Lithium Enrichment in the No. 21 Coal of the Hebi No. 6 Mine, Anhe Coalfield, Henan Province, China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Experimental Methods
3.1. Sample Collection
3.2. Experimental Methods
4. Results
4.1. Coal Characteristics and Coal Petrology
4.2. Geochemistry
4.2.1. Major-Element Oxides
4.2.2. Li Concentrations
4.2.3. Rare Earth Elements and Yttrium
4.2.4. Other Trace Elements
4.3. Minerals
5. Discussion
5.1. Modes of Occurrence of Elements
5.1.1. Lithium
5.1.2. Other Trace Elements
5.2. Source of Lithium
5.3. Depositional Conditions during Peat Accumulation
6. Conclusions
- (1)
- The No. 21 coal in the Hebi No. 6 coal mine is a low volatile bituminous coal with low ash and super-low sulfur contents. The macerals of the No. 21 coal are dominated by the vitrinite group macerals, followed by the inertinite group macerals.
- (2)
- In comparison with common world coals, Li is enriched in the No. 21 coal and its concentration coefficient (CC) value is 6.6 on average. The concentrations of Li in the partings and floor from the Hebi No. 6 mine are two to three times higher than those of the coal samples.
- (3)
- Clay minerals including illite and kaolinite are the main minerals in the No. 21 coal of the Hebi No. 6 mine, followed by quartz and calcite, with small amounts of ankerite and K-feldspar. The mineral phases in the partings and floor are dominantly kaolinite and, to a lesser extent, illite, quartz, and calcite, with smaller proportions of K-feldspar, plagioclase, and ankerite.
- (4)
- The relatively high correlation coefficients of Li-Al2O3 (r = 0.951), Li-SiO2 (r = 0.912), Li-TiO2 (r = 0.787), and Li-K2O (r = 0.497) in the No. 21 coal indicate that Li is mainly present in the aluminosilicate/clay minerals (most likely the Ti-bearing clay minerals).
- (5)
- The lithium enrichment in the No. 21 coal is mainly controlled by the terrigenous materials which were sourced from the moyite of the Yinshan Upland. Furthermore, Li in the No. 21 coal is more enriched in coals formed in acidic and humid conditions and coals influenced by fresh water during peat accumulation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Dai, S.; Yan, X.; Ward, C.R.; Hower, J.C.; Zhao, L.; Wang, X.; Zhao, L.; Ren, D.; Finkelman, R.B. Valuable elements in Chinese coals: A review. Int. Geol. Rev. 2018, 60, 590–620. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Zhao, C.; Lin, M.; Wang, J.; Qin, S. Concentrations of lithium in Chinese coals. Energy Explor. Exploit. 2010, 28, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Qin, S.; Zhao, C.; Li, Y.; Zhang, Y. Review of coal as a promising source of lithium. Int. J. Oil Gas Coal Technol. 2015, 9, 215–229. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Wang, D. The metallogenetic regularity of lithium deposit in China. Acta Geol. Sin. 2014, 88, 2269–2283. [Google Scholar]
- Seredin, V.V.; Dai, S.; Sun, Y.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Finkelman, R.B. Trace and minor elements in coal. In Organic Geochemistry; Engel, M.H., Macko, S., Eds.; Plenum: New York, NY, USA, 1993; pp. 593–607. [Google Scholar]
- Zhao, J.; Tang, X.; Huang, W. Abundance of trace elements in coal of China. Coal Geol. China 2002, 14, 5–13. (In Chinese) [Google Scholar]
- Dai, S.; Ren, D.; Tang, Y.; Yue, M.; Hao, L. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. Int. J. Coal Geol. 2005, 61, 119–137. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.L.; Li, S.; Jiang, Y. Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- Dai, S.; Li, D.; Chou, C.L.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.; Sun, Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Zhou, Y.; Seredin, V.V.; Li, D.; Zhang, M.; Hower, J.C.; Ward, C.R.; Wang, X.; Zhao, L.; et al. Coal-hosted rare metal deposits: Genetic types, modes of occurrence, and utilization evaluation. J. China Coal Soc. 2014, 39, 1707–1715. (In Chinese) [Google Scholar]
- Sun, Y.; Zhao, C.; Li, Y.; Wang, J. Minimum mining grade of the selected trace elements in Chinese coal. J. China Coal Soc. 2014, 39, 744–748. (In Chinese) [Google Scholar]
- Duan, P.; Li, Y.; Guan, T. Trace elements of Carboniferous–Permian coal from the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China. Chin. J. Geochem. 2015, 34, 379–390. [Google Scholar] [CrossRef]
- Duan, P.; Wang, W.; Liu, X.; Qian, F.; Sang, S.; Xu, S. Distribution of As, Hg and other trace elements in different size and density fractions of the Reshuihe high-sulfur coal, Yunnan Province, China. Int. J. Coal Geol. 2017, 173, 129–141. [Google Scholar] [CrossRef]
- Yang, N.; Tang, S.; Zhang, S.; Chen, Y. Modes of occurrence and abundance of trace elements in Pennsylvanian coals from the Pingshuo Mine, Ningwu Coalfield, Shanxi Province, China. Minerals 2016, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Tang, S.; Zhang, S.; Xi, Z.; Li, J.; Yuan, Y.; Guo, Y.Y. In seam variation of element-oxides and trace elements in coal from the eastern Ordos Basin, China. Int. J. Coal Geol. 2018, 197, 31–41. [Google Scholar] [CrossRef]
- Wei, Y.; Hua, F.; He, W.; Ning, S.; Zhang, N.; Qin, Y.; Cao, D. Difference of trace elements characteristics of No. 2 coal in Fengfeng mining area. J. China Coal Soc. 2020, 45, 1473–1487. (In Chinese) [Google Scholar]
- Qin, S.; Gao, K.; Sun, Y.; Wang, J.; Zhao, C.; Li, S.; Lu, Q. Geochemical characteristics of rare-metal, rare-scattered, and rare-earth elements and minerals in the late permian coals from the Moxinpo Mine, Chongqing, China. Energy Fuels 2018, 32, 3138–3151. [Google Scholar] [CrossRef]
- Li, C.; Liang, H.; Wang, S.; Liu, J. Study of harmful trace elements and rare earth elements in the Permian tectonically deformed coals from Lugou Mine, North China Coal Basin, China. J. Geochem. Explor. 2018, 190, 10–25. [Google Scholar] [CrossRef]
- Huang, W.; Jiu, B.; Li, Y. Distribution characteristics of rare earth elements in coal and its prospects on development and exploitation. J. China Coal Soc. 2019, 44, 287–294. (In Chinese) [Google Scholar]
- Huang, Z.; Fan, M.; Tiand, H. Coal and coal byproducts: A large and developable unconventional resource for critical materials–Rare earth elements. J. Rare Earths 2018, 36, 337–338. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Y.; Li, W. Distribution and occur-rence of trace elements in the No.14 coal from the Huolinhe mine. Int. J. Coal Sci. Technol. 2017, 4, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wei, Y.; Ning, S.; Jia, X.; Qin, R.; Cao, D. The differences of element geochemical characteristics of the main coal seams in the Ningdong coalfield, Ordos Basin. J. Geochem. Explor. 2019, 202, 77–91. [Google Scholar]
- Dai, S.; Jiang, Y.; Ward, C.R.; Gu, L.; Seredin, V.V.; Liu, H.; Zhou, D.; Wang, X.; Sun, Y.; Zou, J.; et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, S.; Yang, Y.; Li, Y.; Lin, M. Concentration of gallium in the Permo-Carboniferous coals of China. Energy Explor. Exploit. 2009, 27, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhao, C.; Zhang, J.; Yang, J.; Zhang, Y.; Yuan, Y.; Xu, J.; Duan, D. Concentrations of valuable elements of the coals from the Pingshuo Mining District, Ningwu Coalfield, northern China. Energy Explor. Exploit. 2013, 31, 727–744. [Google Scholar] [CrossRef]
- Seredin, V.V. From coal science to metal production and environmental protection: A new story of success. Int. J. Coal Geol. 2012, 90–91, 1–3. [Google Scholar] [CrossRef]
- Chen, J.; Chen, P.; Yao, D.; Liu, Z.; Wu, Y.; Liu, W.; Hu, Y. Mineralogy and geochemistry of Late Permian coals from the Donglin Coal Mine in the Nantong coalfield in Chongqing, southwestern China. Int. J. Coal Geol. 2015, 149, 24–40. [Google Scholar] [CrossRef]
- Ning, S.; Deng, X.; Li, C.; Qin, G.; Zhang, J.; Zhu, S.; Qiao, J.; Chen, L.; Zhang, W. Metal Element Mineral Resources in Chinese Coal; Science Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Shao, P.; Wang, W.; Chen, L.; Duan, P.; Qian, F.; Ma, M.; Xiong, W.; Yu, S. Distribution, occurrence, and enrichment of gallium in the Middle Jurassic coals of the Muli Coalfield, Qinghai, China. J. Geochem. Explor. 2018, 185, 116–129. [Google Scholar] [CrossRef]
- Ning, S.; Deng, X.; Li, C.; Qin, G.; Zhang, J.; Zhu, S.; Qiao, J.; Chen, L.; Zhang, W. Researh status and prospect of metal element mineral resources in China. J. China Coal Soc. 2017, 42, 2214–2225. (In Chinese) [Google Scholar]
- Ning, S.; Huang, S.; Zhu, S.; Zhang, W.; Deng, X.; Li, C.; Qiao, J.; Zhang, J.; Zhang, N. Mineralization zoning of coal-metal deposits in China. Chin. Sci. Bull. 2019, 64, 2501–2513. (In Chinese) [Google Scholar]
- Qin, G.; Cao, D.; Wei, Y.; Wang, A.; Liu, J. Mineralogy and geochemistry of the No. 5−2 high-sulfur coal from the Dongpo Mine, Weibei Coalfield, Shaanxi, North China, with emphasis on anomalies of gallium and lithium. Minerals 2019, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Finkelman, R.B.; Palmer, C.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Diehl, S.; Goldhaber, M.; Koenig, A.; Lowers, H.; Ruppert, L. Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals: Evidence for multiple episodes of pyrite formation. Int. J. Coal Geol. 2012, 94, 238–249. [Google Scholar] [CrossRef]
- Hower, J.; Campbell, J.; Teesdale, W.; Nejedly, Z.; Robertson, J. Scanning proton microprobe analysis of mercury and other trace elements in Fe-sulfides from a Kentucky coal. Int. J. Coal Geol. 2008, 75, 88–92. [Google Scholar] [CrossRef]
- Karayigit, A.; Mastalerz, M.; Oskay, R.; Gayer, R. Coal petrography, mineralogy, elemental compositions and palaeo-environmental interpretation of Late Carboniferous coal seams in three wells from the Kozlu coalfield (Zonguldak Basin, NW Turkey). Int. J. Coal Geol. 2018, 187, 54–70. [Google Scholar] [CrossRef]
- Karayigit, A.; Atalay, M.; Oskay, R.; Córdoba, P.; Querol, X.; Bulut, Y. Variations in elemental and mineralogical compositions of Late Oligocene, Early and Middle Miocene coal seams in the Kale-Tavas Molasse sub-basin, SW Turkey. Int. J. Coal Geol. 2020, 218, 103366. [Google Scholar] [CrossRef]
- Kolker, A. Minor element distribution in iron disulfides in coal: A geochemical review. Int. J. Coal Geol. 2012, 94, 32–43. [Google Scholar] [CrossRef]
- Spears, D. The role of seawater on the trace element geochemistry of some UK coals and a tribute to Goldschmidt. Minerals 2017, 7, 148. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhao, C.; Li, Y.; Wang, J.; Liu, S. Li distribution and mode of occurrences in Li-bearing coal seam# 6 from the Guanbanwusu Mine, Inner Mongolia, Northern China. Energy Explor. Exploit. 2012, 30, 109–130. [Google Scholar]
- Sun, Y.; Yang, J.; Zhao, C. Minimum mining grade of associated Li deposits in coal seams. Energy Explor. Exploit. 2012, 30, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhao, C.; Li, Y.; Wang, J.; Lin, M. Li distribution and mode of occurrences in Li-bearing coal seam 9 from Pingshuo Mining district, Ningwu Coalfield, northern China. Energy Educ. Sci. Technol. Part A 2013, 31, 47–58. [Google Scholar]
- Wang, J.; Wang, Q.; Shi, J.; Li, Z. Distribution and enrichment mode of Li in the No. 11 coal seam from Pingshuo mining district, Shanxi province. Energy Explor. Exploit. 2015, 33, 203–215. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Pan, Z.; Pan, W.; Yin, X.; Chai, P.; Pan, S.; Yang, Q. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui Basin, northern China, with emphasis on lithium enrichment. Int. J. Coal Geol. 2019, 214, 103254–103268. [Google Scholar] [CrossRef]
- He, H.T.; Wang, J.X.; Xing, L.C.; Zhao, S.S.; He, M.Y.; Zhao, C.L.; Sun, Y.Z. Enrichment mechanisms of lithium in the No. 6 coal seam from the Guanbanwusu Mine, Inner Mongolia, China: Explanations based on Li isotope values and density functional theory calculations. J. Geochem. Explor. 2020, 213, 106510. [Google Scholar] [CrossRef]
- Lewińska-Preis, L.; Fabiańska, M.J.; Ćmiel, S.; Kita, A. Geochemical distribution of trace elements in Kaffioyra and Longyearbyen coals, Spitsbergen, Norway. Int. J. Coal Geol. 2009, 80, 211–223. [Google Scholar] [CrossRef]
- Dai, S.; Hower, J.; Finkelman, R.; Graham, I.; French, D.; Ward, C.; Eskenazy, G.; Wei, Q.; Zhao, L. Organic associations of non-mineral elements in coal: A review. Int. J. Coal Geol. 2020, 218, 103347. [Google Scholar] [CrossRef]
- Karayigit, A.; Littke, R.; Querol, X.; Jones, T.; Oskay, R.; Christanis, K. The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal petrography, mineralogy and geochemistry. Int. J. Coal Geol. 2017, 173, 110–128. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Yuan, W.; Liu, B.; Querol, X.; Font, O.; Moreno, N.; Li, J.; Gang, T.; Liang, G. Mineral composition and geochemical characteristics of the Li-Garich coals in the Buertaohai-Tianjiashipan mining district, Jungar Coalfield, Inner Mongolia. Int. J. Coal Geol. 2016, 167, 157–175. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaev, E.V.; Graham, I.T.; French, D. Enrichment origin of critical elements (Li and rare earth elements) and a MoU-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China. Ore Geol. Rev. 2019, 115, 1–16. [Google Scholar] [CrossRef]
- Hoyer, M.; Kummer, N.A.; Merkel, B. Sorption of lithium on bentonite, kaolin and zeolite. Geosciences 2015, 5, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Greene-Kelly, R. Lithium absorption by kaolin minerals. J. Phys. Chem. 1955, 59, 1151–1152. [Google Scholar] [CrossRef]
- Clauer, N.; Williams, L.B.; Lemarchand, D.; Florian, P.; Honty, M. Illitization decrypted by B and Li isotope geochemistry of nanometer-sized illite crystals from bentonite beds, East Slovak Basin. Chem. Geol. 2018, 477, 177–194. [Google Scholar] [CrossRef]
- Bobos, I.; Williams, L.B. Boron. Lithium and nitrogen isotope geochemistry of NH4-illite clays in the fossil hydrothermal system of Harghita Bãi, East Carpathians, Romania. Chem. Geol. 2017, 473, 22–39. [Google Scholar] [CrossRef]
- Berger, G.; Schott, J.; Guy, C. Behavior of Li, Rb and Cs during basalt glass and olivine dissolution and chlorite, smectite and zeolite precipitation from seawater: Experimental investigations and modelization between 50 °C and 300 °C. Chem. Geol. 1988, 71, 297–312. [Google Scholar] [CrossRef]
- Bujdák, J.; Slosiarikova, H.; Novakova, L.; Cicel, B. Fixation of lithium cations in montmorillonite. Chem. Pap. 1991, 45, 499–507. [Google Scholar]
- Hindshaw, R.S.; Tosca, R.; Goût, T.L.; Farnan, I.; Tosca, N.J.; Tipper, E.T. Experimental constraints on Li isotope fractionation during clay formation. Geochim. Cosmochim. Acta 2019, 250, 219–237. [Google Scholar] [CrossRef]
- Vigier, N.; Decarreau, A.; Millot, R.; Carignan, J.; Petit, S.; France-Lanord, C. Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochim. Cosmochim. Acta 2008, 72, 780–792. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T.; Dai, S.; Yang, C.; Xie, P.; Zhang, S. Origin of a kaolinite-NH4-illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng Coalfield, Qinshui Basin, Northern China. Int. J. Coal Geol. 2018, 185, 61–78. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations. Fuel Process. Technol. 1997, 51, 19–45. [Google Scholar] [CrossRef]
- Shao, L.; Hou, H.; Tang, Y.; Lu, J.; Qiu, H.; Wang, X.; Zhang, J. Selection of strategic relay areas of CBM exploration and development in China. Nat. Gas Ind. 2015, 35, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Yao, Y.; Liu, Z.; Tang, D.; Tang, S.; Che, Y.; Huang, W. Coal reservoir characteristics and perspective and target areas for CBM in the Anyang-Hebi Coalfield, North China. Geoscience 2008, 05, 787–793. [Google Scholar]
- Wang, S. Prospecting coalbed methane resource in Anyang-Hebi mining area. Coal Sci. Technol. 2009, 37, 103–106. [Google Scholar]
- Zhao, S.; Shao, L.; Hou, H.; Tang, Y.; Li, Z.; Yao, M.; Zhang, J. Methane adsorption characteristics and its influencing factors of the medium-to-high rank coals in the Anyang-Hebi coalfield, northern China. Energy Explor. Exploit. 2019, 37, 60–82. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, M.; Zhang, Y. Investigation and resources potential evaluation of lithium content in principal mining seams of Henan Province. Coal Sci. Technol. 2018, 46, 191–195. [Google Scholar]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, G.; He, Z. Control of paleoclimatic change on late Paleozoic coal accumulation of the North China Plate. Acta Geol. Sin. 1999, 73, 131–139. [Google Scholar]
- Li, Y.; Shao, L.; Fielding, C.R.; Wang, D.; Mu, G.; Luo, H. Sequence stratigraphic analysis of thick coal seams in paralic environments—A case study from the Early Permian Shanxi Formation in the Anhe coalfield, Henan Province, North China. Int. J. Coal Geol. 2020, 222, 103451. [Google Scholar] [CrossRef]
- Li, L.; Ning, C.; Li, H. Research of Late Paleozoic coal-forming environment and coal accumulating law in Anhe coalfield. Coal 2013, 165, 7–19. [Google Scholar]
- ASTM International. Test Method for Moisture in the Analysis Sample of Coal and Coke; ASTM Standard D3173-11; Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM International. Test Method for Ash in the Analysis Sample of Coal and Coke; ASTM Standard D3174-11; Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM International. Test Method for Volatile Matter in the Analysis Sample of Coal and Coke; ASTM Standard D3175-11; Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- International Committee for Coal and Organic Petrology (ICCP). The new vitrinite classification (ICCP System 1994). Fuel 1998, 77, 349–358. [Google Scholar] [CrossRef]
- International Committee for Coal and Organic Petrology (ICCP). The new inertinite classification (ICCP System 1994). Fuel 2001, 80, 459–471. [Google Scholar] [CrossRef]
- Pickel, W.; Kus, J.; Flores, D.; Kalaitzidis, S.; Christanis, K.; Cardott, B.J.; Misz-Kennan, M.; Rodrigues, S.; Hentschel, A.; Hamor-Vido, M.; et al. Classification of liptinite—ICCP System 1994. Int. J. Coal Geol. 2017, 169, 40–61. [Google Scholar] [CrossRef] [Green Version]
- ASTM International. Standard Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal; ASTM Standard D2798-11a; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM International. Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke; ASTM Standard D3177-02; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM International. Standard Test Method for Forms of Sulfur in Coal; ASTM Standard D2492-02; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Standardization Administration of China; General Administration of Quality Supervision, Inspection and Quarantine of the China. Chinese National Standard SY/T 5163-2010; Standand Press of China: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Chung, F. Quantitative interpretation of X-ray diffraction patterns of mixtures: I. Matrix flushing method for quantitative multicomponent analysis. J. Appl. Cryst. 1974, 7, 519–525. [Google Scholar] [CrossRef]
- ASTM International. Standard Classification of Coals by Rank; ASTM D388-12; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Standardization Administration of China; General Administration of Quality Supervision, Inspection and Quarantine of the China. Classification for Quality of Coal—Part 1: Ash; Chinese National Standard GB15224.1-2010; Standand Press of China: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Standardization Administration of China; General Administration of Quality Supervision, Inspection and Quarantine of the China. Classification for Quality of Coal—Part 2: Sulfur Content; Chinese National Standard GB/T 15224.2-2010; Standand Press of China: Beijing, China, 2010. (In Chinese) [Google Scholar]
- O’Keefe, J.M.K.; Bechtel, A.; Christanis, K.; Dai, S.; DiMichele, W.A.; Eble, C.F.; Esterle, J.S.; Mastalerz, M.; Raymond, A.L.; Valentim, B.V.; et al. On the fundamental difference between coal rank and coal type. Int. J. Coal Geol. 2013, 118, 58–87. [Google Scholar] [CrossRef]
- Han, D.; Ren, D.; Wang, Y.; Jin, K.; Mao, H.; Qin, Y. Coal Petrology in China; China University of Mining & Technology Press: Xuzhou, China, 1996; pp. 104–123. [Google Scholar]
- Sun, Y.; Zhao, C.; Li, Y.; Wang, J.; Zhang, J.; Jin, Z.; Lin, M.; Kalkreuth, W. Further information of the associated Li deposits in the No. 6 coal seam at Jungar Coalfield, Inner Mongolia, Northern China. Acta Geol. Sin. 2013, 87, 1097–1108. [Google Scholar]
- Grigoriev, N.A. Chemical Element Distribution in the Upper Continental Crust; UB RAS: Ekaterinburg, Russia, 2009; Volume 382, p. 383. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Loges, A.; Wagner, T.; Barth, M.; Bau, M.; GÖb, S.; Markl, G. Negative Ce anomalies in Mn oxides: The role of Ce4+ mobility during water-mineral interaction. Geochim. Cosmochim. Acta 2012, 86, 296–317. [Google Scholar] [CrossRef]
- Dai, S.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Yan, X.; Dai, S.; Graham, I.T.; He, X.; Shan, K.; Liu, X. Determination of Eu concentrations in coal, fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry (ICP-MS). Int. J. Coal Geol. 2018, 191, 152–156. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Dai, S.; French, D. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Loughnan, F.C. Chemical Weathering of the Silicate Minerals; Elsevier: New York, NY, USA, 1969. [Google Scholar]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Dai, S.; Bechtel, A.; Eble, C.F.; Flores, R.M.; French, D.; Graham, I.T.; Hood, M.M.; Hower, J.C.; Korasidis, V.A.; Moore, T.A.; et al. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol. 2020, 219, 103383. [Google Scholar] [CrossRef]
- Dai, S.; Li, T.; Jiang, Y.; Ward, C.R.; Hower, J.C.; Sun, J.; Liu, J.; Song, H.; Wei, J.; Li, Q.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. Int. J. Coal Geol. 2015, 137, 92–110. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T. Mineralogical composition of Late Permian coal seams in the Songzao Coalfield, southwestern China. Int. J. Coal Geol. 2013, 116–117, 208–226. [Google Scholar] [CrossRef]
- Finkelman, R.B. Modes of Occurrence of Trace Elements in Coal; USGS Open-File Report; Springer: Berlin, Germany, 1981; Volumes 81–99, p. 322. [Google Scholar]
- Spiro, B.F.; Liu, J.; Dai, S.; Zeng, R.; Large, D.; French, D. Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: Elucidation of the India-Eurasia and China-Indochina collisions in Yunnan, China. Int. J. Coal Geol. 2019, 215, 103304. [Google Scholar] [CrossRef]
- Karayigit, A.I.; Oskay, R.G.; Gayer, R.A. Mineralogy and geochemistry of feed coals and combustion residues of the Kangal power plant (Sivas, Turkey). Turk. J. Earth Sci. 2019, 28, 438–456. [Google Scholar] [CrossRef]
- Dai, S.; Hower, J.C.; Ward, C.R.; Guo, W.; Song, H.; O’Keefe, J.M.K.; Xie, P.; Hood, M.M.; Yan, X. Elements and phosphorus minerals in the middle Jurassic inertiniterich coals of the Muli Coalfield on the Tibetan Plateau. Int. J. Coal Geol. 2015, 144–145, 23–47. [Google Scholar] [CrossRef]
- Hayashi, K.I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef]
- Liu, J.; Nechaev, V.P.; Dai, S.; Song, H.; Nechaeva, E.V.; Jiang, Y.; Graham, I.T.; French, D.; Yang, P.; Hower, J.C. Evidence for multiple sources for inorganic components in the Tucheng coal deposit, western Guizhou, China and the lack of critical-elements. Int. J. Coal Geol. 2020, 103468. [Google Scholar] [CrossRef]
- Liu, J.; Song, H.; Dai, S.; Nechaev, V.P.; Graham, I.T.; French, D.; Nechaeva, E.V. Mineralization of REE-Y-Nb-Ta-Zr-Hf in Wuchiapingian coals from the Liupanshui Coalfield, Guizhou, southwestern China: Geochemical evidence for terrigenous input. Ore Geol. Rev. 2019, 115, 103190. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Min. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Le Maitre, R.W.; Streckeisen, A.; Zanettin, B.; Le Bas, M.J.; Bonin, B.; Bateman, P.; Bellieni, G.; Dudek, A.; Efremova, S.; Keller, J.; et al. Igneous Rocks: A Classification and Glossary of Terms, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002; Volume 254. [Google Scholar]
- Wang, G. The Study of Sources and Sequence-Lithofaces Palaeogeography of Upper Palaezoic, Northern Ordos. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2011. [Google Scholar]
- Han, D.; Yang, Q. (Eds.) Coal Geology of China; Publishing House of China Coal Industry: Beijing, China, 1980; Volume 2. (In Chinese) [Google Scholar]
- Shao, L.; Dong, D.; Li, M.; Wang, H.; Wang, D.; Lu, J.; Zheng, M.; Cheng, A. Sequence-paleogeography and coal accumulation of the Carboniferous-Permian in the north china basin. J. China Coal Soc. 2014, 39, 1725–1734. (In Chinese) [Google Scholar]
- Zhang, S.; Liu, C.; Liang, H.; Wang, J.; Bai, J.; Yang, M.; Liu, G.; Huang, H.; Guan, Y. Paleoenvironmental conditions, organic matter accumulation, and unconventional hydrocarbon potential for the Permian Lucaogou Formation organic-rich rocks in Santanghu Basin, NW China. Int. J. Coal Geol. 2018, 185, 44–60. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, J.; Guo, W.; Wang, P.; Ji, D. Mineralogy of the Pennsylvanian coal seam in the Datanhao mine, Daqingshan Coalfield, Inner Mongolia, China: Genetic implications for mineral matter in coal deposited in an intermontane basin. Int. J. Coal Geol. 2016, 167, 201–214. [Google Scholar] [CrossRef]
- Wei, W.; Algeo, T.J.; Lu, Y.; Lu, Y.; Liu, H.; Zhang, S.; Peng, L.; Zhang, J.; Chen, L. Identifying marine incursions into the Paleogene Bohai Bay Basin lake system in northeastern China. Int. J. Coal Geol. 2018, 200, 1–17. [Google Scholar] [CrossRef]
- Dai, S.; Ji, D.; Ward, C.R.; French, D.; Hower, J.C.; Yan, X.; Wei, Q. Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. Int. J. Coal Geol. 2018, 197, 84–114. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D.; Sun, J. Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan Coalfield, northern China. Ore Geol. Rev. 2019, 111, 102951. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 2002, 50, 135–168. [Google Scholar] [CrossRef]
- Ward, C.R. Minerals in bituminous coals of the Sydney Basin (Australia) and the Illinois Basin (U.S.A.). Int. J. Coal Geol. 1989, 13, 455–479. [Google Scholar] [CrossRef]
- Dai, S.; Yang, J.; Ward, C.R.; Hower, J.C.; Liu, H.; Garrison, T.M.; French, D.; O’Keefe, J.M.K. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geol. Rev. 2015, 70, 1–30. [Google Scholar] [CrossRef]
- Qin, G.; Cao, D.; Wei, Y.; Wang, A.; Liu, J. Geochemical characteristics of the Permian coals in the Junger-Hebaopian mining district, northeastern Ordos Basin, China: Key role of paleopeat-forming environments in Ga-Li-REY enrichment. J. Geochem. Explor. 2020, 106494. [Google Scholar] [CrossRef]
- Beckmann, B.; Flögel, S.; Hofmann, P.; Schulz, M.; Wagner, T. Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response. Nature 2005, 437, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, A.K.; Abdullah, W.H.; Hakimi, M.H.; Yandoka, B.M.S.; Mustapha, K.A.; Aturamu, A.O. Trace elements geochemistry of kerogen in Upper Cretaceous sediments, Chad (Bornu) Basin, northeastern Nigeria: Origin and paleo-redox conditions. J. Afr. Earth Sci. 2014, 100, 675–683. [Google Scholar] [CrossRef]
- Deng, H.W.; Qian, K. Elemental geochemistry. In Sedimentary Geochemistry and Environment Analysis; Deng, H.W., Qian, K., Eds.; Science and Technology of Gansu Press: Lanzhou, China, 1993; pp. 4–31. [Google Scholar]
- Roy, D.K.; Roser, B.P. Climatic control on the composition of Carboniferous-Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondwana Res. 2013, 23, 1163–1171. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Jiang, Y.; Xie, P.; Zhang, S.; Chen, Z. Mineralogy and geochemistry of an organic- and V-Cr-Mo-U-rich siliceous rock of Late Permian age, western Hubei Province, China. Int. J. Coal Geol. 2017, 172, 19–30. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, X.; Feng, X.; Song, C.; Wang, D.; Chen, W.; Zeng, S. Geochemical features of the black shales from the Wuyu Basin, southern Tibet: Implications for palaeoenvironment and palaeoclimate. Geol. J. 2017, 52, 282–297. [Google Scholar] [CrossRef]
- Meng, Q.T.; Liu, Z.J.; Bruch, A.A.; Liu, R.; Hu, F. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China. J. Asian Earth Sci. 2012, 45, 95–105. [Google Scholar] [CrossRef]
Element | Li | Be | Sc | Cr | Mn | Co | Ni | Cu | Zn | Ga | Rb | Sr | Y | Nb | Mo | Cd | In | Cs | Ba | La |
Blank 1 | 0.025 | 0.038 | 0.23 | 1.032 | 1.054 | 0.123 | 0.214 | 0.192 | 0.324 | 0.053 | 0.046 | 1.681 | 0.125 | 0.204 | 0.086 | 0.008 | 0.008 | 0.042 | 1.362 | 0.162 |
Blank 2 | 0.031 | 0.034 | 0.18 | 1.027 | 1.067 | 0.136 | 0.182 | 0.174 | 0.406 | 0.084 | 0.057 | 2.035 | 0.203 | 0.184 | 0.102 | 0.012 | 0.007 | 0.036 | 1.248 | 0.206 |
MDL | 1 | 0.4 | 1 | 5 | 3 | 0.5 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 5 | 0.3 | 0.5 | 0.2 | 0.02 | 0.01 | 0.1 | 5 | 0.5 |
MD | STD | STD | KED | KED | KED | STD | STD | STD | STD | KED | KED | KED | KED | KED | STD | STD | STD | STD | KED | KED |
Element | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Ta | W | Tl | Pb | Bi | Th | U |
Blank 1 | 0.214 | 0.015 | 0.062 | 0.026 | 0.014 | 0.024 | 0.024 | 0.008 | 0.042 | 0.047 | 0.014 | 0.024 | 0.027 | 0.031 | 0.022 | 0.014 | 0.142 | 0.016 | 0.024 | 0.007 |
Blank 2 | 0.126 | 0.024 | 0.042 | 0.017 | 0.018 | 0.031 | 0.018 | 0.012 | 0.036 | 0.052 | 0.014 | 0.031 | 0.019 | 0.024 | 0.031 | 0.026 | 0.201 | 0.024 | 0.032 | 0.004 |
MDL | 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 0.05 | 0.5 | 0.1 |
MD | KED | KED | KED | KED | KED | KED | KED | KED | KED | KED | KED | KED | KED | STD | STD | STD | STD | STD | STD | STD |
Sample | Mad | Ad | Vdaf | St.d | Sp.d | Ss.d | So.d |
---|---|---|---|---|---|---|---|
HB-1 | 0.3 | 13.7 | 18.0 | 0.26 | 0.12 | bdl | 0.14 |
HB-2 | 0.4 | 13.4 | 15.7 | 0.32 | 0.05 | bdl | 0.27 |
HB-3 | 0.6 | 10.6 | 15.6 | 0.27 | 0.03 | 0.01 | 0.23 |
HB-4 | 0.4 | 13.4 | 15.9 | 0.25 | 0.05 | 0.01 | 0.19 |
HB-5 | 0.5 | 10.9 | 15.6 | 0.25 | 0.05 | 0.01 | 0.19 |
HB-6 | 0.5 | 13.3 | 17.1 | 0.27 | 0.05 | 0.01 | 0.21 |
HB-7 | 0.5 | 15.4 | 17.8 | 0.26 | 0.1 | 0.02 | 0.14 |
HB-8 | 0.5 | 31.8 | 20.2 | 0.2 | 0.05 | bdl | 0.15 |
HB-9 | 1.1 | 13.4 | 18.7 | 0.26 | 0.06 | 0.02 | 0.18 |
HB-10 | 0.4 | 12.1 | 15.8 | 0.28 | 0.04 | 0.01 | 0.23 |
HB-11 | 0.5 | 12.3 | 16.6 | 0.28 | 0.02 | 0.04 | 0.22 |
HB-12 | 0.5 | 12.1 | 16.2 | 0.27 | 0.01 | 0.04 | 0.22 |
HB-13 | 0.5 | 12.1 | 16.9 | 0.24 | 0.02 | 0.02 | 0.2 |
HB-14 | 0.5 | 9.4 | 16.1 | 0.24 | 0.04 | 0.02 | 0.18 |
HB-15 | 0.5 | 12.8 | 19.7 | 0.28 | 0.02 | 0.02 | 0.24 |
HB-16 | 0.4 | 7.4 | 14.9 | 0.28 | 0.04 | 0.01 | 0.23 |
HB-17 | 0.5 | 8.7 | 15.3 | 0.26 | 0.03 | 0.02 | 0.21 |
HB-18 | 0.7 | 13.8 | 16.0 | 0.3 | 0.05 | 0.02 | 0.23 |
HB-19 | 0.7 | 55.9 | 28.6 | 0.14 | bdl | bdl | bdl |
HB-20 | 0.7 | 52.1 | 26.9 | 0.24 | 0.11 | 0.02 | 0.11 |
HB-21 | 0.6 | 58.4 | 30.0 | 0.3 | 0.16 | 0.06 | 0.08 |
HB-22 | 0.7 | 58.4 | 29.2 | 0.32 | 0.18 | 0.05 | 0.09 |
HB-23 | 0.5 | 37.8 | 25.8 | 0.35 | 0.2 | 0.03 | 0.12 |
Sample | Vitrinite | Inertinite | Mineral | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | CT | CD | VD | T-V | F | SF | Mac | Mic | ID | T-I | Clay | Sul | Carb | Si | T-M | |
HB-1 | 10.0 | 1.3 | 47.4 | - | 58.7 | 1.7 | 21.3 | - | - | 8.3 | 31.3 | 8.3 | - | 1.7 | - | 10.0 |
HB-2 | 9.4 | 1.4 | 46.7 | - | 57.5 | 0.9 | 25.2 | 0.5 | 0.9 | 6.5 | 34.1 | 7.0 | - | 0.5 | 0.9 | 8.4 |
HB-3 | 14.7 | 3.3 | 33.6 | - | 51.7 | 2.8 | 25.6 | 0.9 | 0.5 | 10.0 | 39.8 | 8.0 | - | - | 0.5 | 8.5 |
HB-4 | 15.4 | 1.3 | 43.2 | - | 59.9 | 1.7 | 21.1 | 0.9 | 0.9 | 6.2 | 30.8 | 7.1 | - | 1.8 | 0.4 | 9.3 |
HB-5 | 8.6 | 1.8 | 53.4 | - | 63.8 | 1.9 | 12.2 | - | - | 14.0 | 28.1 | 5.8 | - | 1.4 | 0.9 | 8.1 |
HB-6 | 5.7 | 1.7 | 58.7 | - | 66.1 | 0.9 | 14.8 | 1.3 | 1.7 | 7.8 | 26.5 | 5.7 | - | 1.3 | 0.4 | 7.4 |
HB-7 | 3.6 | 2.8 | 65.6 | 0.8 | 72.8 | 0.8 | 9.6 | 0.4 | 1.2 | 5.6 | 17.6 | 8.0 | - | 1.2 | 0.4 | 9.6 |
HB-8 | 4.1 | 1.0 | 39.8 | - | 44.9 | 0.5 | 15.3 | - | - | 6.6 | 22.4 | 25.6 | - | 5.1 | 2.0 | 32.7 |
HB-9 | 13.5 | 1.4 | 47.8 | - | 62.8 | 1.0 | 19.8 | 0.5 | - | 7.7 | 29.0 | 6.7 | - | 1.0 | 0.5 | 8.2 |
HB-10 | 17.0 | 0.9 | 42.7 | 0.4 | 61.0 | 3.1 | 16.2 | 3.1 | 1.3 | 5.9 | 29.6 | 7.2 | - | 1.8 | 0.4 | 9.4 |
HB-11 | 14.1 | 0.8 | 46.3 | 1.3 | 62.5 | 1.6 | 15.8 | 1.7 | - | 9.2 | 28.3 | 5.9 | - | 3.3 | - | 9.2 |
HB-12 | 13.3 | 2.7 | 41.4 | 0.4 | 57.8 | 3.9 | 15.2 | 1.6 | 1.6 | 9.7 | 32.0 | 6.3 | - | 3.9 | - | 10.2 |
HB-13 | 21.1 | 0.9 | 36.6 | 1.9 | 60.6 | 0.9 | 16.5 | - | 0.9 | 12.2 | 30.5 | 4.7 | - | 3.3 | 0.9 | 8.9 |
HB-14 | 17.3 | 1.2 | 42.1 | 0.4 | 61.0 | 0.8 | 16.4 | - | - | 14.5 | 31.7 | 6.9 | - | - | 0.4 | 7.3 |
HB-15 | 4.2 | 2.9 | 56.1 | 2.9 | 66.1 | - | 11.7 | 0.8 | 0.5 | 13.4 | 26.4 | 4.2 | - | 3.3 | - | 7.5 |
HB-16 | 13.0 | 1.3 | 50.9 | 2.1 | 67.3 | 0.4 | 12.6 | - | 0.8 | 11.8 | 25.6 | 5.9 | - | 0.8 | 0.4 | 7.1 |
HB-17 | 6.7 | 1.3 | 53.6 | - | 61.6 | - | 15.4 | 1.3 | - | 14.6 | 31.3 | 4.6 | - | 1.7 | 0.8 | 7.1 |
HB-18 | 10.7 | - | 49.1 | 14.3 | 74.1 | - | 13.8 | - | - | 3.6 | 17.4 | 6.7 | - | 1.8 | - | 8.5 |
HB-23 | 10.9 | 6.5 | 44.8 | - | 62.2 | 1.0 | 1.5 | - | - | 1.5 | 4.0 | 20.4 | - | 12.4 | 1.0 | 33.8 |
Sample | LOI | SiO2 | TiO2 | Al2O3 | Fe2O3 | MgO | CaO | MnO | Na2O | K2O | SiO2/Al2O3 | Al2O3/TiO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
HB-1 | 86.35 | 4.88 | 0.16 | 4.44 | 0.72 | 0.14 | 3.03 | bdl | 0.25 | 0.02 | 1.10 | 27.75 |
HB-2 | 86.56 | 6.17 | 0.28 | 5.34 | 0.37 | 0.06 | 0.94 | bdl | 0.27 | 0.03 | 1.16 | 19.07 |
HB-3 | 89.42 | 4.69 | 0.15 | 3.76 | 0.42 | 0.07 | 1.26 | bdl | 0.21 | 0.02 | 1.25 | 25.07 |
HB-4 | 86.65 | 6.02 | 0.16 | 5.22 | 0.66 | 0.06 | 0.91 | bdl | 0.29 | 0.02 | 1.15 | 32.63 |
HB-5 | 89.08 | 4.7 | 0.16 | 4.17 | 0.46 | 0.07 | 1.16 | bdl | 0.18 | 0.02 | 1.13 | 26.06 |
HB-6 | 86.73 | 5.84 | 0.17 | 5.13 | 0.56 | 0.1 | 1.16 | bdl | 0.29 | 0.02 | 1.14 | 30.18 |
HB-7 | 84.59 | 6.83 | 0.19 | 6.35 | 0.74 | 0.14 | 0.85 | bdl | 0.27 | 0.04 | 1.08 | 33.42 |
HB-8 | 68.16 | 16.08 | 0.45 | 13.5 | 0.7 | bdl | 0.73 | bdl | 0.3 | 0.08 | 1.19 | 30.00 |
HB-9 | 86.62 | 6.16 | 0.38 | 5.06 | 0.37 | 0.06 | 1.12 | bdl | 0.22 | 0.03 | 1.22 | 13.32 |
HB-10 | 87.89 | 5.37 | 0.32 | 5 | 0.29 | 0.06 | 0.85 | bdl | 0.21 | 0.02 | 1.07 | 15.63 |
HB-11 | 87.73 | 5.13 | 0.14 | 4.52 | 0.52 | 0.05 | 1.54 | bdl | 0.33 | 0.02 | 1.13 | 32.29 |
HB-12 | 87.93 | 5.29 | 0.21 | 4.56 | 0.37 | 0.05 | 1.3 | bdl | 0.25 | 0.03 | 1.16 | 21.71 |
HB-13 | 87.86 | 4.87 | 0.19 | 4.12 | 0.38 | 0.01 | 2.26 | bdl | 0.28 | 0.03 | 1.18 | 21.68 |
HB-14 | 90.65 | 3.8 | 0.17 | 3.15 | 0.48 | 0.07 | 1.43 | 0.03 | 0.21 | 0.02 | 1.21 | 18.53 |
HB-15 | 87.21 | 2.8 | 0.09 | 2.35 | 1.34 | 0.63 | 5.32 | 0.02 | 0.24 | 0.02 | 1.19 | 26.11 |
HB-16 | 92.6 | 2.86 | 0.14 | 2.46 | 0.4 | 0.11 | 1.18 | bdl | 0.24 | 0.01 | 1.16 | 17.57 |
HB-17 | 91.3 | 3.33 | 0.22 | 2.81 | 0.54 | 0.18 | 1.35 | bdl | 0.21 | 0.05 | 1.19 | 12.77 |
HB-18 | 86.19 | 6.85 | 0.23 | 5.63 | 0.41 | 0.1 | 0.29 | bdl | 0.18 | 0.12 | 1.22 | 24.48 |
HB-19 | 44.09 | 29.29 | 0.84 | 22.96 | 0.89 | 0.31 | 0.18 | bdl | 0.21 | 1.23 | 1.28 | 27.33 |
HB-20 | 47.94 | 27.83 | 0.73 | 20.7 | 0.95 | 0.31 | 0.17 | bdl | 0.21 | 1.16 | 1.34 | 28.36 |
HB-21 | 41.6 | 32.49 | 0.85 | 21.89 | 1.2 | 0.3 | 0.26 | bdl | 0.16 | 1.25 | 1.48 | 25.75 |
HB-22 | 41.65 | 32.72 | 0.83 | 21.43 | 1.29 | 0.3 | 0.23 | 0.01 | 0.24 | 1.3 | 1.53 | 25.82 |
HB-23 | 62.2 | 18.09 | 0.51 | 13.17 | 1.07 | 0.18 | 4.09 | 0.02 | 0.07 | 0.61 | 1.37 | 25.82 |
Average in Coal | 6.30 | 0.23 | 5.30 | 0.57 | 0.12 | 1.62 | bdl | 0.24 | 0.06 | 1.19 | 23.32 | |
Chinaa | 8.47 | 0.33 | 5.98 | 4.85 | 0.22 | 1.23 | 0.02 | 0.16 | 0.19 | 1.42 | 18.12 |
Sample | Li | Be | Sc | Cr | Mn | Co | Ni | Cu | Zn | Ga | Rb | Sr | Y | Nb | Mo | Cd | In | Cs | Pb | Bi |
HB-1 | 68 | 0.68 | 2.4 | 7.8 | 13 | 1.7 | 4.5 | 9.2 | 5.5 | 5.0 | 0.82 | 1183 | 8.4 | 2.8 | 0.90 | 0.03 | 0.02 | 0.37 | 7.2 | 0.16 |
HB-2 | 100 | 0.98 | 4.1 | 15 | 6.7 | 1.1 | 3.3 | 18 | 6.5 | 4.9 | 0.98 | 584 | 13 | 7.4 | 0.68 | 0.04 | 0.03 | 0.39 | 13 | 0.28 |
HB-3 | 71 | 0.90 | 3.5 | 13 | 11 | 1.1 | 3.3 | 8.9 | 6.4 | 4.2 | 0.88 | 501 | 12 | 4.0 | 0.51 | 0.03 | 0.02 | 0.37 | 9.0 | 0.20 |
HB-4 | 84 | 0.83 | 3.2 | 10 | 10 | 0.98 | 2.6 | 8.8 | 5.0 | 4.2 | 0.77 | 1033 | 12 | 3.1 | 0.46 | 0.03 | 0.02 | 0.37 | 5.9 | 0.15 |
HB-5 | 66 | 0.85 | 3.5 | 11 | 12 | 1.1 | 2.9 | 9.4 | 8.0 | 4.4 | 0.68 | 640 | 12 | 3.5 | 0.60 | 0.03 | 0.02 | 0.35 | 7.1 | 0.20 |
HB-6 | 88 | 0.69 | 3.0 | 8.9 | 16 | 1.4 | 2.8 | 11 | 6.7 | 7.0 | 0.93 | 353 | 9.7 | 3.9 | 1.2 | 0.03 | 0.02 | 0.39 | 11 | 0.22 |
HB-7 | 103 | 0.60 | 3.3 | 7.8 | 11 | 2.0 | 3.4 | 9.0 | 6.6 | 15 | 1.6 | 261 | 9.8 | 6.6 | 1.4 | 0.03 | 0.03 | 0.43 | 17 | 0.24 |
HB-8 | 183 | 0.79 | 4. 5 | 12 | 11 | 1.4 | 8.6 | 9.5 | 11 | 15 | 3.6 | 195 | 9.6 | 20 | 0.94 | 0.06 | 0.04 | 0.88 | 14 | 0.49 |
HB-9 | 77 | 0.87 | 5. 8 | 14 | 21 | 1.3 | 3.2 | 13 | 12 | 8.2 | 1.0 | 743 | 16 | 9.6 | 0.88 | 0.05 | 0.03 | 0.38 | 10 | 0.26 |
HB-10 | 88 | 0.76 | 4.2 | 11 | 8.9 | 1.2 | 2.7 | 13 | 5.4 | 6.5 | 0.67 | 1013 | 13 | 6.7 | 0.58 | 0.03 | 0.02 | 0.35 | 13 | 0.22 |
HB-11 | 60 | 0.57 | 2.1 | 6.4 | 29 | 1.4 | 3.6 | 9.3 | 5.8 | 5.1 | 0.70 | 608 | 8.3 | 2.7 | 0.64 | 0.03 | 0.02 | 0.37 | 8.2 | 0.14 |
HB-12 | 66 | 0.59 | 2.7 | 10 | 18 | 1.3 | 4.2 | 12 | 5.7 | 4.5 | 0.93 | 466 | 9.8 | 4.2 | 0.72 | 0.03 | 0.02 | 0.38 | 8.1 | 0.19 |
HB-13 | 56 | 0.54 | 2.4 | 8.3 | 22 | 1.1 | 4.6 | 9.3 | 4.8 | 3.8 | 0.83 | 754 | 8.8 | 3.6 | 0.71 | 0.03 | 0.02 | 0.37 | 7.0 | 0.16 |
HB-14 | 51 | 0.55 | 2.4 | 7.7 | 20 | 2.4 | 6.4 | 11 | 5.6 | 3.6 | 1.5 | 396 | 8.3 | 3.3 | 0.71 | 0.01 | 0.02 | 0.18 | 6.3 | 0.14 |
HB-15 | 40 | 0.42 | 1.7 | 6.9 | 100 | 1.9 | 7.4 | 5.6 | 4.5 | 2.1 | 1.8 | 433 | 8.7 | 1.8 | 0.66 | 0.02 | 0.02 | 0.19 | 3.7 | 0.06 |
HB-16 | 41 | 0.43 | 2.5 | 9.5 | 16 | 3.2 | 9.1 | 9.9 | 5.5 | 2.4 | 1.3 | 405 | 7.0 | 2.3 | 0.82 | 0.02 | 0.02 | 0.16 | 5.6 | 0.11 |
HB-17 | 42 | 0.51 | 2.9 | 12 | 25 | 3.0 | 8.0 | 10 | 6.0 | 2.4 | 2.3 | 681 | 8.5 | 3.3 | 0.51 | 0.01 | 0.02 | 0.27 | 5.1 | 0.10 |
HB-18 | 76 | 1.7 | 7.5 | 17 | 23 | 20 | 25 | 24 | 11 | 15 | 8.2 | 110 | 21 | 8.2 | 2.6 | 0.02 | 0.05 | 0.93 | 31 | 0.35 |
HB-19 | 260 | 3.7 | 17 | 65 | 23 | 25 | 34 | 49 | 20 | 40 | 64 | 125 | 31 | 28 | 1.7 | 0.01 | 0.19 | 6.8 | 26 | 0.42 |
HB-20 | 202 | 3.5 | 17 | 68 | 25 | 28 | 34 | 35 | 20 | 37 | 63 | 121 | 33 | 27 | 1.2 | 0.01 | 0.11 | 5.7 | 32 | 0.34 |
HB-21 | 181 | 3.6 | 16 | 61 | 40 | 34 | 35 | 37 | 24 | 37 | 70 | 122 | 36 | 25 | 0.77 | 0.01 | 0.09 | 5.9 | 29 | 0.33 |
HB-22 | 171 | 3.4 | 16 | 57 | 54 | 23 | 28 | 23 | 29 | 35 | 69 | 145 | 39 | 25 | 0.85 | 0.02 | 0.10 | 5.9 | 28 | 0.38 |
HB-23 | 142 | 2.7 | 22 | 43 | 146 | 22 | 33 | 61 | 59 | 28 | 37 | 235 | 38 | 18 | 1.1 | 0.12 | 0.09 | 4.6 | 184 | 0.40 |
HB-24 | 244 | 4.4 | 20 | 57 | 44 | 9.9 | 22 | 47 | 72 | 39 | 92 | 201 | 43 | 29 | 0.72 | 0.08 | 0.10 | 7.7 | 54 | 0.48 |
World Coal A | 12 | 1.6 | 3.9 | 16 | 71 | 5.1 | 13 | 16 | 23 | 5.8 | 14 | 110 | 8.4 | 3.7 | 2.2 | 0.22 | 0.03 | 1.0 | 7.8 | 0.97 |
World Clay B | 54 | 3.0 | 15 | 110 | 800 | 19 | 49 | 36 | 89 | 16 | 133 | 240 | 31 | 11 | 1.6 | 0.91 | 0.06 | 13 | 14 | 0.38 |
Sample | Ba | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Ta | W | Tl | Th | U |
HB-1 | 317 | 20 | 32 | 3.2 | 10 | 1.8/1.6 | 0.28 | 1.7 | 0.27 | 1.7/1.4 | 0.39 | 0.88 | 0.13 | 0.86 | 0.13 | 0.25 | 0.66 | 0.17 | 5.8 | 1.1 |
HB-2 | 265 | 18 | 32 | 3.4 | 12 | 2.3/2.0 | 0.39 | 2.4 | 0.38 | 2.7/2.1 | 0.59 | 1.4 | 0.22 | 1.4 | 0.21 | 0.69 | 0.73 | 0.32 | 14 | 2.2 |
HB-3 | 245 | 21 | 35 | 3.5 | 11 | 2.4/2.0 | 0.38 | 2.1 | 0.37 | 2.5/2.0 | 0.46 | 1.3 | 0.19 | 1.2 | 0.18 | 0.46 | 0.49 | 0.17 | 8.2 | 1.3 |
HB-4 | 337 | 32 | 57 | 5.6 | 20 | 3.1/2.9 | 0.47 | 2.8 | 0.43 | 2.5/2.1 | 0.48 | 1.3 | 0.19 | 1.3 | 0.18 | 0.4 | 0.43 | 0.21 | 6.9 | 1.1 |
HB-5 | 260 | 24 | 40 | 4.0 | 14 | 2.4/2.3 | 0.41 | 2.3 | 0.43 | 2.4/2.1 | 0.47 | 1.3 | 0.19 | 1.3 | 0.19 | 0.31 | 0.49 | 0.14 | 5.3 | 1.1 |
HB-6 | 236 | 14 | 25 | 2.8 | 9.5 | 1.9/1.7 | 0.35 | 1.6 | 0.29 | 1.9/1.6 | 0.38 | 1.0 | 0.17 | 1.1 | 0.16 | 0.25 | 0.62 | 0.16 | 4.3 | 1.3 |
HB-7 | 194 | 11 | 25 | 2.9 | 9.8 | 2.0/1.7 | 0.32 | 1.7 | 0.3 | 1.9/1.6 | 0.39 | 1.1 | 0.17 | 1.2 | 0.17 | 0.37 | 0.68 | 0.14 | 5.8 | 2.1 |
HB-8 | 274 | 12 | 25 | 3.1 | 11 | 2.0/1.9 | 0.36 | 1.7 | 0.32 | 2.3/1.6 | 0.41 | 1.1 | 0.19 | 1.3 | 0.20 | 1.9 | 1.2 | 0.26 | 21 | 3.6 |
HB-9 | 256 | 45 | 69 | 6.4 | 23 | 3.9/3.7 | 0.68 | 3.6 | 0.63 | 3.9/3.0 | 0.69 | 1.9 | 0.31 | 1.9 | 0.28 | 0.66 | 0.92 | 0.20 | 11 | 2.7 |
HB-10 | 314 | 49 | 73 | 6.6 | 23 | 3.6/3.5 | 0.6 | 3.4 | 0.5 | 2.9/2.4 | 0.62 | 1.5 | 0.22 | 1.5 | 0.22 | 0.59 | 0.52 | 0.13 | 9.4 | 2.0 |
HB-11 | 251 | 18 | 31 | 3.2 | 10 | 1.8/1.7 | 0.3 | 1.6 | 0.26 | 1.6/1.4 | 0.31 | 0.87 | 0.14 | 0.90 | 0.14 | 0.2 | 0.37 | 0.16 | 3.7 | 0.92 |
HB-12 | 231 | 13 | 24 | 2.7 | 9.4 | 1.0/1.6 | 0.32 | 1.7 | 0.27 | 1.9/1.51 | 0.35 | 0.97 | 0.16 | 1.0 | 0.16 | 0.38 | 0.48 | 0.18 | 4.4 | 0.98 |
HB-13 | 229 | 18 | 29 | 3.0 | 10 | 1.4/1.7 | 0.31 | 1.6 | 0.26 | 1.6/1.4 | 0.31 | 0.91 | 0.13 | 0.90 | 0.14 | 0.3 | 0.42 | 0.18 | 5.0 | 1.2 |
HB-14 | 171 | 12 | 20 | 2.2 | 8.2 | 145/1.4 | 0.26 | 1.5 | 0.22 | 1.5/1.3 | 0.31 | 0.89 | 0.12 | 0.83 | 0.14 | 0.32 | 0.42 | 0.11 | 3.6 | 0.94 |
HB-15 | 207 | 4.7 | 13 | 1.9 | 7.8 | 1.6/1.4 | 0.3 | 1.3 | 0.22 | 1.3/1.3 | 0.27 | 0.73 | 0.11 | 0.70 | 0.11 | 0.12 | 0.23 | 0.21 | 1.8 | 0.49 |
HB-16 | 164 | 13 | 21 | 2.2 | 7.8 | 1.4/1.3 | 0.25 | 1.2 | 0.19 | 1.2/1.1 | 0.31 | 0.65 | 0.10 | 0.67 | 0.10 | 0.18 | 0.31 | 0.16 | 2.5 | 0.55 |
HB-17 | 203 | 29 | 43 | 4.2 | 16 | 2.1/2.3 | 0.37 | 1.9 | 0.26 | 1.6/1.4 | 0.31 | 0.85 | 0.14 | 0.87 | 0.12 | 0.27 | 0.35 | 0.11 | 3.5 | 0.71 |
HB-18 | 115 | 20 | 38 | 4.3 | 16 | 3.1/2.8 | 0.54 | 2.6 | 0.51 | 3.7/3.1 | 0.69 | 1.9 | 0.26 | 1.7 | 0.24 | 0.66 | 1.2 | 0.20 | 7.3 | 3.1 |
HB-19 | 473 | 43 | 78 | 8.0 | 31 | 5.0/4.7 | 0.77 | 4.0 | 0.72 | 5.2/4.5 | 1.2 | 3.6 | 0.48 | 3.2 | 0.48 | 2.2 | 1.8 | 0.36 | 18 | 5.7 |
HB-20 | 413 | 41 | 74 | 8.2 | 29 | 4.9/4.5 | 0.79 | 4.2 | 0.77 | 5.3/4.7 | 1.2 | 3.3 | 0.48 | 3.3 | 0.48 | 2.0 | 1.7 | 0.46 | 18 | 5.3 |
HB-21 | 475 | 48 | 90 | 10 | 42 | 7.7/6.5 | 1.1 | 6.3 | 0.99 | 6.5/5.6 | 1.3 | 3.6 | 0.52 | 3.5 | 0.52 | 2.0 | 1.8 | 0.38 | 19 | 3.8 |
HB-22 | 515 | 51 | 98 | 11 | 49 | 9.6/7.6 | 1.3 | 6.9 | 1.1 | 7.6/6.2 | 1.5 | 3.9 | 0.55 | 3.7 | 0.54 | 2.1 | 1.9 | 0.39 | 18 | 3.9 |
HB-23 | 288 | 29 | 56 | 6.8 | 26 | 5.9/6.0 | 1.5 | 5.1 | 1.1 | 7.3/5.9 | 1.5 | 4.0 | 0.57 | 3.8 | 0.54 | 1.3 | 0.81 | 0.28 | 14 | 6.0 |
HB-24 | 621 | 75 | 146 | 16 | 51 | 7.1/7.6 | 1.3 | 6.6 | 1.2 | 7.8/6.6 | 1.6 | 4.7 | 0.68 | 4.6 | 0.69 | 2.3 | 2.2 | 0.62 | 22 | 4.9 |
World Coal a | 150 | 11 | 23 | 3.5 | 12 | 2.0 | 0.47 | 2.7 | 0.32 | 2.1 | 0.54 | 0.93 | 0.31 | 1.0 | 0.20 | 0.28 | 1.1 | 0.63 | 3.3 | 2.4 |
World Clay b | 460 | 48 | 75 | 10 | 36 | 8.0 | 1.2 | 5.8 | 0.83 | 4.4 | 0.90 | 1.9 | 0.50 | 2.5 | 0.39 | 1.4 | 2.6 | 1.3 | 14 | 4.3 |
Sample | ΣLREY | ΣMREY | ΣHREY | ΣREY | LaN/LuN | LaN/SmN | GdN/LuN | EuN/EuN* | CeN/CeN* | δY |
---|---|---|---|---|---|---|---|---|---|---|
HB-1 | 67.13 | 12.34 | 2.39 | 81.86 | 1.61 | 1.70 | 1.10 | 0.78 | 0.89 | 0.79 |
HB-2 | 67.85 | 19.05 | 3.84 | 90.74 | 0.93 | 1.18 | 0.94 | 0.80 | 0.92 | 0.82 |
HB-3 | 73.69 | 17.40 | 3.31 | 94.40 | 1.28 | 1.34 | 1.01 | 0.80 | 0.92 | 0.95 |
HB-4 | 117.08 | 17.85 | 3.40 | 138.32 | 1.94 | 1.59 | 1.34 | 0.79 | 0.95 | 0.89 |
HB-5 | 84.78 | 17.80 | 3.38 | 105.97 | 1.35 | 1.51 | 1.02 | 0.80 | 0.92 | 0.94 |
HB-6 | 52.48 | 13.84 | 2.86 | 69.18 | 0.90 | 1.11 | 0.83 | 0.94 | 0.91 | 0.92 |
HB-7 | 50.76 | 14.02 | 2.97 | 67.74 | 0.71 | 0.87 | 0.81 | 0.83 | 0.99 | 0.92 |
HB-8 | 52.66 | 14.25 | 3.21 | 70.12 | 0.64 | 0.86 | 0.72 | 0.88 | 0.95 | 0.85 |
HB-9 | 146.55 | 24.65 | 5.06 | 176.26 | 1.72 | 1.73 | 1.08 | 0.86 | 0.90 | 0.84 |
HB-10 | 155.13 | 20.19 | 4.00 | 179.32 | 2.39 | 2.03 | 1.29 | 0.85 | 0.89 | 0.76 |
HB-11 | 64.20 | 12.05 | 2.35 | 78.60 | 1.43 | 1.54 | 1.02 | 0.86 | 0.92 | 0.96 |
HB-12 | 50.75 | 13.92 | 2.67 | 67.35 | 0.89 | 1.07 | 0.93 | 0.90 | 0.92 | 1.02 |
HB-13 | 60.74 | 12.48 | 2.40 | 75.61 | 1.37 | 1.51 | 0.97 | 0.89 | 0.88 | 1.02 |
HB-14 | 43.21 | 11.77 | 2.29 | 57.26 | 0.92 | 1.22 | 0.89 | 0.91 | 0.87 | 0.98 |
HB-15 | 29.26 | 11.80 | 1.92 | 42.98 | 0.47 | 0.46 | 1.004 | 0.98 | 0.99 | 1.18 |
HB-16 | 44.42 | 9.80 | 1.84 | 56.06 | 1.30 | 1.38 | 0.95 | 0.95 | 0.88 | 0.82 |
HB-17 | 94.07 | 12.54 | 2.29 | 108.90 | 2.58 | 2.06 | 1.31 | 0.93 | 0.87 | 1.00 |
HB-18 | 81.75 | 28.09 | 4.70 | 114.53 | 0.88 | 0.96 | 0.92 | 0.85 | 0.94 | 1.09 |
HB-19 | 165.45 | 42.05 | 8.98 | 216.48 | 0.96 | 1.28 | 0.71 | 0.79 | 0.96 | 0.97 |
HB-20 | 157.33 | 43.97 | 8.69 | 209.99 | 0.91 | 1.25 | 0.74 | 0.79 | 0.91 | 1.02 |
HB-21 | 197.18 | 51.11 | 9.53 | 257.82 | 0.99 | 0.93 | 1.02 | 0.78 | 0.94 | 0.98 |
HB-22 | 219.43 | 55.75 | 10.18 | 285.36 | 1.00 | 0.80 | 1.07 | 0.74 | 0.94 | 0.96 |
HB-23 | 123.32 | 52.92 | 10.33 | 186.57 | 0.56 | 0.73 | 0.80 | 1.18 | 0.92 | 0.92 |
HB-24 | 293.61 | 59.96 | 12.33 | 365.90 | 1.17 | 1.60 | 0.81 | 0.86 | 0.97 | 0.96 |
Av-coal | 76.83 | 17.72 | 3.43 | 97.99 | 1.26 | 1.31 | 1.00 | 0.88 | 0.92 | 0.93 |
Correlation with Ash Yield | |
---|---|
Group 1: rash = 0.70–1.00 | Li (0.87), Ga (0.87), Nb (0.91), Th (0.76), SiO2 (0.98), TiO2 (0.81), Al2O3 (0.97), K2O (0.80) |
Group 2: rash = 0.4–0.69 | Fe2O3 (0.50), Pb (0.78, 0.49 *) |
Group 3: rash < 0.4 | CaO (0.28), REY (0.34), Sr (-0.38), Na2O (-0.33) |
Aluminosilicate Affinity | |
rAl–Si = 0.70–1.00 | Li, Ga, Nb, Th, TiO2, K2O |
rAl–Si = 0.4–0.69 | Pb |
rAl–Si < 0.4 | Fe2O3, REY |
Correlation Coefficients between Selected Elements | |
Li–Ga 0.75, Nb–Ga 0.83, Nb–Li 0.91, Pb–Li 0.48, Pb–Ga 0.84, Th–Nb 0.90, Th–Li 0.90, REY–Li 0.29 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; He, W.; Qin, G.; Fan, M.; Cao, D. Lithium Enrichment in the No. 21 Coal of the Hebi No. 6 Mine, Anhe Coalfield, Henan Province, China. Minerals 2020, 10, 521. https://doi.org/10.3390/min10060521
Wei Y, He W, Qin G, Fan M, Cao D. Lithium Enrichment in the No. 21 Coal of the Hebi No. 6 Mine, Anhe Coalfield, Henan Province, China. Minerals. 2020; 10(6):521. https://doi.org/10.3390/min10060521
Chicago/Turabian StyleWei, Yingchun, Wenbo He, Guohong Qin, Maohong Fan, and Daiyong Cao. 2020. "Lithium Enrichment in the No. 21 Coal of the Hebi No. 6 Mine, Anhe Coalfield, Henan Province, China" Minerals 10, no. 6: 521. https://doi.org/10.3390/min10060521
APA StyleWei, Y., He, W., Qin, G., Fan, M., & Cao, D. (2020). Lithium Enrichment in the No. 21 Coal of the Hebi No. 6 Mine, Anhe Coalfield, Henan Province, China. Minerals, 10(6), 521. https://doi.org/10.3390/min10060521