Molecular Hydrogen in Natural Mayenite
Abstract
:1. Introduction
2. Materials and Methods
3. Results of Investigation
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galuskin, E.V.; Gfeller, F.; Armbruster, T.; Sharygin, V.V.; Galuskina, I.O.; Krivovichev, S.V.; Vapnik, Y.; Murashko, M.; Dzierżanowski, P.; Wirth, R. Mayenite supergroup, part III: Fluormayenite, Ca12Al14O32 [□4F2], and fluorkyuygenite, Ca12Al14O32[(H2O)4F2], two new minerals from pyrometamorphic rocks of the Hatrurim complex, South Levant. Eur. J. Mineral. 2015, 27, 123–136. [Google Scholar] [CrossRef]
- Galuskina, I.O.; Galuskin, E.V.; Prusik, K.; Vapnik, Y.; Juroszek, R.; Jeżak, L.; Murashko, M. Dzierżanowskite, CaCu2S2—A new natural thiocuprate from Jabel Harmun, Judean Desert, Palestine Autonomy, Israel. Mineral. Mag. 2017, 81, 1073–1085. [Google Scholar] [CrossRef]
- Galuskina, I.O.; Gfeller, F.; Galuskin, E.V.; Armbruster, T.; Vapnik, Y.; Dulski, M.; Gardocki, M.; Jeżak, L.; Murashko, M. New minerals with modular structure derived from hatrurite from the pyrometamorphic rocks. Part IV: Dargaite, BaCa12(SiO4)4(SO4)2O3, from Nahal Darga, Palestinian Autonomy. Mineral. Mag. 2019, 83, 81–88. [Google Scholar] [CrossRef]
- Środek, D.; Dulski, M.; Galuskina, I. Raman imaging as a new approach to identification of the mayenite group minerals. Sci. Rep. 2018, 8, 13593. [Google Scholar] [CrossRef]
- Bentor, Y.K. Lexique Stratigraphique International: Asie Fascicule 10 c 2 Israel; Centre National de la Recherche Scientifique: Paris, France, 1960; Volume 3. [Google Scholar]
- Gross, S. The mineralogy of the Hatrurim Formation, Israel. Geol. Surv. Isr. Bull. 1977, 70, 1–80. [Google Scholar]
- Novikov, I.; Vapnik, Y.; Safonova, I. Mud volcano origin of the Mottled Zone, South Levant. Geosci. Front. 2013, 4, 597–619. [Google Scholar] [CrossRef]
- Burg, A.; Starinsky, A.; Bartov, Y.; Kolodny, Y. Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim Basin. Is. J. Earth Sci. 1991, 40, 107–124. [Google Scholar]
- Burg, A.; Kolodny, Y.; Lyakhovsky, V. Hatrurim-2000: The “Mottled Zone” revisited, forty years later. Is. J. Earth Sci. 2000, 48, 209–223. [Google Scholar]
- Sokol, E.; Novikov, I.; Zateeva, S.; Vapnik, Y.; Shagam, R.; Kozmenko, O. Combustion metamorphism inthe Nabi Musa dome: New implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Res. 2010, 22, 414–438. [Google Scholar] [CrossRef]
- Sokol, E.V.; Kozmenko, O.A.; Kokh, S.N.; Vapnik, Y. Gas reservoirs in the Dead Sea area: Evidence from chemistry of combustion metamorphic rocks in Nabi Musa fossil mud volcano. Russ. Geol. Geophys. 2012, 3, 745–762. [Google Scholar] [CrossRef]
- Vapnik, Y.; Novikov, I. Reply to comment of Kolodny, Y.; Burg A. and A. Sneh on “combustion metamorphism in the Nabi Musa dome: New implications for a mud volcano origin of the Mottled Zone, Dead Sea area,” by E. Sokol, I.; Novikov, S. Zateeva, Ye. Vapnik, R. Shagam, O. Kozmenko, Basin Research (2010), 22, 414–438. Basin Res. 2013, 25, 115–120. [Google Scholar]
- Kolodny, Y.; Burg, A.; Sneh, A. Comment on Combustion metamorphism (CM) in the Nabi Musa dome: New implications for a mud volcanic origin of the Mottled Zone, Dead Sea area, by: E. Sokol, I. Novikov, S. Zateeva, Ye. Vapnik, R. Shagamand, O. Kozmenko, Basin Research (2010) 22, 414–438. Basin Res. 2013, 25, 112–114. [Google Scholar] [CrossRef]
- Galuskina, I.O.; Vapnik, Y.; Lazic, B.; Armbruster, T.; Murashko, M.; Galuskin, E.V. Harmunite CaFe2O4—A new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. Am. Mineral. 2014, 99, 965–975. [Google Scholar] [CrossRef]
- Galuskin, E.V.; Gfeller, F.; Galuskina, I.O.; Armbruster, T.; Bailau, R.; Sharygin, V.V. Mayenite supergroup, part I: Recommended nomenclature. Eur. J. Mineral. 2015, 27, 99–111. [Google Scholar] [CrossRef]
- Środek, D.; Dulski, M.; Gałuskina, I.; Gałuskin, E. Raman imaging as a tool for interpretation of structural cages occupation in the mayenite group minerals. Miner. Spec. Pap. 2018, 48, 87. [Google Scholar] [CrossRef]
- Bussem, W.; Eitel, A. Die struktur des pentacalciumtrialuminats. Z. Kristallogr. 1936, 95, 175–188. [Google Scholar] [CrossRef]
- Jeevaratnam, J.; Glasser, L.D.; Glasser, F.P. Structure of calcium aluminate, 12CaO. 7Al2O3. Nature 1962, 194, 764–765. [Google Scholar] [CrossRef]
- Bartl, H. Roentgen-einkristalluntersuchungen an 3(CaO)⋅Al2O3⋅(H2O)6 und 12(CaO)⋅7(Al2O3)⋅(H2O) neuer vorschlag zur 12(CaO)⋅7(Al2O3)-struktur. N. Jb. Miner. Mh. 1969, 404–412. [Google Scholar]
- Gfeller, F. Mayenite Ca12Al14O32[X2−]: From minerals to the first stable electride crystals. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2016. [Google Scholar]
- Salasin, J.R.; Rawn, C. Structure property, relationships and cationic doping in [Ca24Al28O64]4+ framework: A Review. Crystals 2017, 7, 143. [Google Scholar] [CrossRef] [Green Version]
- Boysen, H.; Lerch, M.; Stys, A.; Senyshyn, A. Structure and oxygen mobility in mayenite (Ca12Al14O33): A high-temperature neutron powder diffraction study. Acta Crystallogr. Sect. B Struct. Sci. 2007, B63, 675–682. [Google Scholar] [CrossRef]
- Eufinger, J.-P.; Schmidt, A.; Lerchb, M.; Janek, J. Novel anion conductors – conductivity, thermodynamic stability and hydration of anion substituted mayenite-type cage compounds C12A7:X (X = O, OH, Cl, F, CN, S, N). Phys. Chem. Chem. Phys. 2015, 17, 6844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhmoidin, G.I.; Chatterjee, A.K. Conditions and mechanism of interconvertibility of compounds 12CaO⋅7Al2O3 and 5CaO⋅3Al2O3. Cem. Concr. Res. 1984, 14, 386–396. [Google Scholar] [CrossRef]
- Hayashi, K.; Hirano, M.; Hosono, H. Thermodynamics and kinetics of hydroxide ion formation in 12CaO⋅7Al2O3. J. Phys. Chem. B 2005, 109, 11900–11906. [Google Scholar] [CrossRef]
- Hayashi, K.; Sushko, P.V.; Ramo, D.M.; Shluger, A.L.; Watauchi, S.; Tanaka, I.; Matsuishi, S.; Hirano, M.; Hosono, H. Nanoporous crystal 12CaO⋅7Al2O3: A playground for studies of ultraviolet optical absorption of negative ions. J. Phys. Chem. B 2007, 111, 1946–1956. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Hirano, M.; Matsuishi, S.; Hosono, H. Microporous crystal 12CaO ⋅7Al2O3 encaging abundant O- radicals. J. Am. Chem. Soc. 2002, 124, 738–739. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Matsuishi, S.; Ueda, N.; Hirano, M.; Hosono, H. Maximum Incorporation of oxygen radicals, O− and O2-, into 12CaO ⋅7Al2O3 with a nanoporous structure. Chem. Mater. 2003, 15, 1851–1854. [Google Scholar] [CrossRef]
- Williams, P.P. Refinement of the structure of 11CaO⋅7Al2O3⋅CaF2. Acta Cryst. 1973, B29, 1550–1551. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.; Lerch, M.; Eufinger, J.P.; Janek, J.; Dolle, R.; Wiemhöfer, H.D.; Tranca, I.; Islam, M.M.; Bredow, T.; Boysen, H.; et al. CN-mayenite Ca12Al14O32(CN)2: Replacing mobile oxygen ions by cyanide ions. Solid State Sci. 2014, 38, 69–78. [Google Scholar] [CrossRef]
- Polfus, J.M.; Toyoura, K.; Hervoches, C.H.; Sunding, M.F.; Tanakad, I.; Haugsrud, R. Nitrogen and hydrogen defect equilibria in Ca12Al14O33: A combined experimental and computational study. J. Mater. Chem. 2012, 22, 15828. [Google Scholar] [CrossRef]
- Khan, K.; Tareena, A.K.; Aslamd, M.; Thebo, K.H.; Khanf, U.; Wangb, R.; Shamsh, S.; Hanb, Z.; Ouyanga, Z. A comprehensive review on synthesis of pristine and doped inorganic room temperature stable mayenite electride, [Ca24Al28O64]4+(e−)4 and its applications as a catalyst. Prog. Solid State Chem. 2019, 54, 1–19. [Google Scholar] [CrossRef]
- Sushko, P.V.; Shluger, A.L.; Hayashi, K.; Hirano, M.; Hosono, H. Role of hydrogen atoms in the photoinduced formation of stable electron centers in H-doped 12CaO ⋅7Al2O3. Phys. Rev. B 2006, 73. [Google Scholar] [CrossRef]
- Hayashi, K.; Matsuishi, S.; Kamiya, T.; Hirano, M.; Hosono, H. Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor. Nature 2002, 419, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K. Kinetics of electron decay in hydride ion-doped mayenite. J. Phys. Chem. C 2011, 115, 11003–11009. [Google Scholar] [CrossRef]
- Sushko, P.V.; Shluger, A.L.; Hirano, M.; Hosono, H. From insulator to electride: A theoretical model of Nanoporous Oxide 12CaO⋅7Al2O3. J. Am. C 2007, 129, 942–951. [Google Scholar] [CrossRef]
- Hiraishi, M.; Kojima, K.M.; Miyazaki, M.; Yamauchi, I.; Okabe, H.; Koda, A.; Kadono, R.; Matsuishi, S.; Hosono, H. Cage electron-hydroxyl complex state as electron donor in mayenite. Phys. Rev. B 2016, 93, 121201. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K. Heavy doping of H− ion in 12CaO⋅7Al2O3. J. Sol. State Chem. 2011, 184, 1428–1432. [Google Scholar] [CrossRef]
- Medvedeva, J.E.; Freeman, A.J. Hopping versus bulk conductivity in transparent oxides: 12CaO·7Al2O3. Appl. Phys. Lett. 2004, 85, 955–957. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Liu, Q.; Ragipani, R.; Wang, B. Formation and transport mechanisms of hydrogenous species in mayenite. J. Phys. Chem. C 2020, in press. [Google Scholar] [CrossRef]
- Jiang, D.; Zhao, Z.; Mu, S.; Phaneuf, V.; Tong, J. Insights into the dynamic hydrogenation of mayenite [Ca24Al28O64]4+(O2−)2: Mixed ionic and electronic conduction within the sub-nanometer cages. Inter. J. Hydr. Energ. 2019, 44, 18360–18374. [Google Scholar] [CrossRef]
- Hentschel, G. Mayenit, 12CaO·7Al2O3, und Brownmillerit, 2CaO (Al, Fe)2O3, zwei neue minerale in den Kalksteineinschlussen der Lava des Ettringer Bellerberges. N. Jahrb. Mineral. Mon. 1964, 22–29. [Google Scholar]
- Galuskin, E.V.; Kusz, J.; Armbruster, T.; Bailau, R.; Galuskina, I.O.; Ternes, B.; Murashko, M. A Reinvestigation of mayenite from the type locality, the Ettringer Bellerberg volcano near Mayen, Eifel district, Germany. Mineral. Mag. 2012, 76, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Galuskin, E.V.; Galuskina, I.O.; Kusz, J.; Gfeller, F.; Armbruster, T.; Bailau, R.; Dulski, M.; Gazeev, V.M.; Pertsev, N.N.; Zadov, A.E. Mayenite supergroup, part II: Chlorkyuygenite from Upper Chegem, Northern Caucasus Kabardino-Balkaria, Russia, a new microporous mayenite supergroup mineral with “zeolitic” H2O. Eur. J. Mineral. 2015, 27, 113–122. [Google Scholar] [CrossRef]
- Britvin, S.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V.; Krzhizhanovskaya, M.G.; Gorelova, L.A.; Vereshchagin, O.S.; Shilovskikh, V.V.; Zaitsev, A.N. Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, South Levant. Miner. Petr. 2019, 113, 237–248. [Google Scholar] [CrossRef]
- Britvin, S.V.; Murashko, M.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V. Barringerite Fe2P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geol. Ore Depos. 2017, 59, 619–625. [Google Scholar] [CrossRef]
- Sokol, E.V.; Seryotkin, Y.V.; Kokh, S.N.; Vapnik, Y.; Nigmatulina, E.N.; Goryainov, S.V.; Belogub, E.V.; Sharygin, V.V. Flamite, (Ca,Na,K)2(Si,P)O4, a new mineral from ultrahigh-temperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel. Mineral. Mag. 2015, 79, 583–596. [Google Scholar] [CrossRef]
- Gfeller, F.; Widmer, R.; Krüger, B.; Galuskin, E.V.; Galuskina, I.O.; Armbruster, T. The crystal structure of flamite and its relation to Ca2SiO4 polymorphs and nagelschmidtite. Eur. J. Mineral. 2015, 27, 755–769. [Google Scholar] [CrossRef]
- Kajihara, K.; Matsuishi, S.; Hayashi, K.; Hirano, M.; Hosono, H. Vibrational dynamics and oxygen diffusion in a nanoporous oxide ion conductor 12CaO 7Al2O3 studied by 18O labeling and micro-Raman spectroscopy. J. Phys. Chem. C 2007, 111, 14855–14861. [Google Scholar] [CrossRef]
- Tolkacheva, A.S.; Shkerin, S.N.; Plaksin, S.V.; Vovkotrub, E.G.; Bulanin, K.M.; Kochedykov, V.A.; Ordinartsev, D.P.; Gyrdasova, O.I.; Molchanova, N.G. Synthesis of dense ceramics of single-phase mayenite (Ca12Al14O32)O. Russ. J. Appl. Chem. 2011, 84, 907–911. [Google Scholar] [CrossRef]
- Dulski, M.; Marzec, K.M.; Kusz, J.; Galuskina, I.; Majzner, K.; Galuskin, E. Different route of hydroxide incorporation and thermal stability of new type of water clathrate: X-ray single crystal and Raman investigation. Scien. Rep. 2017, 7, 9046. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Hosono, H.; Hayashi, K. Formation and quantification of peroxide anion in nanocage of 12CaO⋅7Al2O3. RSC Adv. 2013, 40, 18311–18316. [Google Scholar] [CrossRef]
- Gfeller, F.; Środek, D.; Kusz, J.; Dulski, M.; Gazeev, V.; Galuskina, I.; Galuskin, E.; Armbruster, T. Mayenite supergroup, part IV: Crystal structure and Raman investigation of Al-free eltyubyuite from the Shadil-Khokh volcano, Kel’ Plateau, Southern Ossetia, Russia. Eur. J. Mineral. 2015, 27, 137–143. [Google Scholar] [CrossRef]
- Ringwood, A.E. Composition of the core and implications for origin of the earth. Geoch. J. 1977, 11, 111–135. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, D.J. Hydrogen in Earth’s core. Nature 1977, 268, 130–131. [Google Scholar] [CrossRef]
- Wood, B.J. Hydrogen: An important constituent of the core? Science 1977, 268, 130–131. [Google Scholar] [CrossRef]
- Wetherill, G.W. Formation of the Earth. Ann. Rev. Earth Planet. Sci. 1990, 18, 205–256. [Google Scholar] [CrossRef]
- Williams, Q.; Hemley, R.J. Hydrogen in the deep Earth. Ann. Rev. Earth Planet. Sci. 2001, 29, 365–418. [Google Scholar] [CrossRef] [Green Version]
- Galimov, E.M. Redox evolution of the Earth caused by a multi-stage formation of its core. Earth Planet. Sci. Lett. 2005, 233, 263–276. [Google Scholar] [CrossRef]
- Wood, B.J.; Walter, M.J.; Wade, J. Accretion of the Earth and segregation of its core. Nature 2006, 441, 825–833. [Google Scholar] [CrossRef]
- Gilat, A.; Vol, A. Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes. Geosci. Front. 2012, 3, 911–921. [Google Scholar] [CrossRef] [Green Version]
- Rumyantsev, V. N Hydrogen In the Earth’s outer core, and its role in the deep Earth geodynamics. Geodyn. Tectonophys. 2016, 7, 119–135. [Google Scholar] [CrossRef]
- Yang, X.; Keppler, H.; Li, Y. Molecular hydrogen in mantle minerals. Geochem. Persp. Let. 2016, 2, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Persikov, E.S.; Bukhtiyarov, P.G.; Aranovich, L.Y.; Nekrasov, A.N.; Shaposhnikova, O.Y. Experimental modeling of formation of native metals (Fe, Ni, Co) in the Earth’s crust by the interaction of hydrogen with basaltic melts. Geokhimiya 2019, 64, 1015–1025. [Google Scholar]
- Bell, D.R.; Rossman, G.R. Water in earth's mantle: The role of nominally anhydrous minerals. Sciences 1992, 255, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Li, J.; Chou, I.-M. An occurrence of H2 in Silicate melt inclusions in quartz from granite of Jiajika granitic pegmatite deposit, China. In Proceedings of the 11th GeoRaman International Conference, St. Louis, MO, USA, 15–19 June 2014. [Google Scholar]
- Centrone, A.; Siberio-Pérez, D.Y.; Millward, A.R.; Yaghi, O.M.; Matzger, A.J.; Zerbi, G. Raman spectra of hydrogen and deuterium adsorbed on a metal–organic framework. Chem. Phys. Lett. 2005, 411, 516–519. [Google Scholar] [CrossRef]
- Schmidt, B.C.; Holtz, F.M.; Beny, J.-M. Incorporation of H2 in vitreous silica, qualitative and quantitative determination from Raman and infrared spectroscopy. J. Non -Cryst. Solids 1998, 240, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Luth, R.W.; Mysen, B.O.; Virgo, D. Raman spectroscopic study of the solubility behavior of H2 in the system Na2O-Al2O3-SiO2-H2. Am. Mineral. 1987, 72, 481–486. [Google Scholar]
- Palomino, G.T.; Carayol, M.R.L.; Areán, C.O. Hydrogen adsorption on magnesium-exchanged zeolites. J. Mater. Chem. 2006, 16, 2884–2885. [Google Scholar] [CrossRef]
- Arean, C.O.; Palomino, G.T.; Carayol, M.R.L.; Pulido, A.; Rubeš, M.; Bludský, O.; Nachtigall, P. Hydrogen adsorption on the zeolite Ca-A: DFT and FT-IR investigation. Chem. Phys. Lett. 2009, 477, 139–143. [Google Scholar] [CrossRef]
- Bordiga, S.; Lamberti, C.; Bonino, F.; Travert, A.; Thibault-Starzyk, F. Probing zeolites by vibrational spectroscopies. Chem. Soc. Rev. 2015, 44, 7262–7341. [Google Scholar] [CrossRef]
- Libowitzky, E. Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals. Monatsh. Chem. 1999, 130, 1047–1059. [Google Scholar]
- Le Duff, Y.; Holzer, W. Raman scattering of HF in the gas state and in liquid solution. J. Chem. Phys. 1974, 60, 2175–2178. [Google Scholar] [CrossRef]
n = 6 | s.d. | Range | |
---|---|---|---|
SiO2 | 0.49 | 0.01 | 0.47–0.51 |
TiO2 | 0.07 | 0.01 | 0.06–0.07 |
Fe2O3 | 0.37 | 0.04 | 0.34–0.46 |
Al2O3 | 47.31 | 0.13 | 47.11–47.52 |
CaO | 46.03 | 0.33 | 45.28–46.47 |
Na2O | 0.07 | 0.04 | 0.03–0.13 |
F | 2.61 | 0.12 | 2.45–2.80 |
Cl | 0.06 | 0.02 | 0.02–0.08 |
H2S | 0.34 | 0.05 | 0.25–0.39 |
H2O * | 3.93 | ||
-O=F+Cl+S | 1.28 | ||
Total | 100.00 | ||
Calculated on 26 cations | |||
Ca | 12.09 | ||
Na | 0.03 | ||
X | 12.12 | ||
Al | 13.67 | ||
Fe3+ | 0.07 | ||
Si | 0.12 | ||
Ti4+ | 0.01 | ||
T | 12.87 | ||
F | 2.02 | ||
Cl | 0.02 | ||
H2S | 0.15 | ||
H2O | 3.22 | ||
□vac | 0.59 | ||
W | 6.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galuskin, E.; Galuskina, I.; Vapnik, Y.; Murashko, M. Molecular Hydrogen in Natural Mayenite. Minerals 2020, 10, 560. https://doi.org/10.3390/min10060560
Galuskin E, Galuskina I, Vapnik Y, Murashko M. Molecular Hydrogen in Natural Mayenite. Minerals. 2020; 10(6):560. https://doi.org/10.3390/min10060560
Chicago/Turabian StyleGaluskin, Evgeny, Irina Galuskina, Yevgeny Vapnik, and Mikhail Murashko. 2020. "Molecular Hydrogen in Natural Mayenite" Minerals 10, no. 6: 560. https://doi.org/10.3390/min10060560
APA StyleGaluskin, E., Galuskina, I., Vapnik, Y., & Murashko, M. (2020). Molecular Hydrogen in Natural Mayenite. Minerals, 10(6), 560. https://doi.org/10.3390/min10060560