56.70 | 111.07 | 14.19 | 67.33 | 13.04 | 2.74 | 13.83 | 1.69 | 9.11 | 1.69 | 3.26 | 0.29 | 0.76 | 0.09 | 295.77 | 265.06 | 77.80 | 3.41 | 0.62 | 2.73 | 19.45 |
15XY-29-1-3 | Sch 3 | 54.73 | 107.86 | 15.22 | 83.18 | 16.32 | 3.04 | 20.02 | 2.42 | 12.67 | 2.53 | 4.83 | 0.37 | 1.46 | 0.10 | 324.74 | 280.35 | 112.81 | 2.49 | 0.51 | 2.11 | 25.06 |
15XY-29-1-4 | Sch 3 | 81.78 | 129.44 | 14.31 | 59.54 | 11.14 | 2.33 | 13.85 | 1.69 | 8.88 | 1.40 | 3.42 | 0.21 | 0.45 | 0.08 | 328.54 | 298.55 | 72.99 | 4.09 | 0.57 | 4.62 | 23.25 |
15XY-29-1-5 | Sch 3 | 111.35 | 171.18 | 18.03 | 73.92 | 13.18 | 2.53 | 14.90 | 1.90 | 9.55 | 2.05 | 4.24 | 0.43 | 1.29 | 0.10 | 424.66 | 390.20 | 91.28 | 4.27 | 0.55 | 5.31 | 19.66 |
15XY-29-1-6 | Sch 3 | 112.31 | 174.05 | 18.20 | 71.14 | 15.46 | 2.98 | 16.85 | 2.07 | 11.66 | 2.46 | 5.16 | 0.45 | 1.66 | 0.16 | 434.59 | 394.13 | 109.08 | 3.61 | 0.56 | 4.57 | 13.72 |
15XY-29-1-7 | Sch 3 | 89.02 | 137.17 | 14.28 | 66.28 | 12.42 | 2.87 | 15.86 | 1.76 | 9.81 | 1.91 | 4.64 | 0.36 | 1.13 | 0.15 | 357.66 | 322.03 | 94.46 | 3.41 | 0.63 | 4.51 | 13.63 |
15XY-29-1-8 | Sch 3 | 148.15 | 200.34 | 16.91 | 53.49 | 7.52 | 1.45 | 6.07 | 0.81 | 3.96 | 0.82 | 1.76 | 0.15 | 0.41 | 0.09 | 441.93 | 427.86 | 38.98 | 10.97 | 0.64 | 12.39 | 8.77 |
15XY-29-1-9 | Sch 3 | 130.06 | 180.17 | 13.94 | 34.61 | 3.82 | 1.55 | 2.02 | 0.29 | 1.34 | 0.24 | 0.56 | 0.01 | 0.27 | 0.06 | 368.94 | 364.16 | 12.81 | 28.42 | 1.54 | 21.39 | 4.53 |
15XY-29-1-10 | Sch 3 | 100.53 | 139.62 | 11.24 | 27.20 | 1.96 | 0.80 | 1.69 | 0.12 | 0.61 | 0.10 | 0.26 | 0.03 | 0.02 | 0.07 | 284.25 | 281.35 | 5.93 | 47.44 | 1.32 | 32.25 | 2.96 |
15XY-29-1-11 | Sch 3 | 95.33 | 134.30 | 10.26 | 22.99 | 2.44 | 0.81 | 1.85 | 0.26 | 0.95 | 0.19 | 0.31 | 0.01 | 0.18 | 0.06 | 269.94 | 266.14 | 10.17 | 26.18 | 1.12 | 24.57 | 4.14 |
15XY-31-7 | Garnet | 14.88 | 35.28 | 4.30 | 17.30 | 3.55 | 0.69 | 3.06 | 0.40 | 2.98 | 0.50 | 1.67 | 0.20 | 0.90 | 0.18 | 85.89 | 76.00 | 25.63 | 2.97 | 0.57 | 5.67 | 0.74 |
15XY-31-8 | Garnet | 14.11 | 35.75 | 4.24 | 14.64 | 2.70 | 0.61 | 4.11 | 0.68 | 5.03 | 1.15 | 3.40 | 0.50 | 3.52 | 0.61 | 91.04 | 72.05 | 52.15 | 1.38 | 0.62 | 2.64 | 2.14 |
15XY-14-4 | Pyroxene | 0.74 | 1.82 | 0.30 | 1.16 | 0.33 | 0.15 | 0.00 | 0.12 | 0.83 | 0.12 | 0.28 | 0.08 | 1.74 | 0.59 | 8.24 | 4.49 | 8.66 | 0.52 | 0.56 | 3.29 | 0.87 |
15XY-14-5 | Pyroxene | 0.28 | 1.35 | 0.22 | 1.67 | 0.45 | 0.17 | 0.14 | 0.09 | 0.63 | 0.14 | 0.43 | 0.18 | 1.87 | 0.53 | 8.15 | 4.15 | 8.95 | 0.46 | 2.41 | 1.40 | 0.00 |
Sample | Sch Type | Na | Mo | As | Sr | Y | Zr | Nb | Hf | Ta | Cd | Pb | Zr/Hf | Nb/Ta | Y/Ho |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15XY-31-1 | Sch 1a | 26.75 | 45,593.04 | 6.17 | 67.04 | 2.05 | 9.58 | 15.00 | 1.38 | 850.67 | 5.98 | 1.89 | 6.92 | 0.02 | 20.51 |
15XY-31-3 | Sch 1a | 12.40 | 20,578.05 | 3.32 | 82.70 | 2.72 | 9.60 | 4.55 | 1.60 | 863.90 | 2.52 | 0.65 | 6.01 | 0.01 | 20.58 |
15XY-31-6 | Sch 1a | 42.02 | 60,560.35 | 11.00 | 87.15 | 3.49 | 8.87 | 8.96 | 1.61 | 779.38 | 8.30 | 3.05 | 5.52 | 0.01 | 17.86 |
15XY-31-2 | Sch 2a | 2.67 | 10,628.82 | 0.00 | 89.71 | 0.45 | 9.62 | 1.33 | 1.54 | 928.03 | 1.11 | 0.38 | 6.23 | 0.00 | 13.78 |
15XY-31-4 | Sch 2a | 0.00 | 8390.98 | 1.43 | 87.84 | 0.60 | 10.24 | 3.34 | 1.63 | 907.67 | 1.02 | 0.67 | 6.29 | 0.00 | 15.74 |
15XY-31-5 | Sch 2a | 0.00 | 13,343.18 | 7.89 | 73.23 | 1.88 | 33.36 | 32.09 | 3.09 | 860.23 | 1.51 | 2.12 | 10.78 | 0.04 | 20.43 |
15XY-14-1 | Sch 1b | 233.91 | 1083.30 | 12.94 | 102.80 | 245.88 | 11.20 | 10.86 | 1.75 | 1469.78 | 0.34 | 2.90 | 6.41 | 0.01 | 24.55 |
15XY-14-2 | Sch 1b | 0.00 | 58.80 | 4.29 | 76.72 | 496.78 | 10.98 | 22.19 | 2.19 | 1568.93 | 0.00 | 1.67 | 5.00 | 0.01 | 26.54 |
15XY-14-3 | Sch 1b | 0.00 | 1386.64 | 12.15 | 110.21 | 154.92 | 13.88 | 10.54 | 2.08 | 1538.07 | 0.00 | 2.60 | 6.68 | 0.01 | 24.42 |
15XY-14-8 | Sch 1b | 0.00 | 2205.34 | 10.28 | 110.18 | 143.31 | 10.41 | 10.02 | 1.68 | 1397.17 | 0.40 | 3.05 | 6.21 | 0.01 | 23.62 |
15XY-14-11 | Sch 1b | 0.00 | 622.94 | 8.58 | 108.78 | 145.40 | 10.03 | 10.18 | 2.17 | 1399.36 | 0.00 | 2.18 | 4.63 | 0.01 | 25.83 |
15XY-14-6 | Sch 2b | 0.00 | 5814.94 | 6.17 | 117.73 | 144.85 | 10.86 | 12.09 | 1.73 | 1359.43 | 0.00 | 2.87 | 6.26 | 0.01 | 24.14 |
15XY-14-7 | Sch 2b | 256.49 | 86,771.32 | 10.90 | 159.58 | 105.49 | 35.85 | 12.88 | 1.72 | 1124.92 | 7.42 | 3.76 | 20.83 | 0.01 | 34.50 |
15XY-14-9 | Sch 2b | 0.00 | 47,068.48 | 11.83 | 144.46 | 195.47 | 36.36 | 46.83 | 2.84 | 1181.12 | 1.98 | 4.34 | 12.80 | 0.04 | 32.14 |
15XY-14-10 | Sch 2b | 28.53 | 56,974.31 | 18.48 | 154.41 | 118.61 | 13.98 | 26.22 | 1.81 | 1218.51 | 4.56 | 5.07 | 7.72 | 0.02 | 30.28 |
15XY-14-12 | Sch 2b | 0.00 | 53,754.93 | 13.20 | 141.41 | 193.92 | 44.58 | 53.07 | 3.05 | 1125.68 | 4.04 | 4.11 | 14.63 | 0.05 | 32.52 |
15XY-29-2-1 | Sch 3 | 179.15 | 44,234.77 | 14.68 | 104.95 | 3.35 | 12.42 | 16.21 | 1.56 | 1088.53 | 5.39 | 27.70 | 7.96 | 0.01 | 31.80 |
15XY-29-2-2 | Sch 3 | 78.46 | 52,207.24 | 2.31 | 113.54 | 11.64 | 11.88 | 6.58 | 1.65 | 1065.89 | 3.46 | 2.70 | 7.18 | 0.01 | 24.77 |
15XY-29-2-3 | Sch 3 | 111.19 | 56,637.38 | 5.12 | 110.60 | 8.79 | 10.62 | 13.94 | 1.62 | 1068.39 | 52.76 | 15.05 | 6.56 | 0.01 | 33.58 |
15XY-29-2-4 | Sch 3 | 65.81 | 61,604.73 | 9.68 | 103.10 | 5.29 | 10.51 | 8.02 | 1.53 | 1063.14 | 6.19 | 2.26 | 6.85 | 0.01 | 30.03 |
15XY-29-2-5 | Sch 3 | 68.74 | 72,813.94 | 4.49 | 93.14 | 5.62 | 9.74 | 5.24 | 1.25 | 1048.24 | 6.56 | 2.09 | 7.78 | 0.00 | 43.82 |
15XY-29-2-6 | Sch 3 | 200.18 | 89824.21 | 5.79 | 106.47 | 14.85 | 10.63 | 4.27 | 1.35 | 990.88 | 6.87 | 1.76 | 7.86 | 0.00 | 33.23 |
15XY-29-2-7 | Sch 3 | 0.00 | 11,675.75 | 1.32 | 109.74 | 74.48 | 10.41 | 25.06 | 1.63 | 1170.84 | 0.55 | 1.13 | 6.39 | 0.02 | 29.59 |
15XY-29-2-8 | Sch 3 | 147.39 | 75,612.31 | 8.22 | 114.14 | 142.69 | 11.99 | 11.76 | 1.32 | 1048.01 | 4.92 | 1.90 | 9.09 | 0.01 | 32.27 |
15XY-29-2-9 | Sch 4 | 44.97 | 32,894.58 | 2.07 | 89.23 | 16.35 | 9.18 | 26.99 | 1.50 | 1179.63 | 6.15 | 1.99 | 6.11 | 0.02 | 26.46 |
15XY-29-2-10 | Sch 4 | 0.00 | 17636.97 | 1.75 | 87.58 | 7.93 | 10.86 | 21.35 | 1.57 | 1186.75 | 1.09 | 5.71 | 6.93 | 0.02 | 22.32 |
15XY-29-1-1 | Sch 3 | 0.00 | 86685.10 | 18.00 | 119.72 | 19.05 | 10.18 | 7.23 | 1.32 | 1055.65 | 1.81 | 2.91 | 7.70 | 0.01 | 26.51 |
15XY-29-1-2 | Sch 3 | 0.00 | 24606.24 | 5.14 | 102.35 | 47.09 | 9.67 | 23.11 | 1.74 | 1268.90 | 1.16 | 1.79 | 5.56 | 0.02 | 27.92 |
15XY-29-1-3 | Sch 3 | 75.71 | 18,813.40 | 2.73 | 101.12 | 68.41 | 10.52 | 29.70 | 1.54 | 1295.13 | 4.77 | 1.59 | 6.84 | 0.02 | 27.07 |
15XY-29-1-4 | Sch 3 | 16.59 | 17,920.21 | 4.70 | 92.02 | 42.99 | 9.85 | 23.06 | 1.30 | 1238.47 | 8.31 | 3.08 | 7.59 | 0.02 | 30.67 |
15XY-29-1-5 | Sch 3 | 59.33 | 69,605.23 | 4.98 | 101.20 | 56.82 | 13.04 | 11.56 | 1.26 | 1078.53 | 1.32 | 7.00 | 10.33 | 0.01 | 27.76 |
15XY-29-1-6 | Sch 3 | 82.39 | 79,410.89 | 9.31 | 104.63 | 68.61 | 12.12 | 9.30 | 1.42 | 1090.63 | 10.03 | 8.46 | 8.53 | 0.01 | 27.87 |
15XY-29-1-7 | Sch 3 | 0.00 | 16,264.14 | 5.37 | 102.81 | 58.83 | 10.10 | 24.79 | 1.88 | 1242.52 | 2.90 | 1.76 | 5.37 | 0.02 | 30.79 |
15XY-29-1-8 | Sch 3 | 0.00 | 89,459.70 | 4.95 | 106.96 | 24.91 | 11.35 | 3.96 | 1.44 | 963.19 | 4.50 | 2.25 | 7.87 | 0.00 | 30.27 |
15XY-29-1-9 | Sch 3 | 63.93 | 59,743.58 | 10.98 | 106.49 | 8.03 | 11.28 | 9.49 | 1.89 | 1102.08 | 6.28 | 2.58 | 5.96 | 0.01 | 33.40 |
15XY-29-1-10 | Sch 3 | 0.00 | 51,315.64 | 14.24 | 120.36 | 3.03 | 10.39 | 8.60 | 1.73 | 1124.43 | 1.52 | 1.80 | 5.99 | 0.01 | 29.80 |
15XY-29-1-11 | Sch 3 | 70.21 | 91,626.28 | 9.87 | 112.34 | 6.36 | 10.81 | 6.68 | 1.53 | 984.72 | 2.59 | 2.05 | 7.08 | 0.01 | 34.15 |
Sample | Sch Type | Na | Mo | As | Sr | Y | Zr | Nb | Hf | Ta | Au | Pb | Zr/Hf | Nb/Ta | Y/Ho |
15XY-31-7 | Garnet | 384.43 | 7.38 | 1.14 | 0.24 | 15.74 | 7.04 | 1.68 | 0.17 | 0.55 | 0.01 | 0.47 | 41.89 | 3.07 | 31.31 |
15XY-31-8 | Garnet | 219.27 | 4.22 | 2.68 | 0.49 | 33.16 | 37.89 | 5.51 | 1.61 | 0.64 | 0.00 | 0.26 | 23.60 | 8.60 | 28.95 |
15XY-14-4 | Pyroxene | 0.06 | 0.00 | 1.81 | 11.67 | 4.91 | 6.41 | 0.06 | 0.00 | 0.01 | 0.00 | 0.24 | 0.00 | 10.87 | 39.66 |
15XY-14-5 | Pyroxene | 0.18 | 0.23 | 0.00 | 7.41 | 4.95 | 6.03 | 0.00 | 0.50 | 0.00 | 0.02 | 27.47 | 12.03 | 0.00 | 36.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Q.; Mao, J.; Sun, J.; Zhao, L.; Xu, S. Geochemistry and Origin of Scheelites from the Xiaoyao Tungsten Skarn Deposit in the Jiangnan Tungsten Belt, SE China. Minerals 2020, 10, 271. https://doi.org/10.3390/min10030271
Su Q, Mao J, Sun J, Zhao L, Xu S. Geochemistry and Origin of Scheelites from the Xiaoyao Tungsten Skarn Deposit in the Jiangnan Tungsten Belt, SE China. Minerals. 2020; 10(3):271. https://doi.org/10.3390/min10030271
Chicago/Turabian StyleSu, Qiangwei, Jingwen Mao, Jia Sun, Linghao Zhao, and Shengfa Xu. 2020. "Geochemistry and Origin of Scheelites from the Xiaoyao Tungsten Skarn Deposit in the Jiangnan Tungsten Belt, SE China" Minerals 10, no. 3: 271. https://doi.org/10.3390/min10030271
APA StyleSu, Q., Mao, J., Sun, J., Zhao, L., & Xu, S. (2020). Geochemistry and Origin of Scheelites from the Xiaoyao Tungsten Skarn Deposit in the Jiangnan Tungsten Belt, SE China. Minerals, 10(3), 271. https://doi.org/10.3390/min10030271