Genesis of Early–Middle Jurassic Intrusive Rocks in the Erguna Block (NE China) in Response to the Late-Stage Southward Subduction of the Mongol–Okhotsk Oceanic Plate: Constraints from Geochemistry and Zircon U–Pb Geochronology and Lu–Hf Isotopes
Abstract
:1. Introduction
2. Geological Background and Sample Collections
3. Analytical Techniques
4. Results
4.1. Petrography
4.2. Zircon Morphology, Trace Element Compositions, and U–Pb Geochronology
4.3. Ti-in Zircon Geothermometry and Zircon Saturation Temperature
4.4. Whole-Rock Major and Trace Elements
4.5. Zircon Lu–Hf Isotopes
5. Discussion
5.1. Petrogenesis
5.1.1. Early Jurassic Monzogranites
5.1.2. Middle Jurassic Quartz Monzonites
5.2. Tectonic Setting and Geodynamic Scenario
5.2.1. Tectonic Regime
5.2.2. Andean-Type Arc Setting for the Early Jurassic Monzogranites
5.2.3. Strong Crustal Thickening for the Middle Jurassic Quartz Monzonites
5.2.4. Geodynamic Scenario
6. Conclusions
- Early Jurassic (ca. 177–198 Ma) high-K calc-alkaline I-type monzogranites, and Middle Jurassic (ca. 162–174 Ma) quartz monzonites with adakitic affinity were identified in the Erguna Block, NE China.
- The Early Jurassic I-type monzogranites were likely originated by partial melting of K-rich meta-basalts from the lower part of a juvenile crust with medium-thickness (≤40 km), with the injection of minor mantle materials. The Middle Jurassic quartz monzonites were probably produced by partial melting of a thickened juvenile continental lower crust (≥50 km).
- The Mongol–Okhotsk tectonic regime played a dominant role in accounting for the generation of the Early–Middle Jurassic intrusive rocks within the Erguna Block. An Andean-type continental arc setting was developed during the Early–Middle Jurassic, with continuous thickening of the continental crust. The significant crustal thickening may reach its peak during ca. 162–174 Ma, which marks the tectonic transition from compression to extension.
- The MOOP was subducted southward beneath the Erguna Block during the Early Jurassic, followed by slab-rollback since ca. 178 Ma. The slab-rollback was terminated at ca. 174 Ma, accompanied by moderate magmatic activities represented by adakitic rocks.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, J.B.; Wilde, S.A.; Zhao, G.C.; Han, J. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth-Sci. Rev. 2017. [Google Scholar] [CrossRef]
- Kelty, T.K.; Yin, A.; Dash, B.; Gehrels, G.E.; Ribeiro, A.E. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia. Tectonophysics 2008, 451, 290–311. [Google Scholar] [CrossRef]
- Ruppen, D.; Knaf, A.; Bussien, D.; Winkler, W.; Chimedtseren, A.; von Quadt, A. Restoring the Silurian to carboniferous northern active continental margin of the Mongol-Okhotsk Ocean in Mongolia: Hangay-Hentey accretionary wedge and seamount collision. Gondwana Res. 2014, 25, 1517–1534. [Google Scholar] [CrossRef]
- Tang, J.; Xu, W.L.; Wang, F.; Zhao, S.; Li, Y. Geochronology, geochemistry, and deformation history of Late Jurassic–Early Cretaceous intrusive rocks in the Erguna Massif, NE China: Constraints on the late Mesozoic tectonic evolution of the Mongol–Okhotsk orogenic belt. Tectonophysics 2015, 658, 91–110. [Google Scholar] [CrossRef]
- Tomurtogoo, O.; Windley, B.F.; Kroner, A.; Badarch, G.; Liu, D.Y. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: Constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen. J. Geol. Soc. 2005, 162, 125–134. [Google Scholar] [CrossRef]
- Donskaya, T.V.; Gladkochub, D.P.; Mazukabzov, A.M.; De Waele, B.; Presnyakov, S.L. The late Triassic Kataev volcanoplutonic association in western Transbaikalia, a fragment of the active continental margin of the Mongol-Okhotsk Ocean. Russ. Geol. Geophys. 2012, 53, 22–36. [Google Scholar] [CrossRef]
- Sun, D.Y.; Gou, J.; Wang, T.H.; Ren, Y.S.; Liu, Y.J.; Guo, H.Y.; Liu, X.M.; Hu, Z.C. Geochronological and geochemical constraints on the Erguna massif basement, NE China-subduction history of the Mongol–Okhotsk oceanic crust. Int. Geol. Rev. 2013, 55, 1801–1816. [Google Scholar] [CrossRef]
- Xu, W.L.; Pei, F.P.; Wang, F.; Meng, E.; Ji, W.Q.; Yang, D.B.; Wang, W. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. J. Asian Earth Sci. 2013, 74, 167–193. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Gou, J.; Sun, D.Y.; Qin, Z. Late Jurassic–Early Cretaceous tectonic evolution of the Great Xing’an Range: Geochronological and geochemical evidence from granitoids and volcanic rocks in the Erguna Block, NE China. Int. Geol. Rev. 2019, 61, 1842–1863. [Google Scholar] [CrossRef]
- Gou, J.; Sun, D.Y.; Ren, Y.S.; Hou, X.G.; Yang, D.G. Geochemical and Hf isotopic compositions of Late Triassic–Early Jurassic intrusions of the Erguna Block, Northeast China: Petrogenesis and tectonic implications. Int. Geol. Rev. 2017, 59, 347–367. [Google Scholar] [CrossRef]
- Liu, H.C.; Li, Y.L.; He, H.Y.; Huangfu, P.P.; Liu, Y.Z. Two-phase southward subduction of the Mongol-Okhotsk oceanic plate constrained by Permian-Jurassic granitoids in the Erguna and Xing’an massifs (NE China). Lithos 2018, 304–307, 347–361. [Google Scholar] [CrossRef]
- Deng, C.Z.; Sun, D.Y.; Han, J.S.; Chen, H.Y.; Li, G.H.; Xiao, B.; Li, R.C.; Feng, Y.Z.; Li, C.L.; Lu, S. Late-stage southwards subduction of the Mongol-Okhotsk oceanic slab and implications for porphyry Cu-Mo mineralization: Constraints from igneous rocks associated with the Fukeshan deposit, NE China. Lithos 2019, 326–327, 341–357. [Google Scholar] [CrossRef]
- Li, Y.; Ding, L.L.; Xu, W.L.; Wang, F.; Tang, J.; Zhao, S.; Wang, Z.J. Geochronology and geochemistry of muscovite granite in Sunwu area, NE China: Implications for the timing of closure of the Mongol-Okhotsk Ocean. Acta Petrol. Sin. 2015, 31, 56–66, (In Chinese with English Abstract). [Google Scholar]
- Metelkin, D.V.; Vernikovsky, V.A.; Kazansky, A.Y.; Wingate, M.T.D. Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence. Gondwana Res. 2010, 18, 400–419. [Google Scholar] [CrossRef]
- Pei, J.; Sun, Z.; Liu, J.; Liu, J.; Wang, X.; Yang, Z.; Zhao, Y.; Li, H. A paleomagnetic study from the late Jurassic volcanics (155 Ma), North China: Implications for the width of Mongol-Okhotsk Ocean. Tectonophysics 2011, 510, 370–380. [Google Scholar]
- Yang, Y.T.; Guo, Z.X.; Song, C.C.; Li, X.B.; He, S. A short-lived but significant Mongol-Okhotsk collisional orogeny in latest Jurassic-earliest Cretaceous. Gondwana Res. 2015, 28, 1096–1116. [Google Scholar] [CrossRef]
- Safonova, I.Y.; Santosh, M. Accretionary complexes in the Asia Pacifc region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Res. 2014, 25, 126–158. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Hao, J.; Zhai, M.G. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 2003, 22, 1069–1089. [Google Scholar] [CrossRef] [Green Version]
- Jahn, B.M.; Wu, F.Y.; Chen, B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 2000, 23, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kröner, A.; Badarch, G. Tectonic model for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. Lond. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Sengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, W.M.; Feng, Z.Q.; Wen, Q.B.; Neubauer, F.; Liang, C.Y. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res. 2017, 43, 123–148. [Google Scholar] [CrossRef]
- Zheng, H.; Sun, X.M.; Wan, K.; Wang, P.J.; He, S.; Zhang, X.Q. Structure and tectonic evolution of the Late Jurassic–Early Cretaceous Wandashan accretionary complex, NE China. Int. Geol. Rev. 2019, 61, 17–38. [Google Scholar] [CrossRef]
- Ge, W.C.; Wu, F.Y.; Zhou, C.Y.; Abdel Rahman, A.A. Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Erguna block in the northern part of the Da Xing’an Range. Chin. Sci. Bull. 2005, 50, 2097–2105. [Google Scholar] [CrossRef]
- Inner Mongolian Bureau of Geology Mineral Resources. Regional Geology of Inner Mongolia; Geological Publishing House: Beijing, China, 1991; pp. 1–725, (In Chinese with English Abstract).
- Miao, L.C.; Liu, D.Y.; Zhang, F.Q.; Fan, W.M.; Shi, Y.R.; Xie, H.Q. Zircon SHRIMP U–Pb ages of the “Xinghuadukou Group” in Hanjiayuanzi and Xinlin areas and the “Zhalantun Group” in Inner Mongolia, Da Hinggan mountains. Chin. Sci. Bull. 2007, 52, 1112–1134. [Google Scholar] [CrossRef]
- Gou, J.; Sun, D.Y.; Liu, Y.J.; Ren, Y.S.; Zhao, Z.H.; Liu, X.M. Geochronology, petrogenesis, and tectonic setting of Mesozoic volcanic rocks, southern Manzhouli area, Inner Mongolia. Int. Geol. Rev. 2013, 55, 1029–1048. [Google Scholar] [CrossRef]
- Zheng, H.; Sun, X.M.; Zhu, D.F.; Tian, J.X.; He, S.; Wang, Y.D.; Zhang, X.Q. The structural characteristics, age of origin, and tectonic attribute of the Erguna Fault, NE China. Sci. China Earth Sci. 2015, 58, 1553–1565. [Google Scholar] [CrossRef]
- Zhang, L.C.; Zhou, X.M.; Ying, J.F.; Wang, F.; Guo, F.; Wan, B.; Chen, Z.G. Geochemistry and Sr–Nd–Pb–Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range, NE China: Implications for their origin and mantle source characteristics. Chem. Geol. 2008, 256, 12–23. [Google Scholar] [CrossRef]
- Kang, Y.J.; She, H.Q.; Lai, Y.; Wang, Z.Q.; Li, J.W.; Zhang, Z.H.; Xiang, A.P.; Jiang, Z.S. Evolution of Middle-Late Triassic granitic intrusions from the Badaguan Cu-Mo deposit, Inner Mongolia: Constraints from zircon U-Pb dating, geochemistry and Hf isotopes. Ore Geol. Rev. 2018, 95, 195–215. [Google Scholar] [CrossRef]
- Gao, B.Y.; Zhang, L.C.; Jin, X.D.; Li, W.J.; Chen, Z.G.; Zhu, M.T. Geochronology and geochemistry of the Badaguan porphyry Cu–Mo deposit in Derbugan metallogenic belt of the NE China, and their geological significances. Int. J. Earth Sci. 2016, 105, 507–519. [Google Scholar] [CrossRef]
- Zhao, Q.; Xiao, R.G.; Zhang, D.H.; Wang, J.P.; Zhang, Y.F.; Li, P.P. Petrogenesis and tectonic setting of ore-associated intrusive rocks in the Baiyinnuoer Zn–Pb deposit, southern Great Xing’an Range (NE China): Constraints from zircon U–Pb dating, geochemistry, and Sr–Nd–Pb isotopes. Minerals 2020, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.Q.; Liu, C.; Deng, J.F.; Li, N.; Dai, M.; Bai, L.B. Geochemical characteristics and zircon U-Pb SHRIMP age of igneous rocks in Erentaolegai silver deposit, Inner Mongolia. Acta Petrol. Sin. 2014, 30, 3203–3212, (In Chinese with English Abstract). [Google Scholar]
- Streckeisen, A. Classification and nomenclature of plutonic rocks. Geologische Rundschau 1974, 63, 773–786. [Google Scholar] [CrossRef]
- Hoskin, P.W.O. Trace-element composition of hydrothermal zircon and the alteration of hadean zircon from the jack hills, Australia. Geochim. Cosmochim. Acta 2005, 69, 637–648. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Ferry, J.; Watson, E. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Miner. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition efects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 2005, 308, 841–844. [Google Scholar] [CrossRef] [Green Version]
- Irvine, T.N.; Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey. Contrib. Miner. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Atherton, M.P.; Petford, N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 1993, 362, 144–146. [Google Scholar] [CrossRef]
- Kay, R.W.; Kay, S.M. Delamination and delamination magmatism. Tectonophysics 1993, 219, 177–189. [Google Scholar] [CrossRef]
- Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. Dev. Geochem. 1984, 2, 63–114. [Google Scholar]
- Drummond, M.S.; Defant, M.J.; Kepezhinskas, P.K. Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas. Trans. R. Soc. Edinb. Earth Sci. 1996, 87, 205–215. [Google Scholar]
- Asadi, S.; Moore, F.; Zarasvandi, A. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: A review. Earth-Sci. Rev. 2014, 138, 25–46. [Google Scholar] [CrossRef]
- Dokuz, A.; Tanyolu, E.; Genc, S. A mantle- and a lower crust-derived bimodal suite in the Yusufeli (Artvin) area, NE Turkey: Trace element and REE evidence for subduction-related rift origin of early Jurassic Demirkent intrusive complex. Int. J. Earth Sci. 2006, 95, 370–394. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Miner. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Champion, D.C.; Bultitude, R.J. The geochemical and Sr–Nd isotopic characteristics of Paleozoic fractionated S-types granites of north Queensland: Implications for S-type granite petrogenesis. Lithos 2013, 162–163, 37–56. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Zheng, J.; Mao, J.; Chai, F.; Yang, F. Petrogenesis of Permian A-type granitoids in the Cihai iron ore district, Eastern Tianshan, NW China: Constraints on the timing of iron mineralization and implications for a non-plume tectonic setting. Lithos 2016, 260, 371–383. [Google Scholar] [CrossRef]
- Sun, C.Y.; Tang, J.; Xu, W.L.; Li, Y.; Zhao, S. Crustal accretion and reworking processes of micro-continental massifs within orogenic belt: A case study of the Erguna Massif, NE China. Sci. China Earth Sci. 2017, 60, 1256–1267. [Google Scholar] [CrossRef]
- Barbarin, B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 1999, 46, 605–626. [Google Scholar] [CrossRef]
- Ghani, A.A.; Searle, M.; Robb, L.; Chung, S.L. Transitional I- S-type characteristic in the Main Range Granite, Peninsular Malaysia. J. Asian Earth Sci. 2013, 76, 225–240. [Google Scholar] [CrossRef]
- Barth, A.P.; Wooden, J.L.; Tosdal, R.M.; Morrison, J. Crustal contamination in the petrogenesis of a calc-alkalic rock series—Josephine Mountain intrusion, California. Geol. Soc. Am. Bull. 1995, 107, 201–212. [Google Scholar] [CrossRef]
- Topuz, G.; Altherr, R.; Siebel, W.; Schwarz, W.H.; Zack, T.; Hasözbek, A.; Barth, M.; Satır, M.; Şene, C. Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: The Gümüşhane pluton (NE Turkey). Lithos 2010, 116, 92–110. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt at 8-32-Kbar implications for continental growth and crust-mantle recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Sisson, T.; Ratajeski, K.; Hankins, W.; Glazner, A. Voluminous granitic magmas from common basaltic sources. Contrib. Miner. Petrol. 2005, 148, 635–661. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Beard, J.S. Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar. J. Petrol. 1995, 36, 707–738. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; Li, W.X.; Liu, Y.; Yuan, C.; Wei, G.J.; Qi, C.S. U–Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted fat-slab? Lithos 2007, 96, 186–204. [Google Scholar] [CrossRef]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australian. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Zhao, J.L.; Qiu, J.S.; Liu, L.; Wang, R.Q. The Late Cretaceous I- and A-type granite association of southeast China: Implications for the origin and evolution of postcollisional extensional magmatism. Lithos 2016, 240, 16–33. [Google Scholar] [CrossRef]
- Hastie, A.R.; Kerr, A.C.; Mcdonald, I.; Mitchell, S.F.; Pearce, J.A.; Millar, I.L.; Barfod, D.; Mark, D.F. Geochronology, geochemistry and petrogenesis of rhyodacite lavas in eastern Jamaica: A new adakite subgroup analogous to early Archaean continental crust? Chem. Geol. 2010, 276, 344–359. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Li, C.D.; Wang, Y.L.; Jin, W.J.; Jia, X.Q. Granite classification on the basis of Sr and Yb contents and its implications. Acta Petrol. Sin. 2006, 22, 2249–2269, (In Chinese with English Abstract). [Google Scholar]
- Qian, Q.; Hermann, J. Partial melting of lower crust at 10-15kbar: Constraints on adakite and TTG formation. Contrib. Miner. Petrol. 2013, 165, 1195–1224. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Wormald, R.J.; Whitehouse, M.J.; Price, R.C. Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia. Geology 2005, 33, 797–800. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Chung, S.L.; Wilde, S.A.; Chu, M.F. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence. Lithos 2006, 89, 89–106. [Google Scholar] [CrossRef]
- Wang, Q.; Wyman, D.A.; Xu, J.; Jian, P.; Zhao, Z.; Li, C.; Xu, W.; Ma, J.; He, B. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochim. Cosmochim. Acta 2007, 71, 2609–2636. [Google Scholar] [CrossRef]
- Castillo, P.R.; Janney, P.E.; Solidum, R. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights into the source of adakite and other lavas in a complex arc tectonic setting. Contrib. Miner. Petrol. 1999, 134, 33–51. [Google Scholar] [CrossRef]
- Macpherson, C.G.; Dreher, S.T.; Thirlwall, M.F. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet. Sci. Lett. 2006, 243, 581–593. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.; Smithies, R.H.; Rapp, R.; Moyen, J.F.; Champion, D. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 2005, 79, 1–24. [Google Scholar] [CrossRef]
- Wang, Q.; McDermott, F.; Xu, J.F.; Bellon, H.; Zhu, Y.T. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting. Geology 2005, 33, 465–468. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.F.; Shinjo, R.; Defant, M.J.; Wang, Q.; Rapp, P.T. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology 2002, 30, 1111–1114. [Google Scholar] [CrossRef]
- Gao, S.; Rudnick, R.L.; Yuan, H.L.; Liu, X.M.; Liu, Y.S.; Xu, W.L.; Ling, W.L.; Ayers, J.C.; Wang, X.C.; Wang, Q.H. Recycling lower continental crust in the North China craton. Nature 2004, 432, 892–897. [Google Scholar] [CrossRef]
- Moyen, J. High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos 2009, 112, 556–574. [Google Scholar] [CrossRef]
- Rollinson, H.R. Using geochemical Data: Evaluation, Presentation, Interpretation; Longman Singapore Publishers (Pte) Ltd.: Singapore, 1993; pp. 1–352. [Google Scholar]
- Fornelli, A.; Langone, A.; Micheletti, F.; Piccarreta, G. REE partition among zircon, orthopyroxene, amphibole and garnet in a high-grade metabasic system. Geol. Mag. 2018, 155, 1705–1726. [Google Scholar] [CrossRef]
- Stern, C.R.; Kilian, R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib. Miner. Petrol. 1996, 123, 263–281. [Google Scholar] [CrossRef]
- Richards, J.P.; Spell, T.; Rameh, E.; Razique, A.; Fletcher, T. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: Examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan. Econ. Geol. 2012, 107, 295–332. [Google Scholar] [CrossRef]
- Xiong, X.L.; Adam, J.; Green, T.H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem. Geol. 2005, 218, 339–359. [Google Scholar] [CrossRef]
- Wang, T.; Guo, L.; Zhang, L.; Yang, Q.D.; Zhang, J.J.; Tong, Y.; Ye, K. Timing and evolution of Jurassic–Cretaceous granitoid magmatisms in the Mongol–Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings. J. Asian Earth Sci. 2015, 97, 365–392. [Google Scholar] [CrossRef]
- Wu, F.Y.; Lin, J.Q.; Wilde, S.A.; Zhang, X.O.; Yang, J.H. Nature and significance of the early cretaceous giant igneous event in Eastern China. Earth Planet. Sci. Lett. 2005, 233, 103–119. [Google Scholar] [CrossRef]
- Yang, H.; Ge, W.; Yu, Q.; Ji, Z.; Liu, X.; Zhang, Y.; Tian, D. Zircon U-Pb–Hf isotopes, bulk-rock geochemistry and petrogenesis of middle to late Triassic I–type Granitoids in the Xing’an Block, Northeast China: Implications for early Mesozoic tectonic evolution of the Central Great Xing’an Range. J. Asian Earth Sci. 2016, 119, 30–48. [Google Scholar] [CrossRef]
- Mao, A.Q.; Sun, D.Y.; Yang, D.G.; Tang, Z.Y.; Zheng, H. Petrogenesis and tectonic implications of Early Cretaceous volcanic rocks from the Shanghulin Basin within the northwestern Great Xing’an Range, NE China: Constraints from geochronology and geochemistry. Geol. J. 2018. [Google Scholar] [CrossRef]
- Deng, C.Z.; Sun, D.Y.; Li, G.H.; Lu, S.; Tang, Z.Y.; Gou, J.; Yang, Y.J. Early Cretaceous volcanic rocks in the Great Xing’an Range: Late effect of a flat-slab subduction. J. Geodyn. 2019, 124, 38–51. [Google Scholar] [CrossRef]
- Roberts, M.P.; Clemens, J.D. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 1993, 21, 825–828. [Google Scholar] [CrossRef]
- Zorin, Y.A. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 1999, 306, 33–56. [Google Scholar] [CrossRef] [Green Version]
- Parfenov, L.M.; Popeko, L.I.; Tomurtogoo, O. Problems of tectonics of the Mongol–Okhotsk orogenic belt. Geol. Pac. Ocean 2001, 16, 797–830. [Google Scholar]
- Mi, K.F.; Liu, Z.J.; Liu, R.B.; Li, C.F.; Wang, J.P.; Peng, R.M. U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of the intrusions from Wunugetushan porphyry deposit, Northeast China: Implication for Triassic–Jurassic Cu–Mo mineralization in Mongolia–Erguna metallogenic belt. Int. Geol. Rev. 2018, 60, 496–512. [Google Scholar] [CrossRef]
- Roelant, V.D.L.; Spikings, R.; Ulianov, A.; Chiaradia, M.; Mora, A. Paleozoic to early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific oceans. Gondwana Res. 2015, 31, 271–294. [Google Scholar]
- Bustamante, C.; Cardona, A.; Archanjo, C.J.; Bayona, G.; Lara, M.; Valencia, V. Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the northern Andes of Colombia: A record of post-collisional arc magmatism. Lithos 2016, 277, 199–209. [Google Scholar] [CrossRef]
- Cardona, A.; Valencia, V.; Garzón, A.; Montes, C.; Ojeda, G.; Ruiz, J.; Weber, M. Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: Tectonic setting and implications within Pangea paleogeography. J. S. Am. Earth Sci. 2010, 29, 772–783. [Google Scholar] [CrossRef]
- Leal-Mejía, H.; Shaw, R.P.; Melgarejo, J.C. Phanerozoic granitoid magmatism in Colombia and the tectono-magmatic evolution of the Colombian Andes. In Geology and Tectonics of Northwestern South America; Cediel, F., Shaw, R.P., Eds.; Springer Nature: Basel, Switzerland, 2019. [Google Scholar]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.P.; Pandarinath, K.; Verma, S.K.; Agrawal, S. Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithos 2013, 168–169, 113–123. [Google Scholar] [CrossRef]
- Gorton, M.P.; Schandl, E.S. From continents to island arcs: A geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can. Miner. 2000, 38, 1065–1073. [Google Scholar] [CrossRef]
- Harris, R.A.; Stone, D.B.; Turner, D.L. Tectonic implications of Paleomagnetic and geochronologic data from the Yukon-Koyukuk province, Alaska. Geol. Soc. Am. Bull. 1987, 99, 362–375. [Google Scholar] [CrossRef]
- Brown, M. Granite: From genesis to emplacement. Bull. Geol. Soc. Am. 2013, 125, 1079–1113. [Google Scholar] [CrossRef] [Green Version]
- Reagan, M.K.; Hanan, B.B.; Heizler, M.T.; Hartman, B.S.; Hickey-Vargas, R. Petrogenesis of volcanic rocks from Saipan and Rota, Mariana islands, and implications for the evolution of nascent island arcs. J. Petrol. 2008, 49, 441–464. [Google Scholar] [CrossRef]
- Tamura, Y.; Gill, J.B.; Tollstrup, D.; Kawabata, H.; Tatsumi, Y. Silicic magmas in the Izu–Bonin oceanic arc and implications for crustal evolution. J. Petrol. 2009, 50, 685–723. [Google Scholar] [CrossRef] [Green Version]
- Barker, S.J.; Wilson, C.J.N.; Baker, J.A.; Millet, M.A.; Rotella, M.D.; Wright, I.C.; Wysoczanski, R.J. Geochemistry and petrogenesis of silicic magmas in the intra-oceanic Kermadec arc. J. Petrol. 2013, 54, 351–391. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, J.M.; Trumbull, R.B.; Siebel, W. Geochemistry and petrogenesis of late Pleistocene to recent volcanism in southern Dominica, lesser Antilles. J. Volcanol. Geotherm. Res. 2005, 148, 253–294. [Google Scholar] [CrossRef]
- Leat, P.T.; Larter, R.D.; Millar, I.L. Silicic magmas of protector shoal, south Sandwich arc: Indicators of generation of primitive continental crust in an island arc. Geol. Mag. 2007, 144, 179. [Google Scholar] [CrossRef]
- Turner, S.; Caulfield, J.; Rushmer, T.; Turner, M.; Cronin, S.; Smith, I.; Handley, H. Magma evolution in the primitive, intra-oceanic Tonga arc: Rapid petrogenesis of dacites at Fonualei volcano. J. Petrol. 2012, 53, 1231–1253. [Google Scholar] [CrossRef] [Green Version]
- Meng, E.; Xu, W.L.; Yang, D.B.; Qiu, K.F.; Li, C.H.; Zhu, H.T. Zircon U-Pb chronology, geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Manzhouli area, and its tectonic implications. Acta Petrol. Sin. 2011, 27, 1209–1226, (In Chinese with English Abstract). [Google Scholar]
- Donskaya, T.V.; Gladkochub, D.P.; Mazukabzov, A.M.; Ivanov, A.V. Late Paleozoic-Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. J. Asian Earth Sci. 2013, 62, 79–97. [Google Scholar] [CrossRef]
- Bussien, D.; Gombojav, N.; Winkler, W.; von Quadt, A. The Mongol-Okhotsk Belt in Mongolia—An appraisal of the geodynamic development by the study of sandstone provenance and detrital zircons. Tectonophysics 2011, 510, 132–150. [Google Scholar] [CrossRef]
- Rapp, R.P.; Shimizu, N.; Norman, M.D.; Applegate, G.S. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem. Geol. 1999, 160, 335–356. [Google Scholar] [CrossRef]
- Axen, G.J.; van Wijk, J.W.; Currie, C.A. Basal continental mantle lithosphere displaced by flat-slab subduction. Nat. Geosci. 2018, 11, 961–964. [Google Scholar] [CrossRef]
- Gutscher, M.A. Scraped by fat-slab subduction. Nat. Geosci. 2018, 11, 889–893. [Google Scholar] [CrossRef]
- Stern, C.R. Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res. 2011, 20, 284–308. [Google Scholar] [CrossRef]
- Sun, W.D.; Ling, M.X.; Yang, X.Y.; Fan, W.M.; Ding, X.; Liang, H.Y. Ridge subduction and porphyry copper-gold mineralization: An overview. Sci. China Earth Sci. 2010, 53, 475–848. [Google Scholar] [CrossRef]
- Thorkelson, D.J.; Madsen, J.K.; Sluggett, C.L. Mantle flow through the Northern Cordilleran slab window revealed by volcanic geochemistry. Geology 2011, 39, 267–270. [Google Scholar] [CrossRef]
- Ranero, C.R.; von Huene, R. Subduction erosion along the Middle America convergent margin. Nature 2000, 404, 748–752. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, A.; Sun, D.; Gou, J.; Zheng, H. Genesis of Early–Middle Jurassic Intrusive Rocks in the Erguna Block (NE China) in Response to the Late-Stage Southward Subduction of the Mongol–Okhotsk Oceanic Plate: Constraints from Geochemistry and Zircon U–Pb Geochronology and Lu–Hf Isotopes. Minerals 2020, 10, 372. https://doi.org/10.3390/min10040372
Mao A, Sun D, Gou J, Zheng H. Genesis of Early–Middle Jurassic Intrusive Rocks in the Erguna Block (NE China) in Response to the Late-Stage Southward Subduction of the Mongol–Okhotsk Oceanic Plate: Constraints from Geochemistry and Zircon U–Pb Geochronology and Lu–Hf Isotopes. Minerals. 2020; 10(4):372. https://doi.org/10.3390/min10040372
Chicago/Turabian StyleMao, Anqi, Deyou Sun, Jun Gou, and Han Zheng. 2020. "Genesis of Early–Middle Jurassic Intrusive Rocks in the Erguna Block (NE China) in Response to the Late-Stage Southward Subduction of the Mongol–Okhotsk Oceanic Plate: Constraints from Geochemistry and Zircon U–Pb Geochronology and Lu–Hf Isotopes" Minerals 10, no. 4: 372. https://doi.org/10.3390/min10040372
APA StyleMao, A., Sun, D., Gou, J., & Zheng, H. (2020). Genesis of Early–Middle Jurassic Intrusive Rocks in the Erguna Block (NE China) in Response to the Late-Stage Southward Subduction of the Mongol–Okhotsk Oceanic Plate: Constraints from Geochemistry and Zircon U–Pb Geochronology and Lu–Hf Isotopes. Minerals, 10(4), 372. https://doi.org/10.3390/min10040372