Review of Potential Microbial Effects on Flotation
Abstract
:1. Introduction
2. Flotation
2.1. Closing the Water Loops in Flotation
2.2. Bioflotation and Flocculation
3. Microbe–Mineral Interactions in Flotation
3.1. Cell Structure
3.2. Attachment of Microorganisms on Mineral Surface
3.3. Sulphur- and Iron-Oxidizing or Reducing Microorganisms
3.4. Interactions with Flotation Reagents
4. Microbiology in Flotation
4.1. Microorganisms from Water and Ore Material
4.2. Flotation Conditions for Microbial Growth
4.3. Management of Microorganisms
5. Identified Gaps and Future Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dwyer, R.; Bruckard, W.J.; Rea, S.; Holmes, R.J. Bioflotation and bioflocculation review: Microorganisms relevant for mineral beneficiation. Miner. Proc. Ext. Met. 2012, 121, 65–71. [Google Scholar] [CrossRef]
- Behera, S.K.; Mulaba-Bafubiandi, A.F. Microbes assisted mineral flotation a future prospective for mineral processing industries: A review. Miner. Proc. Ext. Met. 2017, 38, 96–105. [Google Scholar] [CrossRef]
- Seifelnassr, A.A.S.; Abouzeid, A.-Z.M. Exploitation of bacterial activities in mineral industry and environmental preservation: An overview. J. Miner. 2013. [Google Scholar] [CrossRef] [Green Version]
- Brierley, C.L. How will biomining be applied in future? T. Nonferr. Metal. Soc. 2008, 18, 1302–1310. [Google Scholar] [CrossRef]
- Pradhan, N.; Nathsarma, K.C.; Srinivasa Rao, K.; Sukla, L.B.; Mishra, B.K. Heap bioleaching of chalcopyrite: A review. Miner. Eng. 2008, 21, 355–365. [Google Scholar] [CrossRef]
- Johnson, D.B. Biomining—Biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotech. 2014, 30, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Shafaei, S.Z.; Abdollahi, H.; Gharabaghi, M.; Chehreh Chelgani, S. Effect of flotation reagents on the activity of L. Ferrooxidans. Min. Proc. Ext. Met. 2018, 39, 34–43. [Google Scholar] [CrossRef]
- Clark, M.E.; Batty, J.D.; van Buuren, C.B.; Dew, D.W.; Eamon, M.A. Biotechnology in minerals processing: Technological breakthroughs creating value. Hydrometallurgy 2006, 83, 3–9. [Google Scholar] [CrossRef]
- Levay, G.; Smart, R.S.C.; Skinner, W.M. The impact of water quality on flotation performance. J. S. Afr. I. Min. Metall. 2001, 101, 69–76. [Google Scholar]
- Rao, K.H.; Vilinska, A.; Chernyshova, I.V. Minerals bioprocessing: R & D needs in mineral biobeneficiation. Hydrometallugry 2010, 104, 465–470. [Google Scholar]
- Gunson, A.J.; Klein, B.; Veiga, M.; Dunbar, S. Reducing mine water requirements. J. Clean. Prod. 2012, 21, 71–82. [Google Scholar] [CrossRef]
- Choi, J.; Kim, G.; Choi, S.; Kim, K.; Han, Y.; Bradford, S.A.; Choi, S.Q.; Kim, H. Application of depletion attraction in mineral flotation: I. Theory. Minerals 2018, 8, 451. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Moran, C.J.; Vink, S. A review of the effect of water quality on flotation. Miner. Eng. 2013, 53, 91–100. [Google Scholar] [CrossRef]
- Muzenda, E. An investigation into the effect of water quality on flotation performance. World Acad. Sci. Eng. Technol. 2010, 45, 237–241. [Google Scholar]
- Kinnunen, P.; Emler, R.; Raatikainen, J.; Guignot, S.; Guimerà, J.; Heiskanen, K. Closed water loops, ore sorting and tailings valorization for more sustainable raw material supply. J. Clean. Prod. 2020. under review. [Google Scholar]
- Kunz, N.C.; Moran, C.J. The utility of a systems approach for managing strategic water risks at a mine site level. Water Resour. Ind. 2016, 13, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Bryan, B.A.; Liu, J.; Li, W.; Chen, Y.; Liu, R.; Barrett, D. Managing too little and too much water: Robust mine-water management strategies under variable climate and mine conditions. J. Clean. Prod. 2017, 162, 1009–1020. [Google Scholar] [CrossRef]
- Ossa-Moreno, J.; McIntyre, N.; Ali, S.; Smart, J.C.R.; Rivera, D.; Lall, U.; Keir, G. The hydro-economics of mining. Ecol. Econom. 2018, 145, 368–379. [Google Scholar] [CrossRef]
- Askham, T.M.; Van der Poll, H.M. Water sustainability of selected mining companies in South Africa. Sustainability 2017, 9, 957. [Google Scholar] [CrossRef] [Green Version]
- Evdokimova, G.A.; Gershenkop, A.S.; Fokina, N.V. The impact of bacteria of circulating water on apatite-nepheline ore flotation. J. Environ. Sci. Health Part A. 2012, 47, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Moran, C.J.; Vink, S. Managing the potential risks of using bacteria-laden water in mineral processing to protect freshwater. Environ. Sci. Technol. 2013, 47, 6582–6588. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.W.; Miettinen, M. Microorganisms in flotation and flocculation: Future technology or laboratory curiosity? Miner. Eng. 2006, 19, 548–553. [Google Scholar] [CrossRef]
- Merma, A.G.; Torem, M.L.; Morán, J.J.V.; Monte, M.B.M. On the fundamental aspects of apatite and quartz flotation using a Gram positive strain as a bioreagent. Miner. Eng. 2013, 48, 61–67. [Google Scholar] [CrossRef]
- Kim, G.; Park, K.; Choi, J.; Gomez-Flores, A.; Han, Y.; Choi, S.Q.; Kim, H. Bioflotation of malachite using different growth phases of Rhodococcus opacus: Effect of bacterial shape on detachment by shear flow. Int. J. Miner. Proc. 2015, 143, 98–104. [Google Scholar] [CrossRef]
- Govender, Y.; Gericke, M. Extracellular polymeric substances (EPS) from bioleaching systems and its application in bioflotation. Miner. Eng. 2011, 24, 1122–1127. [Google Scholar] [CrossRef]
- La Vars, S.M.; Newton, K.; Quinton, J.S.; Cheng, P.-Y.; Wei, D.H.; Chan, Y.-L.; Harmer, S.L. Surface chemical characterisation of pyrite exposed to Acidithiobacillus ferrooxidans and associated extracellular polymeric substances. Minerals 2018, 8, 132. [Google Scholar] [CrossRef] [Green Version]
- Hirajima, T.; Aiba, Y.; Farahat, M.; Okibe, N.; Sasaki, K.; Tsuruta, T.; Doi, K. Effect of microorganisms on flocculation of quartz. Int. J. Miner. Proc. 2012, 102–103, 107–111. [Google Scholar] [CrossRef]
- Ramos-Escobedo, G.T.; Pecina-Treviño, E.T.; Bueno Tokunaga, A.; Concha-Guerrero, S.I.; Ramos-Lico, D.; Guerra-Balderrama, R.; Orrantia-Borunda, E. Bio-collector alternative for the recovery of organic matter in flotation processes. Fuel 2016, 176, 165–172. [Google Scholar] [CrossRef]
- Sanwani, E.; Chaerun, S.; Mirahati, R.; Wahyuningsih, T. Bioflotation: Bacteria-mineral interaction for eco-friendly and sustainable mineral processing. Procedia Chem. 2016, 19, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Farahat, M.; Hirajima, T. Hydrophilicity of Ferroplasma acidiphilum and its effect on the depression of pyrite. Miner. Eng. 2012, 36–38, 242–247. [Google Scholar] [CrossRef]
- Vasanthakumar, B.; Ravishankar, H.; Subramanian, S. Microbially induced selective flotation of sphalerite from galena using mineral-adapted strains of Bacillus megaterium. Coll. Surf. B Biointerfaces 2013, 112, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Merma, A.G.; Hacha, R.R.; Torem, M.L. Cellular adaptation: Culture conditions of R. opacus and bioflotation of apatite and quartz. REM: Int. Eng. J. 2017, 70, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Vilinska, A.; Rao, K.H. Leptosririllum ferrooxidans-sulfide mineral interactions with reference to bioflotation and bioflocculation. T. Nonferr. Metal. Soc. 2008, 18, 1403–1409. [Google Scholar] [CrossRef]
- Bleeze, B.; Zhao, J.; Harmer, S.L. Selective attachment of Leptospirillum ferrooxidans for separation of chalcopyrite and pyrite through bio-flotation. Minerals 2018, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Consuegra, G.L.; Kutschke, S.; Rudolph, M.; Pollmann, K. Halophilic bacteria as potential pyrite bio-depressants in Cu-Mo bioflotation. Miner. Eng. 2020, 145, 106062. [Google Scholar] [CrossRef]
- Yin, J.; Chen, J.C.; Wu, Q.; Chen, G.Q. Halophiles, coming stars for industrial biotechnology. Biotechnol. Adv. 2015, 33, 1433–1442. [Google Scholar] [CrossRef]
- Liu, W.; Moran, C.J.; Vink, S. Impact of chalcopyrite depression by water-borne bacteria in pure and combined mineral systems. Int. J. Miner. Process. 2013, 123, 18–24. [Google Scholar] [CrossRef]
- Karthiga devi, K.; Natarajan, K.A. Production and characterization of bioflocculants for mineral processing applications. Int. J. Miner. Proc. 2015, 137, 15–25. [Google Scholar] [CrossRef]
- Abu Tawila, Z.M.; Ismail, S.; Dadrasnia, A.; Usman, M.M. Production and characterization of a bioflocculant produced by Bacillus salmalaya 139SI-7 and its applications in wastewater treatment. Molecules 2018, 23, 2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivera, C.A.C.; Merma, A.G.; Torem, M.L. Evaluation of hematite and quartz flotation kinetics using surfactant produced by Rhodococcus erythropolis as bioreagent. REM—Int. Eng. J. 2019, 72, 655–659. [Google Scholar] [CrossRef]
- Diao, M.; Taran, E.; Mahler, S.; Nguyen, A.V. A concise review of nanoscopic aspects of bioleaching bacteria–mineral interactions. Adv. Coll. Interf. Sci. 2014, 212, 45–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandraprabha, M.N.; Natarajan, K.A. Microbially induced mineral beneficiation. Min. Process. Ext. Metall. Rev. 2010, 31, 1–29. [Google Scholar] [CrossRef]
- Koga, Y.; Morii, H. Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. Microbiol. Mol. Biol. Rev. 2007, 71, 97–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porro, S.; Ramírez, S.; Reche, C.; Curutchet, G.; Alonso-Romanowski, S.; Donati, E. Bacterial attachment: Its role in bioleaching processes. Process Biochem. 1997, 32, 573–578. [Google Scholar] [CrossRef]
- Gehrke, T.; Telegdi, J.; Thierry, D.; Sand, W. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl. Env. Microbiol. 1998, 64, 2743–2747. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.K. Surface Studies Relevant to Microbial Adhesion and Bioflotation of Sulphide Minerals. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2001. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18301 (accessed on 14 January 2020).
- Sharma, P.K.; Rao, K.H. Role of a heterotrophic Paenibacillus polymyxa bacteria in the bioflotation of some sulfide minerals. Min. Metall. Expl. 1999, 16, 35–41. [Google Scholar] [CrossRef]
- van Loosdrecht, M.C.M.; Lyklema, J.; Norde, W.; Zehnder, A.J.B. Influence of interfaces on microbial activity. Microbiol. Rev. 1990, 54, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Olivera, C.A.C.; Merma, A.G.; Puelles, J.G.S.; Torem, M.L. On the fundamentals aspects of hematite bioflotation using a Gram positive strain. Miner. Eng. 2017, 106, 55–63. [Google Scholar] [CrossRef]
- Patra, P.; Natarajan, K.A. Role of mineral specific bacterial proteins in selective flocculation and flotation. Int. J. Miner. Process 2008, 88, 53–58. [Google Scholar] [CrossRef]
- Florian, B.; Noël, N.; Thyssen, C.; Felschau, I.; Sand, W. Some quantitative data on bacterial attachment to pyrite. Miner. Eng. 2011, 24, 1132–1138. [Google Scholar] [CrossRef]
- Sand, W.; Gehrke, T.; Jozsa, P.G.; Schippers, A. (Bio) chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallugry 2001, 59, 159–175. [Google Scholar] [CrossRef]
- Kinzler, K.; Gehrke, T.; Telegdi, J.; Sand, W. Bioleaching—A result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallugry 2003, 71, 83–88. [Google Scholar] [CrossRef]
- Rohwerder, T.; Gehrke, T.; Kinzler, K.; Sand, W. Bioleaching review part A: Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotech. 2003, 63, 239–248. [Google Scholar] [CrossRef]
- Kuyumcu, H.Z.; Bielig, T.; Vilinska, A.; Rao, K.H. Biocoagulation and its application potentials for mineral bioprocessing. Open Miner. Process. J. 2009, 2, 1–11. [Google Scholar] [CrossRef]
- Africa, C.-J.; van Hille, R.P.; Sand, W.; Harrison, S.T.L. Investigation and in situ visualisation of interfacial interactions of thermophilic microorganisms with metal-sulphides in a simulated heap environment. Miner. Eng. 2013, 48, 100–107. [Google Scholar] [CrossRef]
- Vera, M.; Schippers, A.; Sand, W. Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation—Part A. Appl. Microbiol. Biotechnol. 2013, 97, 7529–7541. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Wang, L.; Wu, A.; Kabwe, E.; Chen, X.; Yan, R. Copper recycle from sulfide tailings using combined leaching of ammonia solution and alkaline bacteria. J. Clean. Prod. 2018, 189, 746–753. [Google Scholar] [CrossRef]
- San Martín, F.; Kracht, W.; Vargas, T. Biodepression of pyrite using Acidithiobacillus ferrooxidans in seawater. Miner. Eng. 2018, 117, 127–131. [Google Scholar] [CrossRef]
- Amini, E.; Hosseini, T.R.; Oliazadeh, M.; Kolahdoozan, M. Application of Acidithiobacillus ferrooxidans in coal flotation. Int. J. Coal Prep. Util. 2009, 29, 279–288. [Google Scholar] [CrossRef]
- Schippers, A.; Sand, W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Env. Microbiol. 1999, 65, 319–321. [Google Scholar] [CrossRef] [Green Version]
- Rawlings, D.E. Heavy metal mining using microbes. Annu. Rev. Microbiol. 2002, 56, 65–91. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Liu, Q.; Xu, Z. Impact of gypsum supersaturated water on the uptake of copper and xanthate on sphalerite. Miner. Eng. 2013, 49, 165–171. [Google Scholar] [CrossRef]
- Kirjavainen, V.; Schreithofer, N.; Heiskanen, K. Effect of calcium and thiosulfate ions on flotation selectivity of nickel-copper ores. Miner. Eng. 2002, 15, 1–5. [Google Scholar] [CrossRef]
- Chen, S.; Gong, W.; Mei, G.; Zhou, Q.; Bai, C.; Xu, N. Primary biodegradation of sulfide mineral flotation collectors. Miner. Eng. 2011, 24, 953–955. [Google Scholar] [CrossRef]
- Cheng, H.; Lin, H.; Huo, H.; Dong, Y.; Xue, Q.; Cao, L. Continuous removal of ore floatation reagents by an anaerobic-aerobic biological filter. Bioresour. Technol. 2012, 114, 255–261. [Google Scholar] [CrossRef]
- Chockalingam, E.; Subramanian, S.; Natarajan, K.A. Studies on biodegradation of organic flotation collectors using Bacillus polymyxa. Hydrometallugry 2003, 71, 249–256. [Google Scholar] [CrossRef]
- Dehghan, R.; Dianati, M. The effects of Pb-Zn flotation reagents on the bioleaching process by mesophilic bacteria. Int. J. Miner. Proc. 2015, 143, 80–86. [Google Scholar] [CrossRef]
- Dopson, M.; Sundkvist, J.-E.; Lindström, E.B. Toxicity of metal extraction and flotation chemicals to Sulfolobus metallicus and chalcopyrite bioleaching. Hydrometallugry 2006, 81, 205–213. [Google Scholar] [CrossRef]
- Okibe, N.; Johnson, D.B. Toxicity of flotation reagents to moderately thermophilic bioleaching microorganisms. Biotechnol. Lett. 2002, 24, 2011–2016. [Google Scholar] [CrossRef]
- Jafari, M.; Shafaei, S.Z.; Abdollahi, H.; Gharabaghi, M.; Chehreh Chelgani, S.; Ghassa, S. Examining the effects of typical reagents for sulfide flotation on bio-oxidation activity of ferrous iron oxidizing microorganisms. Solid State Phenom. 2017, 262, 84–87. [Google Scholar] [CrossRef]
- Bararunyeretse, P.; Yao, J.; Dai, Y.; Bigawa, S.; Guo, Z.; Zhu, M. Toxic effect of two kinds of mineral collectors on soil microbial richness and activity: Analysis by microcalorimetry, microbial count, and enzyme activity assay. Environ. Sci. Pollut. Res. 2017, 24, 1565–1577. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Yao, J.; Wang, F.; Yuan, Z.; Bararunyeretse, P.; Zhao, Y. Effect of three typical sulfide mineral flotation collectors on soil microbial activity. Environ. Sci. Pollut. Res. 2016, 23, 7425–7436. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, K.A.; Sabari Prakasan, M.R. Biodegradation of sodium isopropyl xanthate by Paenibacillus polymyxa and Pseudomonas putida. Miner. Metall. Proc. 2013, 30, 226–232. [Google Scholar] [CrossRef]
- Corbett, M.K.; Eksteen, J.J.; Niu, X.-Z.; Watkin, E.L.J. Syntrophic effect of indigenous and inoculated microorganisms in the leaching of rare earth elements from Western Australian monazite. Res. Microbiol. 2018, 169, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.G. Freshwater Ecosystems-Structure and Response. Ecotoxicol. Environ. Saf. 2001, 50, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Shade, A.; Jones, S.E.; McMahon, K.D. The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics. Environ. Microbiol. 2008, 10, 1057–1067. [Google Scholar] [CrossRef]
- Yannarell, A.C.; Triplett, E.W. Geographic and environmental sources of variation in lake bacterial community composition. Appl. Env. Microbiol. 2005, 71, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Bomberg, M.; Mäkinen, J.; Salo, M.; Kinnunen, P. High diversity in iron cycling microbial communities in acidic, iron-rich water of the Pyhäsalmi mine, Finland. Geofluids 2019. [Google Scholar] [CrossRef] [Green Version]
- Islam, E.; Sar, P. Culture-dependent and-independent molecular analysis of the bacterial community within uranium ore. J. Basic Microbiol. 2011, 51, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Islam, E.; Paul, D.; Sar, P. Microbial diversity in Uranium deposits from Jaduguda and Bagjata Uranium mines, India as revealed by clone library and denaturing gradient gel electrophoresis analyses. Geomicrobiol. J. 2014, 31, 862–874. [Google Scholar] [CrossRef]
- Matlakowska, R.; Sklodowska, A. The culturable bacteria isolated from organic-rich black shale potentially useful in biometallurgical procedures. J. Appl. Microbiol. 2009, 107, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, R.; Cloete, T.E.; Khasa, D.P. Culturable microorganisms associated with Sishen iron ore and their potential roles in biobeneficiation. World J. Microb. Biot. 2012, 28, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Ghashoghchi, R.A.; Hosseini, M.R.; Ahmadi, A. Effects of microbial cells and their associated extracellular polymeric substances on the bio-flocculation of kaolin and quartz. Appl. Clay Sci. 2017, 138, 81–88. [Google Scholar] [CrossRef]
- Morin, K.; Hutt, N. Mine-water leaching of nitrogen species from explosive residues. In Proceedings of the GeoHalifax, the 62nd Canadian Geotechnical Conference and 10th Joint CGS/IAH-CNC Groundwater Conference, Halifax, NS, Canada, 20–24 September 2009; pp. 1549–1553. [Google Scholar]
- Forsberg, H.; Åkerlund, H. Kväve och Sprängämnesrester i LKAB:s Malm-, Gråbergs- Och Produktflöden. Master’s Thesis, Luleå Tekniska Universitet, Luleå, Sweden, 1999; 116p. [Google Scholar]
- Albrecht, T.W.J.; Addai-Mensah, J.; Fornasiero, D. Critical copper concentration in sphalerite flotation: Effect of temperature and collector. Int. J. Miner. Proc. 2016, 146, 15–22. [Google Scholar] [CrossRef]
- O’Connor, C.T.; Dunne, R.C.; Botelho de Sousa, A.M.R. The effect of temperature on the flotation of pyrite. J. S. Afr. Inst. Min. Metall 1984, 84, 389–394. [Google Scholar]
- Liu, W.; Moran, C.J.; Vink, S. The adverse effect of disrupted water-borne bacteria cells on flotation. Int. J. Miner. Proc. 2016, 157, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Muzinda, I.; Schreithofer, N. Water quality effects on flotation: Impacts and control of residual xanthates. Miner. Eng. 2018, 125, 34–41. [Google Scholar] [CrossRef]
- Moimane, T.M.; Corin, K.C.; Wiese, J.G. The effect of varying pulp reagent chemistry on the flotation performance of a South African PGM ore. Miner. Eng. 2016, 95, 155–160. [Google Scholar] [CrossRef]
- Ikumapayi, F.; Mäkitalo, M.; Johansson, B.; Rao, K.H. Recycling of process water in sulphide flotation: Effect of calcium and sulphate ions on flotation of galena. Miner. Eng. 2012, 39, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Ikumapayi, F.K. Recycling Process Water in Complex Sulphide Ore Flotation. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, April 2013. [Google Scholar]
- Slatter, K.A.; Plint, N.D.; Cole, M.; Dilsook, V.; de Vaux, D.; Palm, N.; Oostendorp, B. Water management in Anglo Platinum Process Operations: Effects of Water Quality on Process Operations. In Proceedings of the Abstracts of the International Mine Water Conference, Pretoria, South Africa, 19–23 October 2009; pp. 46–55. [Google Scholar]
- Shengo, L.M.; Gaydardzhiev, S.; Kalenga, N.M. Assessment of water quality effects on flotation of copper–cobalt oxide ore. Miner. Eng. 2014, 65, 145–148. [Google Scholar] [CrossRef]
- Lutandula, M.S.; Mwana, K.N. Perturbations from the recycled water chemical components on flotation of oxidized ores of copper—The case of bicarbonate ions. J. Environ. Chem. Eng. 2014, 2, 190–198. [Google Scholar] [CrossRef]
Microorganism | Bioflotation | Tested pH Range | T (°C) | Ref. |
---|---|---|---|---|
Leptospirillum ferrooxidans | Flocculation of chalcopyrite and pyrite. Greater depression of chalcopyrite compared to pyrite. | 1.8–11 | 30 | [33,34] |
Acidithiobacillus ferrooxidans | Oxidation of pyrite surface and depressive effect on pyrite. | 1.8 | 30 | [26] |
Rhodococcus opacus | Use as biocollector and biofrother. Improved separation of apatite from quartz in phosphate flotation. | 2–12 | 20–28 | [23,32] |
Staphylococcus carnosus | Biocollector in fine coal tailings flotation. | 7–10 | room temp. | [28] |
Bacillus pumilus | Change of surface chemical properties of pyrite, oxidation of iron and sulphur for the use of depressant in pyrite flotation. | 3–6 | 30 | [29] |
Alicyclobacillus ferrooxidans | Change of surface chemical properties of pyrite, oxidation of iron and sulphur for the use of depressant in pyrite flotation. | 3–5 | 30 | [29] |
Ferroplasma acidiphilum | Good depressant for pyrite. | 2.5–10 | 37 | [30] |
Bacillus megaterium | Selective flotation of sphalerite from sphalerite-galena. | 2–10 | room temp. or 37 | [31] |
Parameter | Effect | References |
---|---|---|
Sulphur and iron | Iron- and sulphur-oxidizing microorganisms oxidize sulphidic minerals and dissolve various anions and cations to the solution. | [54,61,62] |
Flotation reagents | Microorganisms may use flotation reagents as substrates and decrease the available reagents for flotation. Flotation chemicals may also inhibit the growth and activity of microorganisms. | [7,68,69,70,71] |
pH | Microbial activity can crucially change the pH in a short time. The pH value affects the surface charge of minerals. | [9,27] |
Redox | Microbial activity can crucially change the Eh in a short time. | [9] |
Temperature | The flotation temperature is often favorable for the bacterial growth. | [21] |
Nutrients | Explosives contain nitrogen compounds, which can support the growth of microorganisms. | [85,86] |
Population density | Quantity of microorganisms affects bioflotation efficiency. The effect of microbial numbers is not straight forward. | [22,49] |
Microbial diversity | Bacterial cells vary from strain to strain and show different biochemical properties and different surface charges. Mixed cultures have resulted in increased EPS production and attachment on mineral surfaces compared to pure cultures. | [2,41,51] |
Adaptation | Adaptation of cells to the specific minerals affects the amount of extracellular proteins produced and flotation performance. | [31,46] |
Growth phase | Growth phase affects surface chemistry of microorganisms. | [24] |
Dead/alive cells | Disrupted cells can have a negative effect on flotation. Physical removal may be necessary. | [89] |
Mineral type | Selective microbial attachment on various mineral surfaces and uneven distribution of EPS on the particle surface. Microorganisms are present in large numbers in the ores. | [2,22,23,56] |
Intake water | Different natural waters have different bacterial amounts and communities. Treated effluents have been used in some mines. | [21,76,77] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinnunen, P.; Miettinen, H.; Bomberg, M. Review of Potential Microbial Effects on Flotation. Minerals 2020, 10, 533. https://doi.org/10.3390/min10060533
Kinnunen P, Miettinen H, Bomberg M. Review of Potential Microbial Effects on Flotation. Minerals. 2020; 10(6):533. https://doi.org/10.3390/min10060533
Chicago/Turabian StyleKinnunen, Päivi, Hanna Miettinen, and Malin Bomberg. 2020. "Review of Potential Microbial Effects on Flotation" Minerals 10, no. 6: 533. https://doi.org/10.3390/min10060533
APA StyleKinnunen, P., Miettinen, H., & Bomberg, M. (2020). Review of Potential Microbial Effects on Flotation. Minerals, 10(6), 533. https://doi.org/10.3390/min10060533