Late Paleozoic–Early Mesozoic Granite Magmatism on the Arctic Margin of the Siberian Craton during the Kara-Siberia Oblique Collision and Plume Events
Abstract
:1. Introduction
2. Tectonic Setting
3. Geology of the Granites
4. Materials—Sampling and Petrography
5. Analytical Methods
5.1. Major and Trace Element Analyses
5.2. U-Pb SIMS Analytical Technique
5.3. Ar-Ar Dating
6. Results
6.1. Major and Trace Element Geochemistry
6.2. Zircons Morphology and Internal Structure
6.3. Zircon U–Pb Dating
6.4. 40Ar/39Ar Dating
7. Discussion
8. Conclusions
- The late Carboniferous–Permian granitoids widely represented in the Kara orogen were formed due to oblique collision of the Siberian paleocontinent and the Kara microcontinent;
- The syncollisional granites (315–282 Ma) were formed in areas of anatectic melting of crustal material and were localized mainly in zones of amphibolite metamorphism and migmatization. They are mostly peraluminous biotite-hornblende granodiorites or porphyroblastic biotite-amphibole and two-mica granites, with characteristics of the calc-alkalic and alkali-calcic magmatic series;
- The postcollisional granites (264–248 Ma) form mainly small stocks intruding metamorphic rocks and syncollisional granites, along with unmetamorphosed Paleozoic cover deposits in the Central Domain. They are biotite-amphibole granodiorites, subalkaline granites, granite-porphyries, quartz syenites and monzonites, weakly peraluminous to weakly metaluminous, and belong to the alkali-calcic and alkalic magmatic series. These rocks are enriched in K and total alkalis and slightly enriched in Ba and Sr.
- The granites of the Kara orogen can be divided into three age groups:
- (a)
- syncollisional late Carboniferous—315–304 Ma;
- (b)
- syncollisional early Permian—287–282 Ma;
- (c)
- postcollisional late Permian—264–248 Ma.
- 5.
- At the same time as the postcollisional magmatism was ending, in the Early Triassic, differentiated and individual intrusions related to the Siberian plume began intruding the lithosphere of the Kara orogen that was well-heated through collisional processes. They are metaluminous monzonites, quartz monzonites and syenites with a mixed crustal-mantle source, characteristic of the calc-alkalic and alkalic magmatic series and are the most enriched in Ba and Sr.
- 6.
- The oblique collision of the Siberian paleocontinent and the Kara microcontinent at the end of the Paleozoic led to the opening of the plumbing system for the magmatic melts of the Siberian plume along the sutures of the Kara orogen and the Yenisei-Khatanga rift because these were the weakest zones. Therefore, this collision became a “trigger” for the outpouring of the Siberian traps at the Permian–Triassic boundary.
- 7.
- The occurrence of Early Triassic dolerite dikes of the Siberian plume traps across the entire orogen (Southern, Central and Northern tectonostratigraphic domains), including Northern Taimyr and Severnaya Zemlya, as well as the existence of Early–Late Triassic syenites and monzonites in northern Taimyr, introduce additional constraints for the paleogeodynamic reconstruction of this region. Our studies show that by the Permian–Triassic boundary, when the Siberian plume magmatism was initiated, the Siberian paleocontinent and the Kara microcontinent had already formed a single unit.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sample No. | Rock Type | GPS Coordinates | Georeference or Pluton Name | Age, Ma |
---|---|---|---|---|
18032 | Granodiorite | N 74°42′57.3” E 86°14′42.0” | Minin cape, Minin pluton | 305 ± 3 |
13103 | Granodiorite | N 75°35′25.23” E 94°26′7.39” | Left bank of Kolomeitseva R., NE trending body parallel to the Kolomeitsev pluton | 309 ± 1 |
204064 | Biotite granodiorite | N 75°24′56.0” E 93°20′27.7” | Upper reaches of Srenk R., NE trending Kolomeitsev pluton | 303 ± 2 |
203004 | Two-mica gneiss-granite | N 75°37′46,6” E 90°52′12,4” | Inland, south of cape Dubinsky and cape Tillo | 287 ± 2 |
203009 | Two-mica leuco-gneiss-granite | N 75°23′03,5” E 91°58′18,1” | Lower reaches of Orientirnaya R., right feeder of Kamennaya R. | 283 ± 1 |
203025 | Plagiorhyolite porphyry | N 75°42′17.56” E 95°39′17.19” | Mouth of Spokoynaya R., right feeder of Kolomeitseva R. | 282 ± 2 |
554 | Biotite-hornblende subalkaline granite | N 76°32′00.3” E 104°26′29.1” | Upper reaches of Tikhaya R., stock of the Pekin complex | 256 ± 5 |
204025/4 | Subalkaline granite | E 75°18′23.56” N 93°58′59.66” | Upper reaches of Shumyashiy creek, Kamenistin pluton, Olenyin complex | 255 ± 2 |
204001 | Subalkaline biotite granite | N 75°25′25.0” E 96°20′19.6” | Volchiy pluton, Olenyin complex | 252 ± 2 |
Appendix B
Sample/Component | 541-7 | 541-1 | 13103 | 18032 | 541-2 | 543-2 | 204064 | 541-4 | 203004 | 203009 | 203025 | 204001 | 204025/4 | 204025/4A | 554 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
SiO2, wt.% | 60.71 | 61.43 | 65.26 | 65.7 | 65.93 | 66.78 | 67.00 | 68.53 | 72.61 | 73.57 | 74.66 | 66.7 | 69.5 | 74.4 | 74.5 |
TiO2 | 0.68 | 0.75 | 0.77 | 0.8 | 0.61 | 0.55 | 0.76 | 0.58 | 0.47 | 0.13 | 0.06 | 0.56 | 0.34 | 0.072 | 0.07 |
Al2O3 | 16.52 | 18.01 | 16.8 | 16.7 | 17 | 16.66 | 15.7 | 15.43 | 14 | 15.4 | 15.7 | 16.6 | 15.5 | 14.2 | 13.2 |
Fe2O3* | 6.3 | 5.46 | 4.46 | 4.40 | 4.27 | 3.63 | 4.68 | 4.26 | 2.81 | 1.42 | 1.08 | 3.23 | 2.66 | 1.06 | 0.81 |
MnO | 0.14 | 0.14 | 0.072 | 0.07 | 0.12 | 0.13 | 0.077 | 0.13 | 0.04 | 0.02 | 0.02 | 0.052 | 0.064 | 0.018 | 0.01 |
MgO | 5.98 | 4.78 | 1.78 | 1.72 | 3.01 | 3.12 | 1.79 | 1.42 | 0.95 | 0.72 | 0.37 | 1.3 | 0.82 | 0.55 | 3.66 |
CaO | 3.44 | 2.09 | 3.52 | 3.76 | 1.29 | 1.08 | 3.14 | 3.03 | 1.39 | 0.96 | 0.22 | 2.5 | 2.11 | 1.56 | 0.96 |
Na2O | 2.92 | 3.93 | 3.98 | 4.39 | 3.17 | 3.64 | 3.24 | 3.15 | 3.17 | 4.01 | 4.81 | 3.9 | 3.58 | 2.94 | 3.66 |
K2O | 2.33 | 2.7 | 1.88 | 1.79 | 3.93 | 3.09 | 2.67 | 2.98 | 3.88 | 3.08 | 2.12 | 4.71 | 4.44 | 5.05 | 5.33 |
P2O5 | 0.25 | 0.25 | 0.36 | 0.21 | 0.2 | 0.29 | 0.25 | 0.17 | 0.17 | 0.13 | 0.05 | 0.17 | 0.12 | <0.05 | 0.05 |
LOI | 0.71 | 0.44 | 0.26 | 0.7 | 0.45 | 0.99 | 0.74 | 0.3 | 0.48 | 0.76 | 1.01 | 0.51 | 0.55 | 0.12 | 0.47 |
Total | 99.98 | 99.98 | 99.5 | 99.7 | 99.98 | 99.96 | 99.827 | 99.99 | 99.81 | 100.18 | 100.03 | 100 | 99.7 | 100 | 102.71 |
Rb. ppm | 45.6 | 28.2 | 61.3 | 57.4 | 30.6 | 54.7 | 78.4 | 30.5 | 138 | 75.3 | 94.1 | 92.3 | 177 | 143 | 234 |
Sr | 716 | 801 | 486 | 605 | 676 | 513 | 467 | 449 | 107 | 115 | 80.1 | 488 | 256 | 265 | 87.9 |
Y | 14.1 | 10.80 | 15.5 | 17.2 | 6.58 | 11.2 | 16.6 | 8.49 | 22.9 | 8.52 | 19.5 | 24.2 | 8.60 | 2.67 | 14.5 |
Zr | 35.5 | 27.5 | 174 | 211 | 52.5 | 86.7 | 245 | 78.1 | 138 | 37.9 | 46.0 | 330 | 149 | 56.0 | 68.8 |
Nb | 6.19 | 5.05 | 9.26 | 11.3 | 6.71 | 13.0 | 9.64 | 6.97 | 11.9 | 4.36 | 16.7 | 19.8 | 10.4 | 3.13 | 22.1 |
Cs | 1.76 | 1.15 | 2.81 | 2.24 | - | - | 1.53 | - | 3.29 | 1.31 | 2.16 | 1.79 | 4.88 | 2.13 | - |
Ba | 596 | 1150 | 701 | 820 | 1620 | 1290 | 780 | 790 | 280 | 219 | 58.3 | 1360 | 723 | 1020 | 199 |
La | 19.3 | 20.6 | 21.7 | 18.7 | 31.7 | 16.4 | 49.1 | 27.6 | 28.1 | 8.24 | 6.70 | 96.2 | 24.3 | 7.81 | 11.3 |
Ce | 42.0 | 33.6 | 44.8 | 39.0 | 48.1 | 32.2 | 93.4 | 49.3 | 60.5 | 18.0 | 13.7 | 172 | 47.8 | 14.1 | 23.1 |
Pг | 5.35 | 5.55 | 5.67 | 4.44 | 7.43 | 4.33 | 9.87 | 6.61 | 7.21 | 2.15 | 1.73 | 17.0 | 4.30 | 1.39 | 2.45 |
Nd | 20.5 | 22.7 | 23.2 | 18.5 | 28.7 | 17.1 | 35.6 | 24.7 | 28.4 | 8.56 | 6.67 | 57.5 | 14.1 | 4.39 | 8.17 |
Sm | 3.77 | 4.07 | 5.14 | 4.64 | 4.76 | 3.65 | 6.29 | 4.02 | 6.33 | 2.04 | 2.27 | 8.01 | 2.62 | 0.84 | 1.65 |
Eu | 1.05 | 1.32 | 1.47 | 1.38 | 1.34 | 1.34 | 1.14 | 1.08 | 0.64 | 0.36 | 0.38 | 1.74 | 0.68 | 0.44 | 0.25 |
Gd | 3.53 | 3.46 | 4.71 | 3.56 | 3.73 | 3.65 | 5.09 | 3.20 | 5.17 | 1.87 | 2.34 | 6.86 | 2.16 | 0.53 | 1.59 |
Tb | 0.55 | 0.48 | 0.58 | 0.55 | 0.41 | 0.55 | 0.58 | 0.42 | 0.79 | 0.26 | 0.46 | 0.85 | 0.26 | 0.09 | 0.27 |
Dy | 2.76 | 2.40 | 3.19 | 3.02 | 1.54 | 2.39 | 2.97 | 1.85 | 4.18 | 1.76 | 3.06 | 4.30 | 1.23 | 0.42 | 1.73 |
Ho | 0.61 | 0.55 | 0.61 | 0.65 | 0.29 | 0.44 | 0.66 | 0.34 | 0.82 | 0.28 | 0.66 | 0.93 | 0.31 | 0.09 | 0.36 |
Er | 1.55 | 1.31 | 1.38 | 1.71 | 0.75 | 1.04 | 1.58 | 0.85 | 2.16 | 0.77 | 1.65 | 2.33 | 0.81 | 0.24 | 1.41 |
Tm | 0.23 | 0.18 | 0.23 | 0.28 | 0.11 | 0.16 | 0.24 | 0.13 | 0.33 | 0.13 | 0.28 | 0.38 | 0.13 | 0.05 | 0.27 |
Yb | 1.33 | 1.15 | 1.29 | 1.23 | 0.83 | 0.94 | 1.57 | 0.84 | 2.13 | 0.74 | 1.93 | 2.28 | 0.97 | 0.27 | 1.91 |
Lu | 0.19 | 0.17 | 0.19 | 0.24 | 0.09 | 0.14 | 0.20 | 0.12 | 0.34 | 0.14 | 0.27 | 0.36 | 0.16 | 0.06 | 0.31 |
Hf | 1.19 | 0.94 | 4.75 | 5.20 | 1.31 | 2.15 | - | 2.27 | 4.26 | 1.35 | 2.42 | 6.79 | - | - | 3.01 |
Ta | 0.29 | 0.30 | 0.52 | 0.85 | 0.76 | 0.75 | 0.56 | 0.26 | 0.84 | 0.53 | 2.16 | 1.95 | 0.61 | 0.19 | 2.68 |
Th | 3.84 | 2.07 | 6.04 | 8.70 | 4.14 | 3.86 | 11.4 | 5.57 | 21.1 | 3.11 | 10.7 | 16.2 | 15.8 | 2.67 | 19.0 |
U | 2.25 | 0.35 | 1.84 | 1.73 | 0.79 | 1.42 | 1.83 | 0.90 | 4.46 | 3.83 | 7.74 | 1.95 | 2.63 | 0.81 | 8.19 |
Na2O + K2O | 5.25 | 6.63 | 5.86 | 6.18 | 7.10 | 6.73 | 5.91 | 6,13 | 7.05 | 7.09 | 6.93 | 8.61 | 8.02 | 7.99 | 8.99 |
Na2O/K2O | 1.25 | 1.46 | 2.12 | 2.45 | 0.81 | 1.18 | 1.21 | 1,06 | 0.82 | 1.30 | 2.27 | 0.83 | 0.81 | 0.58 | 0.69 |
(La/Yb)N | 9.79 | 12.09 | 11.35 | 10.26 | 25.84 | 11.79 | 21.11 | 22.10 | 8.90 | 7.52 | 2.34 | 28.48 | 16.91 | 19.52 | 3.99 |
Eu/Eu* | 0.88 | 1.08 | 0.91 | 1.04 | 0.97 | 1.12 | 0.62 | 0.92 | 0.34 | 0.56 | 0.50 | 0.72 | 0.87 | 2.02 | 0.47 |
Σ REE | 102.72 | 97.54 | 114.16 | 97.90 | 129.78 | 79.34 | 208.29 | 121.06 | 147.10 | 45.30 | 42.10 | 370.74 | 99.83 | 30.72 | 54.77 |
Appendix C
Spot No. | Content, ppm | Isotope ratios | Err. Corr. | Age (Ma) (1) 206Pb/238U (±%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
U | Th | 206Pb* | 232Th/238U | % 206Pbc | (1) 238U/206Pb*(±%) | (1) 207Pb*/206Pb*(±%) | (1) 207Pb*/235U(±%) | (1) 206Pb*/238U(±%) | |||
Sample 13103 (concordia age = 309 ± 1 Ma, MSWD (concordance) = 0.79, probability = 0.38) | |||||||||||
3.1 | 788 | 472 | 31.1 | 0.62 | 0.22 | 21.82 ± 0.71 | 0.0559 ± 5 | 0.353 ± 5 | 0.04582 ± 0.71 | 0.142 | 288.8 ± 2 |
9.1 | 1693 | 283 | 72.3 | 0.17 | 1.96 | 20.51 ± 0.63 | 0.0504 ± 5.8 | 0.339 ± 5.8 | 0.04874 ± 0.63 | 0.108 | 306.8 ± 1.9 |
10.1 | 1588 | 239 | 69.3 | 0.16 | 3.57 | 20.42 ± 0.74 | 0.0507 ± 9 | 0.342 ± 9.1 | 0.04893 ± 0.74 | 0.082 | 307.9 ± 2.2 |
1.1 | 1046 | 262 | 44.3 | 0.26 | 0.63 | 20.42 ± 0.57 | 0.0541 ± 4.4 | 0.365 ± 4.5 | 0.04895 ± 0.57 | 0.129 | 308.1 ± 1.7 |
7.1 | 1326 | 191 | 56.2 | 0.15 | 0.42 | 20.35 ± 0.56 | 0.0487 ± 4.8 | 0.33 ± 4.8 | 0.04914 ± 0.56 | 0.115 | 309.2 ± 1.7 |
6.1 | 1804 | 294 | 76.3 | 0.17 | 0.10 | 20.34 ± 0.52 | 0.05157 ± 1.8 | 0.3495 ± 1.8 | 0.04916 ± 0.52 | 0.283 | 309.3 ± 1.6 |
4.1 | 1473 | 203 | 62.6 | 0.14 | 0.41 | 20.29 ± 0.56 | 0.0516 ± 2.7 | 0.3509 ± 2.8 | 0.04929 ± 0.56 | 0.199 | 310.2 ± 1.7 |
8.1 | 1963 | 442 | 86.8 | 0.23 | 4.08 | 20.25 ± 0.8 | 0.0493 ± 11 | 0.335 ± 11 | 0.04934 ± 0.8 | 0.075 | 310.4 ± 2.4 |
5.1 | 1750 | 274 | 74.1 | 0.16 | – | 20.27 ± 0.51 | 0.05318 ± 1.5 | 0.3618 ± 1.6 | 0.04934 ± 0.51 | 0.325 | 310.5 ± 1.6 |
2.1 | 1611 | 298 | 68.7 | 0.19 | 0.50 | 20.252 ± 0.48 | 0.0508 ± 5.2 | 0.346 ± 5.2 | 0.04937 ± 0.48 | 0.092 | 310.7 ± 1.5 |
Sample 18032 (concordia age = 305 ± 3 Ma, MSWD (concordance) = 0.58, probability = 0.38) | |||||||||||
5.1 | 522 | 74 | 21.4 | 0.15 | 1.03 | 21.15 ± 1.4 | 0.0508 ± 7.4 | 0.331 ± 7.5 | 0.04727 ± 1.4 | 0.192 | 298 ± 4.2 |
9.1 | 811 | 160 | 33.2 | 0.20 | 0.70 | 21.11 ± 1.3 | 0.0527 ± 5 | 0.344 ± 5.1 | 0.04737 ± 1.3 | 0.252 | 298 ± 3.8 |
7.2 | 831 | 180 | 34.4 | 0.22 | 0.66 | 20.9 ± 1.3 | 0.051 ± 4.9 | 0.336 ± 5.1 | 0.04784 ± 1.3 | 0.254 | 301 ± 3.8 |
7.1 | 623 | 163 | 25.9 | 0.27 | 0.67 | 20.82 ± 1.4 | 0.0541 ± 5.2 | 0.358 ± 5.4 | 0.04803 ± 1.4 | 0.251 | 302 ± 4.0 |
8.1 | 898 | 161 | 37.5 | 0.19 | 0.75 | 20.73 ± 1.3 | 0.0513 ± 5.2 | 0.341 ± 5.3 | 0.04823 ± 1.3 | 0.237 | 304 ± 3.8 |
1.1 | 789 | 122 | 33.0 | 0.16 | 0.38 | 20.62 ± 1.3 | 0.0515 ± 4.9 | 0.344 ± 5 | 0.0485 ± 1.3 | 0.258 | 305 ± 3.9 |
4.1 | 953 | 213 | 40.5 | 0.23 | 0.70 | 20.35 ± 1.3 | 0.053 ± 4.7 | 0.359 ± 4.9 | 0.04913 ± 1.3 | 0.257 | 309 ± 3.8 |
2.1 | 901 | 205 | 38.1 | 0.23 | 0.21 | 20.33 ± 1.2 | 0.0508 ± 2.9 | 0.345 ± 3.1 | 0.04918 ± 1.2 | 0.398 | 310 ± 3.8 |
3.1 | 815 | 142 | 35.3 | 0.18 | 2.08 | 20.24 ± 1.3 | 0.053 ± 7.3 | 0.361 ± 7.4 | 0.04938 ± 1.3 | 0.179 | 311 ± 4.0 |
6.1 | 1004 | 146 | 42.9 | 0.15 | 0.27 | 20.17 ± 1.2 | 0.0525 ± 3.1 | 0.359 ± 3.3 | 0.04959 ± 1.2 | 0.363 | 312 ± 3.7 |
Sample 204064 (concordia age = 303 ± 2 Ma, MSWD (concordance) = 4.4, probability = 0.036) | |||||||||||
1.1 | 261 | 112 | 84.7 | 0.44 | 0.09 | 2.653 ± 0.87 | 0.1267 ± 0.8 | 6.585 ± 1.2 | 0.3768 ± 0.87 | 0.735 | 2061 ± 15 |
2.1 | 1166 | 143 | 48.6 | 0.13 | 0.37 | 20.69 ± 0.79 | 0.049 ± 2.9 | 0.3268 ± 3 | 0.04833 ± 0.79 | 0.260 | 304.3 ± 2.3 |
3.1 | 231 | 74 | 9.48 | 0.33 | 0.00 | 20.96 ± 1.1 | 0.0516 ± 3.2 | 0.339 ± 3.4 | 0.04771 ± 1.1 | 0.324 | 300.5 ± 3.2 |
4.1 | 666 | 222 | 27.7 | 0.35 | 0.18 | 20.7 ± 0.85 | 0.0499 ± 2.5 | 0.3325 ± 2.7 | 0.0483 ± 0.85 | 0.321 | 304.1 ± 2.5 |
5.1 | 328 | 175 | 13.6 | 0.55 | 0.00 | 20.7 ± 0.99 | 0.055 ± 2.6 | 0.366 ± 2.8 | 0.04831 ± 0.99 | 0.355 | 304.1 ± 3 |
6.1 | 537 | 173 | 22 | 0.33 | 0.16 | 20.98 ± 0.89 | 0.0537 ± 2.6 | 0.353 ± 2.7 | 0.04766 ± 0.89 | 0.329 | 300.1 ± 2.6 |
7.1 | 354 | 300 | 14.6 | 0.87 | 0.36 | 20.93 ± 1 | 0.0488 ± 5.8 | 0.321 ± 5.9 | 0.04778 ± 1 | 0.173 | 300.9 ± 3 |
8.1 | 402 | 190 | 16.7 | 0.49 | 0.53 | 20.74 ± 1.1 | 0.0522 ± 8.6 | 0.347 ± 8.7 | 0.04821 ± 1.1 | 0.124 | 303.5 ± 3.2 |
9.1 | 503 | 184 | 20.9 | 0.38 | 0.20 | 20.71 ± 0.92 | 0.0504 ± 3.9 | 0.335 ± 4 | 0.04828 ± 0.92 | 0.230 | 304 ± 2.7 |
10.1 | 493 | 201 | 20.5 | 0.42 | 0.30 | 20.76 ± 0.92 | 0.0498 ± 3.7 | 0.331 ± 3.8 | 0.04816 ± 0.92 | 0.245 | 303.2 ± 2.7 |
10.RE | 230 | 153 | 9.56 | 0.69 | 0.03 | 20.72 ± 1.1 | 0.0507 ± 3.3 | 0.337 ± 3.4 | 0.04826 ± 1.1 | 0.322 | 303.8 ± 3.3 |
Sample 203004 (concordia age = 287 ± 3 Ma, MSWD (concordance) = 0.26, probability = 0.61) | |||||||||||
5.1r | 3616 | 263 | 177 | 0.08 | 21.57 | 22.32 ± 1.4 | 0.056 ± 19 | 0.339 ± 19 | 0.04433 ± 1.4 | 0.077 | 279.6 ± 3.9 |
8.1c | 1219 | 506 | 62.2 | 0.43 | 24.25 | 22.23 ± 2.6 | 0.06 ± 38 | 0.36 ± 38 | 0.0442 ± 2.6 | 0.068 | 279 ± 7.1 |
6.1r | 2008 | 212 | 95.8 | 0.11 | 19.73 | 22.43 ± 1.2 | 0.048 ± 20 | 0.294 ± 20 | 0.04451 ± 1.2 | 0.059 | 280.7 ± 3.2 |
1.2r | 2336 | 276 | 115 | 0.12 | 22.07 | 22.35 ± 1.2 | 0.0473 ± 19 | 0.291 ± 19 | 0.04468 ± 1.2 | 0.062 | 281.8 ± 3.3 |
3.1r | 2312 | 718 | 106 | 0.32 | 13.97 | 21.85 ± 1 | 0.0624 ± 12 | 0.389 ± 12 | 0.04531 ± 1 | 0.084 | 285.7 ± 2.9 |
2.1c | 192 | 81 | 7.51 | 0.43 | 0.00 | 21.93 ± 1.2 | 0.0522 ± 3.5 | 0.328 ± 3.7 | 0.04559 ± 1.2 | 0.311 | 287.4 ± 3.3 |
1.1c | 696 | 520 | 27.7 | 0.77 | 1.14 | 21.84 ± 0.95 | 0.0529 ± 8.4 | 0.334 ± 8.5 | 0.04578 ± 0.95 | 0.112 | 288.6 ± 2.7 |
9.1c | 1693 | 260 | 76.5 | 0.16 | 12.26 | 21.67 ± 1 | 0.0597 ± 12 | 0.376 ± 12 | 0.0458 ± 1 | 0.087 | 288.7 ± 2.9 |
7.1c | 1626 | 370 | 80.6 | 0.23 | 17.57 | 21.04 ± 2 | 0.06 ± 25 | 0.389 ± 25 | 0.04699 ± 2 | 0.081 | 296 ± 5.9 |
4.1c | 622 | 585 | 25.9 | 0.97 | 0.23 | 20.65 ± 0.82 | 0.0522 ± 2.9 | 0.348 ± 3 | 0.04842 ± 0.82 | 0.276 | 304.8 ± 2.4 |
Sample 203009 (concordia age = 283 ± 1 Ma, MSWD (concordance) = 0.16, probability = 0.69) | |||||||||||
8.1 | 1729 | 5 | 127 | 0.003 | 47.63 | 22.38 ± 2.2 | 0.073 ± 22 | 0.441 ± 22 | 0.04373 ± 2.2 | 0.098 | 275.9 ± 5.8 |
4.1 | 2363 | 2 | 97.6 | 0.001 | 7.04 | 22.37 ± 0.7 | 0.0555 ± 5.1 | 0.341 ± 5.1 | 0.04462 ± 0.7 | 0.137 | 281.4 ± 1.9 |
2.1 | 2420 | 21 | 95.1 | 0.009 | 2.14 | 22.35 ± 0.67 | 0.0496 ± 3.2 | 0.3057 ± 3.3 | 0.04473 ± 0.67 | 0.206 | 282.1 ± 1.9 |
6.1 | 1371 | 1 | 56.2 | 0.001 | 6.04 | 22.32 ± 0.77 | 0.0477 ± 7.7 | 0.294 ± 7.7 | 0.04473 ± 0.77 | 0.100 | 282.1 ± 2.1 |
9.1 | 1778 | 1 | 68.6 | 0.001 | 0.14 | 22.31 ± 0.66 | 0.0525 ± 1.7 | 0.3244 ± 1.8 | 0.04481 ± 0.66 | 0.367 | 282.6 ± 1.8 |
7.1 | 2890 | 3 | 121 | 0.001 | 7.79 | 22.25 ± 0.69 | 0.0509 ± 6 | 0.315 ± 6 | 0.04486 ± 0.69 | 0.115 | 282.9 ± 1.9 |
3.1 | 3191 | 9 | 125 | 0.003 | 1.40 | 22.27 ± 0.63 | 0.0519 ± 2 | 0.3213 ± 2.1 | 0.04488 ± 0.63 | 0.301 | 283 ± 1.8 |
1.1 | 1980 | 2 | 78.2 | 0.001 | 1.95 | 22.2 ± 0.67 | 0.0502 ± 3 | 0.3114 ± 3.1 | 0.04503 ± 0.67 | 0.216 | 283.9 ± 1.9 |
10.1 | 1133 | 3 | 48.6 | 0.003 | 9.19 | 22.08 ± 0.85 | 0.0455 ± 9.1 | 0.283 ± 9.1 | 0.04518 ± 0.85 | 0.093 | 284.9 ± 2.4 |
5.1 | 3200 | 2 | 124 | 0.001 | 0.04 | 22.09 ± 0.62 | 0.05204 ± 0.97 | 0.3248 ± 1.2 | 0.04527 ± 0.62 | 0.536 | 285.4 ± 1.7 |
Sample 203025 (concordia age = 282 ± 2 Ma, MSWD (concordance) = 1.2, probability = 0.26) | |||||||||||
2.1 | 1061 | 594 | 40.6 | 0.58 | 0.25 | 22.5 ± 0.65 | 0.0508 ± 2.1 | 0.311 ± 2.2 | 0.04444 ± 0.65 | 0.302 | 280.3 ± 1.8 |
5.1 | 710 | 250 | 27.3 | 0.36 | 0.47 | 22.48 ± 0.74 | 0.0506 ± 3.4 | 0.311 ± 3.4 | 0.04448 ± 0.74 | 0.215 | 280.6 ± 2 |
4.2 | 1361 | 476 | 52.6 | 0.36 | 0.91 | 22.45 ± 0.67 | 0.0511 ± 3.1 | 0.3141 ± 3.1 | 0.04454 ± 0.67 | 0.213 | 280.9 ± 1.8 |
3.1 | 999 | 566 | 38.3 | 0.59 | 0.04 | 22.4 ± 0.66 | 0.05132 ± 1.7 | 0.3159 ± 1.9 | 0.04464 ± 0.66 | 0.356 | 281.6 ± 1.8 |
6.1 | 1275 | 579 | 49.9 | 0.47 | 1.43 | 22.28 ± 0.78 | 0.0508 ± 3.7 | 0.314 ± 3.8 | 0.04488 ± 0.78 | 0.205 | 283 ± 2.1 |
1.1 | 400 | 97 | 15.5 | 0.25 | 0.18 | 22.19 ± 0.84 | 0.052 ± 3.1 | 0.323 ± 3.2 | 0.04507 ± 0.84 | 0.266 | 284.2 ± 2.3 |
4.1 | 1209 | 577 | 47.2 | 0.49 | 0.09 | 22.05 ± 0.64 | 0.05217 ± 1.6 | 0.3262 ± 1.7 | 0.04535 ± 0.64 | 0.369 | 285.9 ± 1.8 |
Sample 554 (concordia age = 256 ± 5 Ma, MSWD (concordance) = 0.36, probability = 0.55) | |||||||||||
1.1 | 403 | 718 | 13.8 | 1.84 | 1.72 | 25.46 ± 2.8 | 0.051 ± 13 | 0.276 ± 13 | 0.0393 ± 2.8 | 0.213 | 248.3 ± 6.8 |
1.2 | 226 | 378 | 7.84 | 1.73 | – | 24.52 ± 2.9 | 0.06 ± 11 | 0.338 ± 12 | 0.0408 ± 2.9 | 0.253 | 257.8 ± 7.4 |
2.1 | 287 | 228 | 10 | 0.82 | 0.00 | 24.69 ± 2.7 | 0.0509 ± 3.5 | 0.284 ± 4.4 | 0.0405 ± 2.7 | 0.614 | 256 ± 6.8 |
2.2 | 299 | 262 | 10.1 | 0.91 | 1.32 | 25.63 ± 2.8 | 0.0571 ± 9.4 | 0.307 ± 9.8 | 0.039 ± 2.8 | 0.287 | 246.6 ± 6.8 |
3.1 | 245 | 290 | 8.48 | 1.22 | 0.40 | 24.96 ± 2.8 | 0.0472 ± 7.9 | 0.261 ± 8.4 | 0.0401 ± 2.8 | 0.335 | 253.2 ± 6.9 |
3.2 | 115 | 153 | 4.2 | 1.38 | 1.17 | 23.72 ± 3.1 | 0.0461 ± 15 | 0.268 ± 15 | 0.0422 ± 3.1 | 0.204 | 266.2 ± 8.1 |
4.1 | 185 | 252 | 6.6 | 1.41 | 1.49 | 24.5 ± 2.9 | 0.0445 ± 15 | 0.25 ± 15 | 0.0408 ± 2.9 | 0.193 | 257.9 ± 7.5 |
5.1 | 201 | 255 | 7.01 | 1.31 | 0.12 | 24.64 ± 2.8 | 0.057 ± 4.4 | 0.319 ± 5.3 | 0.0406 ± 2.8 | 0.535 | 256.5 ± 7.1 |
5.2 | 310 | 273 | 11.3 | 0.91 | 1.18 | 23.95 ± 2.8 | 0.0485 ± 9.6 | 0.279 ± 10 | 0.0417 ± 2.8 | 0.284 | 263.6 ± 7.3 |
6.1 | 70 | 77 | 2.54 | 1.14 | 3.49 | 24.54 ± 4 | 0.068 ± 27 | 0.38 ± 28 | 0.0406 ± 4 | 0.146 | 257 ± 10 |
Sample 204025-4 (concordia age = 255 ± 2 Ma, MSWD (concordance) = 3.5, probability = 0.062) | |||||||||||
1.1 | 239 | 323 | 8.38 | 1.39 | 0.31 | 24.6 ± 1.1 | 0.0491 ± 4.6 | 0.275 ± 4.8 | 0.04065 ± 1.1 | 0.235 | 256.9 ± 2.8 |
2.1 | 1257 | 494 | 43.8 | 0.41 | 0.02 | 24.68 ± 0.76 | 0.05128 ± 1.5 | 0.2865 ± 1.7 | 0.04052 ± 0.76 | 0.461 | 256.1 ± 1.9 |
3.1 | 889 | 573 | 31.1 | 0.67 | 0.34 | 24.64 ± 0.94 | 0.0489 ± 3.1 | 0.2739 ± 3.3 | 0.04058 ± 0.94 | 0.287 | 256.4 ± 2.4 |
4.1 | 682 | 346 | 23.6 | 0.52 | 0.00 | 24.85 ± 0.85 | 0.0511 ± 2 | 0.2835 ± 2.2 | 0.04025 ± 0.85 | 0.384 | 254.4 ± 2.1 |
5.1 | 366 | 173 | 12.7 | 0.49 | 0.00 | 24.63 ± 0.99 | 0.0558 ± 5.5 | 0.312 ± 5.6 | 0.04059 ± 0.99 | 0.177 | 256.5 ± 2.5 |
6.1 | 134 | 79 | 4.63 | 0.61 | 0.00 | 24.9 ± 1.4 | 0.0519 ± 4.6 | 0.287 ± 4.8 | 0.04017 ± 1.4 | 0.287 | 253.9 ± 3.4 |
7.1 | 497 | 335 | 17.1 | 0.70 | 0.00 | 24.95 ± 0.91 | 0.0492 ± 2.5 | 0.2718 ± 2.6 | 0.04008 ± 0.91 | 0.346 | 253.4 ± 2.3 |
8.1 | 441 | 294 | 15.2 | 0.69 | 0.17 | 24.97 ± 0.95 | 0.0493 ± 3.1 | 0.2723 ± 3.3 | 0.04005 ± 0.95 | 0.290 | 253.1 ± 2.3 |
9.1 | 244 | 292 | 8.57 | 1.24 | 0.32 | 24.49 ± 1.1 | 0.048 ± 4.8 | 0.27 ± 4.9 | 0.04083 ± 1.1 | 0.230 | 258 ± 2.9 |
10.1 | 307 | 198 | 10.6 | 0.67 | 0.25 | 24.93 ± 1 | 0.0507 ± 3.9 | 0.28 ± 4 | 0.04011 ± 1 | 0.260 | 253.5 ± 2.6 |
Sample 204001 (concordia age = 252 ± 2 Ma, MSWD (concordance) = 0.099, probability = 0.75) | |||||||||||
1.1 | 509 | 412 | 17.2 | 0.84 | – | 25.44 ± 0.73 | 0.0531 ± 3.2 | 0.2877 ± 3.3 | 0.03931 ± 0.73 | 0.222 | 248.6 ± 1.8 |
2.1 | 106 | 166 | 3.62 | 1.61 | 0.00 | 25.27 ± 1.1 | 0.0495 ± 3.2 | 0.2701 ± 3.4 | 0.03956 ± 1.1 | 0.315 | 250.1 ± 2.6 |
3.1 | 130 | 102 | 4.51 | 0.81 | 1.15 | 24.99 ± 1.1 | 0.0586 ± 5.8 | 0.323 ± 5.9 | 0.04001 ± 1.1 | 0.185 | 252.9 ± 2.7 |
4.1 | 279 | 264 | 9.4 | 0.98 | 0.00 | 25.47 ± 0.85 | 0.0496 ± 2.2 | 0.2686 ± 2.4 | 0.03926 ± 0.85 | 0.355 | 248.2 ± 2.1 |
5.1 | 350 | 402 | 12 | 1.19 | 0.25 | 25.03 ± 0.78 | 0.0527 ± 2.7 | 0.2903 ± 2.8 | 0.03995 ± 0.78 | 0.283 | 252.5 ± 1.9 |
6.1 | 328 | 262 | 11 | 0.82 | 0.00 | 25.57 ± 0.77 | 0.0525 ± 1.9 | 0.2831 ± 2.1 | 0.0391 ± 0.77 | 0.375 | 247.3 ± 1.9 |
7.1 | 158 | 137 | 5.41 | 0.90 | 0.00 | 25.07 ± 0.99 | 0.0525 ± 2.8 | 0.2888 ± 2.9 | 0.03989 ± 0.99 | 0.336 | 252.2 ± 2.5 |
8.1 | 1080 | 1337 | 37.2 | 1.28 | 0.12 | 25.01 ± 0.62 | 0.05114 ± 1.8 | 0.2819 ± 1.9 | 0.03999 ± 0.62 | 0.335 | 252.8 ± 1.5 |
9.1 | 177 | 187 | 6.03 | 1.09 | 0.27 | 25.34 ± 1 | 0.0537 ± 3.9 | 0.292 ± 4 | 0.03946 ± 1 | 0.250 | 249.5 ± 2.5 |
10.1 | 258 | 337 | 8.85 | 1.35 | 0.77 | 25.27 ± 0.91 | 0.0493 ± 4.7 | 0.269 ± 4.8 | 0.03956 ± 0.91 | 0.188 | 250.1 ± 2.2 |
10.1RE | 422 | 911 | 14.6 | 2.23 | 0.43 | 24.97 ± 0.76 | 0.0499 ± 2.8 | 0.2757 ± 2.9 | 0.04004 ± 0.76 | 0.256 | 253.1 ± 1.9 |
9.1RE | 247 | 281 | 8.73 | 1.18 | 3.35 | 25.1 ± 1.2 | 0.0503 ± 13 | 0.276 ± 13 | 0.03981 ± 1.2 | 0.093 | 251.6 ± 2.9 |
Appendix D
T0C | t (min) | 40Ar(STP)* | 40Ar/39Ar | ±1σ | 38Ar/39Ar | ±1σ | 37Ar/39Ar | ±1σ | 36Ar/39Ar | ±1σ | Ca/K | ∑39Ar (%) | Age (Ma)±1σ | ±1σ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample 541-7, amphibole, J** = 0.004126 ± 0.000045, Total fusion age = 259.6 ± 2.7 Ma (including J); Weighted Mean Plateau Age (800–1100 °C) = 259.3 ± 2.6 Ma (including J) | ||||||||||||||
400 | 10 | 58.8 × 10−9 | 962.202 | 23.376 | 0.6997 | 0.0347 | 301.4 | 302.4 | 3.0682 | 0.0776 | 538.0 | 0.1 | 372.3 | 42.7 |
500 | 10 | 52.3 × 10−9 | 97.486 | 0.356 | 0.0982 | 0.0035 | 23.8 | 23.9 | 0.2115 | 0.0032 | 42.5 | 1.4 | 243.3 | 6.4 |
600 | 10 | 113.2 × 10−9 | 82.677 | 0.197 | 0.0638 | 0.0011 | 35.9 | 19.6 | 0.1478 | 0.0013 | 64.0 | 4.7 | 269.3 | 3.6 |
650 | 10 | 75.6 × 10−9 | 61.450 | 0.114 | 0.0456 | 0.0013 | 31.7 | 19.5 | 0.0814 | 0.0019 | 56.6 | 7.6 | 258.9 | 4.5 |
700 | 10 | 70.6 × 10−9 | 62.033 | 0.101 | 0.0459 | 0.0026 | 11.2 | 11.3 | 0.0762 | 0.0019 | 20.1 | 10.3 | 272.4 | 4.5 |
750 | 10 | 81.7 × 10−9 | 69.017 | 0.148 | 0.0513 | 0.0018 | 10.8 | 10.8 | 0.1088 | 0.0020 | 19.3 | 13.1 | 255.4 | 4.6 |
800 | 10 | 70.3 × 10−9 | 56.862 | 0.228 | 0.0405 | 0.0020 | 10.3 | 8.7 | 0.0645 | 0.0014 | 18.5 | 16.1 | 261.6 | 3.9 |
850 | 10 | 89.2 × 10−9 | 51.503 | 0.095 | 0.0416 | 0.0013 | 20.6 | 17.7 | 0.0464 | 0.0013 | 36.9 | 20.2 | 261.4 | 3.7 |
900 | 10 | 104.1 × 10−9 | 45.611 | 0.077 | 0.0509 | 0.0006 | 14.5 | 12.5 | 0.0262 | 0.0006 | 25.9 | 25.6 | 261.9 | 2.9 |
950 | 10 | 270.3 × 10−9 | 42.614 | 0.035 | 0.0710 | 0.0003 | 18.1 | 4.0 | 0.0150 | 0.0004 | 32.2 | 40.7 | 263.9 | 2.7 |
975 | 10 | 344.4 × 10−9 | 40.258 | 0.059 | 0.0803 | 0.0003 | 3.8 | 3.0 | 0.0101 | 0.0002 | 6.7 | 61.0 | 258.1 | 2.6 |
1000 | 10 | 314.7 × 10−9 | 39.243 | 0.094 | 0.0826 | 0.0003 | 7.3 | 3.6 | 0.0088 | 0.0001 | 13.1 | 80.1 | 253.9 | 2.6 |
1025 | 10 | 141.1 × 10−9 | 41.104 | 0.051 | 0.0873 | 0.0008 | 7.7 | 7.7 | 0.0155 | 0.0008 | 13.7 | 88.3 | 253.3 | 3.0 |
1050 | 10 | 58.2 × 10−9 | 49.762 | 0.116 | 0.0952 | 0.0012 | 34.1 | 20.0 | 0.0404 | 0.0008 | 60.9 | 91.1 | 261.6 | 3.1 |
1075 | 10 | 42.4 × 10−9 | 55.232 | 0.310 | 0.1100 | 0.0028 | 64.8 | 46.4 | 0.0607 | 0.0021 | 115.8 | 92.9 | 258.3 | 5.0 |
1100 | 10 | 77.5 × 10−9 | 50.785 | 0.128 | 0.1101 | 0.0015 | 40.5 | 18.0 | 0.0439 | 0.0009 | 72.2 | 96.5 | 261.5 | 3.2 |
1125 | 10 | 51.0 × 10−9 | 58.458 | 0.163 | 0.1047 | 0.0017 | 15.6 | 15.6 | 0.0658 | 0.0023 | 27.8 | 98.6 | 269.2 | 5.2 |
1150 | 10 | 41.0 × 10−9 | 69.236 | 0.264 | 0.1167 | 0.0026 | 66.5 | 53.8 | 0.1009 | 0.0034 | 118.7 | 100.0 | 271.9 | 7.0 |
Sample 541-7, biotite, J = 0.004157 ± 0.000046, Total fusion age = 246.2 ± 2.6 Ma (including J); Weighted Mean Plateau Age (600–1100 °C) = 247.4 ± 2.6 Ma (including J) | ||||||||||||||
500 | 10 | 27.9 × 10−9 | 104.396 | 0.697 | 0.09468 | 0.00601 | — | — | 0.27652 | 0.00769 | — | 0.5 | 162.6 | 15.3 |
550 | 10 | 59.9 × 10−9 | 47.028 | 0.100 | 0.04206 | 0.00209 | — | — | 0.05581 | 0.00180 | — | 3.1 | 215.6 | 4.2 |
600 | 10 | 113.4 × 10−9 | 39.822 | 0.091 | 0.02789 | 0.00069 | — | — | 0.01589 | 0.00050 | — | 8.9 | 245.9 | 2.7 |
650 | 10 | 222.2 × 10−9 | 37.278 | 0.071 | 0.02627 | 0.00029 | — | — | 0.00696 | 0.00042 | — | 21.0 | 246.5 | 2.7 |
675 | 10 | 149.9 × 10−9 | 37.052 | 0.080 | 0.02597 | 0.00069 | — | — | 0.00509 | 0.00033 | — | 29.1 | 248.7 | 2.6 |
700 | 10 | 124.4 × 10−9 | 37.670 | 0.064 | 0.02695 | 0.00035 | — | — | 0.00786 | 0.00051 | — | 35.8 | 247.3 | 2.7 |
750 | 10 | 103.7 × 10−9 | 37.339 | 0.074 | 0.02692 | 0.00056 | — | — | 0.00641 | 0.00073 | — | 41.5 | 248.0 | 2.9 |
800 | 10 | 94.2 × 10−9 | 37.811 | 0.067 | 0.02879 | 0.00086 | — | — | 0.00953 | 0.00098 | — | 46.5 | 245.0 | 3.1 |
850 | 10 | 102.4 × 10−9 | 37.410 | 0.065 | 0.02597 | 0.00082 | — | — | 0.00611 | 0.00077 | — | 52.0 | 249.0 | 3.0 |
900 | 10 | 145.5 × 10−9 | 40.705 | 0.069 | 0.02919 | 0.00050 | — | — | 0.01825 | 0.00060 | — | 59.3 | 247.1 | 2.8 |
950 | 10 | 155.0 × 10−9 | 36.898 | 0.079 | 0.02597 | 0.00038 | — | — | 0.00536 | 0.00058 | — | 67.8 | 247.1 | 2.8 |
1000 | 10 | 210.6 × 10−9 | 36.715 | 0.120 | 0.02565 | 0.00045 | — | — | 0.00383 | 0.00033 | — | 79.4 | 248.9 | 2.7 |
1050 | 10 | 191.8 × 10−9 | 36.631 | 0.073 | 0.02563 | 0.00030 | — | — | 0.00410 | 0.00046 | — | 90.0 | 247.8 | 2.7 |
1100 | 10 | 181.9 × 10−9 | 36.872 | 0.056 | 0.02533 | 0.00035 | — | — | 0.00520 | 0.00035 | — | 100.0 | 247.3 | 2.6 |
Sample 541-1, amphibole, J = 0.004248 ± 0.000046, Total fusion age = 243.0 ± 2.5 Ma (including J); Weighted Mean Plateau Age (825–1150 °C) = 246.2 ± 2.6 Ma (including J) | ||||||||||||||
500 | 10 | 31.2 × 10−9 | 77.800 | 0.282 | 0.11220 | 0.00917 | — | — | 0.16738 | 0.01363 | — | 0.3 | 205.1 | 27.6 |
600 | 10 | 139.4 × 10−9 | 38.268 | 0.071 | 0.02827 | 0.00079 | — | — | 0.02005 | 0.00079 | — | 3.2 | 232.3 | 2.9 |
700 | 10 | 653.5 × 10−9 | 35.399 | 0.043 | 0.02317 | 0.00012 | — | — | 0.00899 | 0.00013 | — | 17.7 | 235.0 | 2.5 |
750 | 10 | 503.2 × 10−9 | 35.127 | 0.054 | 0.02288 | 0.00017 | — | — | 0.00695 | 0.00019 | — | 29.0 | 237.2 | 2.5 |
775 | 10 | 170.8 × 10−9 | 35.155 | 0.047 | 0.02277 | 0.00059 | — | — | 0.00767 | 0.00064 | — | 32.8 | 235.9 | 2.8 |
825 | 10 | 166.7 × 10−9 | 35.359 | 0.045 | 0.02399 | 0.00063 | — | — | 0.00489 | 0.00066 | — | 36.5 | 242.8 | 2.8 |
875 | 10 | 222.3 × 10−9 | 35.544 | 0.073 | 0.02524 | 0.00044 | — | — | 0.00491 | 0.00043 | — | 41.4 | 244.0 | 2.7 |
900 | 10 | 104.4 × 10−9 | 35.955 | 0.072 | 0.02671 | 0.00087 | — | — | 0.00668 | 0.00115 | — | 43.7 | 243.3 | 3.4 |
950 | 10 | 277.6 × 10−9 | 35.933 | 0.046 | 0.04623 | 0.00036 | — | — | 0.00552 | 0.00041 | — | 49.8 | 245.4 | 2.7 |
1000 | 10 | 563.7 × 10−9 | 36.239 | 0.064 | 0.06937 | 0.00019 | — | — | 0.00437 | 0.00017 | — | 62.0 | 249.7 | 2.6 |
1025 | 10 | 474.2 × 10−9 | 36.056 | 0.069 | 0.07438 | 0.00022 | — | — | 0.00454 | 0.00023 | — | 72.4 | 248.2 | 2.6 |
1050 | 10 | 461.0 × 10−9 | 35.568 | 0.053 | 0.07814 | 0.00022 | — | — | 0.00395 | 0.00023 | — | 82.6 | 246.1 | 2.6 |
1075 | 10 | 444.0 × 10−9 | 35.424 | 0.069 | 0.07900 | 0.00029 | — | — | 0.00399 | 0.00024 | — | 92.4 | 245.0 | 2.6 |
1100 | 10 | 232.3 × 10−9 | 35.886 | 0.059 | 0.05685 | 0.00044 | — | — | 0.00433 | 0.00046 | — | 97.5 | 247.5 | 2.7 |
1150 | 10 | 98.3 × 10−9 | 37.409 | 0.070 | 0.07940 | 0.00100 | — | — | 0.00793 | 0.00110 | — | 99.6 | 250.5 | 3.4 |
1200 | 10 | 26.4 × 10−9 | 50.260 | 0.305 | 0.13225 | 0.00578 | — | — | 0.04933 | 0.00557 | — | 100.0 | 254.6 | 11.3 |
Sample 541-1, biotite, J = 0.004197 ± 0.000046, Total fusion age, = 244.4 ± 2.5 Ma (including J); Weighted Mean Plateau Age (600–1100 °C) = 245.1 ± 2.6 Ma (including J) | ||||||||||||||
500 | 10 | 24.7 × 10−9 | 62.858 | 0.481 | 0.05824 | 0.00526 | — | — | 0.13266 | 0.00546 | — | 0.6 | 170.8 | 11.4 |
550 | 10 | 61.8 × 10−9 | 42.346 | 0.082 | 0.02759 | 0.00059 | — | — | 0.03724 | 0.00134 | — | 2.7 | 222.9 | 3.5 |
600 | 10 | 98.5 × 10−9 | 38.331 | 0.079 | 0.02335 | 0.00087 | — | — | 0.01205 | 0.00063 | — | 6.3 | 245.8 | 2.8 |
625 | 10 | 131.7 × 10−9 | 37.485 | 0.069 | 0.02395 | 0.00054 | — | — | 0.01029 | 0.00029 | — | 11.4 | 243.6 | 2.6 |
650 | 10 | 221.0 × 10−9 | 36.479 | 0.069 | 0.02346 | 0.00043 | — | — | 0.00522 | 0.00032 | — | 20.0 | 246.9 | 2.6 |
675 | 10 | 176.7 × 10−9 | 36.356 | 0.054 | 0.02358 | 0.00038 | — | — | 0.00495 | 0.00049 | — | 27.0 | 246.6 | 2.7 |
700 | 10 | 194.7 × 10−9 | 36.809 | 0.060 | 0.02346 | 0.00034 | — | — | 0.00695 | 0.00030 | — | 34.6 | 245.6 | 2.6 |
725 | 10 | 155.0 × 10−9 | 36.236 | 0.063 | 0.02306 | 0.00032 | — | — | 0.00567 | 0.00050 | — | 40.7 | 244.4 | 2.7 |
750 | 10 | 108.4 × 10−9 | 36.687 | 0.065 | 0.02407 | 0.00069 | — | — | 0.00657 | 0.00078 | — | 44.9 | 245.6 | 3.0 |
800 | 10 | 103.5 × 10−9 | 37.210 | 0.082 | 0.02545 | 0.00060 | — | — | 0.00886 | 0.00096 | — | 48.9 | 244.6 | 3.2 |
850 | 10 | 115.0 × 10−9 | 36.905 | 0.113 | 0.02457 | 0.00073 | — | — | 0.00925 | 0.00065 | — | 53.4 | 241.8 | 2.9 |
900 | 10 | 145.6 × 10−9 | 36.700 | 0.080 | 0.02404 | 0.00063 | — | — | 0.00775 | 0.00070 | — | 59.0 | 243.4 | 2.9 |
950 | 10 | 194.8 × 10−9 | 36.070 | 0.056 | 0.02409 | 0.00048 | — | — | 0.00537 | 0.00036 | — | 66.8 | 243.9 | 2.6 |
1000 | 10 | 317.4 × 10−9 | 36.108 | 0.054 | 0.02420 | 0.00021 | — | — | 0.00487 | 0.00020 | — | 79.4 | 245.1 | 2.6 |
1050 | 10 | 302.7 × 10−9 | 36.324 | 0.085 | 0.02543 | 0.00031 | — | — | 0.00525 | 0.00028 | — | 91.3 | 245.8 | 2.6 |
1100 | 10 | 225.3 × 10−9 | 37.033 | 0.076 | 0.02326 | 0.00030 | — | — | 0.00679 | 0.00030 | — | 100.0 | 247.4 | 2.6 |
References
- Obruchev, V.A. Precambrian of the Taimyr Krai and Severnaya Zemlya. In The Stratigraphy of the USSR; Arkhangelsky, A.D., Ed.; Publishing House of the AS USSR: Moscow-Leningrad, Russia, 1939; Volume 1, pp. 493–501. (In Russian) [Google Scholar]
- Urvantsev, N.N. The Taimyr foldbelt. Bull. Norilsk Kombinat. 1949, 1, 4–12. (In Russian) [Google Scholar]
- Ravich, M.G. The Precambrian of Taimyr. In Proceedings of the Institute of Arctic Geology (NIIGA); Korzhinsky, D.S., Obruchev, S.V., Eds.; Vodtransizdat: Moscow-Leningrad, Russia, 1954; Volume 76, p. 311. (In Russian) [Google Scholar]
- Daminova, A.M. Age of the complex of crystalline schists of the Taimyr Peninsula. Sov. Geol. 1957, 58, 50–55. (In Russian) [Google Scholar]
- Egiazarov, B.K. Geology of the Severnaya Zemlya archipelago. In Proceedings of the Institute of Arctic Geology (NIIGA); Lobanov, M.F., Ed.; Gostoptekhizdat: Leningrad, Russia, 1959; Volume 94, p. 137. (In Russian) [Google Scholar]
- Vakar, V.A. The trap formations of Taimyr. In Petrography of Eastern Siberia; Afanasiev, G.D., Ed.; AS USSR: Moscow, Russia, 1962; pp. 256–340. (In Russian) [Google Scholar]
- Pogrebitsky, Y.E. Paleotectonic Analysis of the Taimyr Fold System; Nedra: Leningrad, Russia, 1971; p. 248. (In Russian) [Google Scholar]
- Zabiyaka, A.I. Stratigraphy and sedimentary formations of the Precambrian of north-western Taimyr. In Proceedings of SNIIGGIMS; Krasnoyarskoye Knizhnoye Izdatelstvo: Krasnoyarsk, Russia, 1974; p. 126. (In Russian) [Google Scholar]
- Makhlaev, L.V. The Taimyr folded area. In The Precambrian of Continents. Folded Areas and Young Platforms of Eastern Europe and Asia; Bogolepov, K.V., Votakh, O.A., Eds.; Nauka: Novosibirsk, Russia, 1978; pp. 147–168. (In Russian) [Google Scholar]
- Bezzubtsev, V.V.; Zalyalyaev, P.S.; Sakovich, A.B. Geological Map of Mountainous Taimyr, Scale 1:500,000; Explanatory Note; Krasnoyarskgeologiya: Krasnoyarsk, Russia, 1986; p. 177. (In Russian) [Google Scholar]
- Zabiyaka, A.I.; Zabiyaka, I.D.; Vernikovsky, V.A.; Serdyuk, S.S.; Zlobin, M.M. Geological Structure and Tectonic Evolution of Northeastern Taimyr; Nauka: Novosibirsk, Russia, 1986; p. 144. (In Russian) [Google Scholar]
- Uflyand, A.K.; Natapov, L.M.; Lopatin, V.M.; Chernov, D.V. Concerning the tectonic nature of Taimyr. Geotectonika 1991, 6, 76–93. (In Russian) [Google Scholar]
- Vernikovsky, V.A. Geodynamic Evolution of Taimyr Folded Area; Publishing House SB RAS SPC UIGGM: Novosibirsk, Russia, 1996; p. 202. (In Russian) [Google Scholar]
- Bogdanov, N.A.; Khain, V.E.; Rosen, O.M.; Shipilov, E.V.; Vernikovsky, V.A.; Drachev, S.L.; Kostyuchenko, S.H.; Kuzmichev, A.B.; Sekretov, S.B. Tectonic Map of the Kara and Laptev Seas and North Siberia (Scale 1:2,500,000); Explanatory note; Kartografiya: Moscow, Russia, 1998; p. 127. (In Russian) [Google Scholar]
- Khain, V.E. Tectonics of Continents and Oceans (Year 2000); Scientific World Publishing House: Moscow, Russia, 2001; p. 606. (In Russian) [Google Scholar]
- Zonenshain, L.P.; Natapov, L.M. Tectonic history of Arctic. In Actual Problems of Continent and Ocean Tectonics; Yanshin, A.L., Ed.; Nauka: Moscow, Russia, 1987; pp. 31–57. (In Russian) [Google Scholar]
- Zonenshain, L.P.; Kuzmin, M.I.; Natapov, L.M. Geology of the USSR: A Plate Tectonic Synthesis; Page, B.M., Ed.; Geodynamic Series, 21; American Geophysical Union: Washington, DC, USA, 1990; p. 242. [Google Scholar]
- Golonka, J.; Bocharova, N.Y.; Ford, D.; Edrich, M.E.; Bednarczyk, J.; Wildharber, J. Paleogeographic reconstructions and basins development of the Arctic. Mar. Pet. Geol. 2003, 20, 211–248. [Google Scholar] [CrossRef]
- Metelkin, D.V.; Kazansky, A.Y.; Vernikovsky, V.A.; Gee, D.G.; Torsvik, T. First paleomagnetic data for the early Paleozoic of the Severnaya Zemlya archipelago and their geodynamic interpretation. Rus. Geol. Geophys. 2000, 41, 1816–1820. [Google Scholar]
- Metelkin, D.V.; Vernikovsky, V.A.; Kazansky, A.Y.; Bogolepova, O.K.; Gubanov, A.P. Paleozoic history of the Kara microcontinent and its relation to Siberia and Baltica: Paleomagnetism, paleogeography and tectonics. Tectonophysics 2005, 398, 225–243. [Google Scholar] [CrossRef]
- Metelkin, D.V.; Vernikovsky, V.A.; Kazansky, A.Y. Neoproterozoic evolution of Rodinia: Constraints from new paleomagnetic data on the western margin of the Siberian craton. Rus. Geol. Geophys. 2007, 48, 32–45. [Google Scholar] [CrossRef]
- Metelkin, D.V.; Vernikovsky, V.A.; Matushkin, N.Y. Arctida between Rodinia and Pangea. Precam. Res. 2015, 259, 114–129. [Google Scholar] [CrossRef]
- Gee, D.G.; Bogolepova, O.K.; Lorenz, H. The Timanide, Caledonide and Uralide orogens in the Eurasian high Arctic, and relationships to the palaeocontinents Laurentia, Baltica and Siberia. In European Lithosphere Dynamics. Geological Society London, Memoirs; Gee, D.G., Stephenson, R.A., Eds.; Geological Society of London: London, UK, 2006; Volume 32, pp. 507–520. [Google Scholar] [CrossRef]
- Li, Z.X.; Bogdanova, S.V.; Collins, A.S.; Davidson, A.; De Waele, B.; Ernst, R.E.; Fitzsimons, I.C.W.; Fuck, R.A.; Gladkochub, D.P.; Jacobs, J.; et al. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precam. Res. 2008, 160, 179–210. [Google Scholar] [CrossRef]
- Lorenz, H.; Männik, P.; Gee, D.; Proskurnin, V. Geology of the Severnaya Zemlya Archipelago and the North Kara Terrane in the Russian high Arctic. Int. J. Earth Sci. 2008, 97, 519–547. [Google Scholar] [CrossRef]
- Pisarevsky, S.A.; Natapov, L.M.; Donskaya, T.V.; Gladkochub, D.P.; Vernikovsky, V.A. Proterozoic Siberia: A promontory of Rodinia. Precam. Res. 2008, 160, 66–76. [Google Scholar] [CrossRef]
- Pease, V.; Scott, R.A. Crustal affinities in the Arctic Uralides, northern Russia: Significance of detrital zircon ages from Neoproterozoic and Palaeozoic sediments in Novaya Zemlya and Taimyr. J. Geol. Soc. 2009, 166, 517–527. [Google Scholar] [CrossRef]
- Drachev, S.S. Fold belts and sedimentary basins of the Eurasian Arctic. Arktos 2016, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Shipilov, E.V.; Vernikovsky, V.A. The Svalbard-Kara plates junction: Structure and geodynamic history. Rus. Geol. Geophys. 2010, 51, 58–71. [Google Scholar] [CrossRef]
- Lawver, L.A.; Ganagan, L.M.; Norton, I. Paleogeographic and tectonic evolution of the Arctic region during the Paleozoic. In Arctic Petroleum Geology. Geological Society London, Memoirs; Spencer, A.M., Embry, A.F., Gautier, D.L., Stoupakova, A.V., Sørensen, K., Eds.; Geological Society of London: London, UK, 2011; Volume 35, pp. 61–77. [Google Scholar] [CrossRef]
- Vernikovsky, V.A.; Dobretsov, N.L.; Metelkin, D.V.; Matushkin, N.Y.; Koulakov, I.Y. Concerning tectonics and the tectonic evolution of the Arctic. Rus. Geol. Geophys. 2013, 54, 838–858. [Google Scholar] [CrossRef]
- Vernikovsky, V.A. Neoproterozoic and Late Paleozoic Taimyr Orogenic and Ophiolitic belts, North Asia: A review and models for their formation. In The Proceedings of the 30th International Geological Congress; Liu, G., Ed.; VSP: Utrecht, The Netherlands, 1997; Volume 7, pp. 121–138. [Google Scholar]
- Vernikovsky, V.A.; Vernikovskaya, A.E. Central Taimyr accretionary belt (Arctic Asia): Meso-Neoproterozoic tectonic evolution and Rodinia break up. Precam. Res. 2001, 110, 127–141. [Google Scholar] [CrossRef]
- Vernikovsky, V.A.; Pease, V.L.; Vernikovskaya, A.E.; Romanov, A.P.; Gee, D.G.; Travin, A.V. First report of early Triassic A-type granite and syenite intrusions from Taimyr: Product of the northern Eurasian superplume? Lithos 2003, 66, 23–36. [Google Scholar] [CrossRef]
- Vernikovsky, V.; Shemin, G.; Deev, E.; Metelkin, D.; Matushkin, N.; Pervukhina, N. Geodynamics and oil and gas potential of the Yenisei-Khatanga basin (Polar Siberia). Minerals 2018, 8, 510. [Google Scholar] [CrossRef] [Green Version]
- Zolotukhin, V.V.; Al’mukhamedov, A.I. Traps of the Siberian platform. In Continental Flood Basalts; Macdougall, J.D., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; pp. 273–310. [Google Scholar]
- Zolotukhin, V.V. Particularities of the Tulay-Kiryak Differentiated intrusion on Taimyr; Nauka: Novosibirsk, Russia, 1990; p. 111. [Google Scholar]
- Renne, P.R.; Basu, A.R. Rapid eruption of the Siberian Traps flood basalts at the Permo–Triassic Boundary. Science 1991, 253, 176–179. [Google Scholar] [CrossRef] [Green Version]
- Campbell, I.H.; Czamanske, G.K.; Fedorenko, V.A.; Hill, R.I.; Stepanov, V. Synchronism of the Siberian Traps and the Permian-Triassic Boundary. Science 1992, 258, 1760–1763. [Google Scholar] [CrossRef]
- Sharma, M. Siberian traps. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Geophysical Monograph; Mahoney, J.J., Coffin, M.F., Eds.; American Geophysical Union: Washington, DC, USA, 1997; Volume 100, pp. 273–295. [Google Scholar] [CrossRef]
- Vasiljev, Y.R.; Zolotukhin, V.V.; Feoktistov, G.D.; Prusskaya, S.N. Volume estimation and genesis of Permian-Triassic trap magmatism from Siberian platform. Rus. Geol. Geophys. 2000, 41, 1696–1705. [Google Scholar]
- Dobretsov, N.L.; Vernikovsky, V.A. Mantle plumes and their geological manifestations. Int. Geol. Rev. 2001, 43, 771–787. [Google Scholar] [CrossRef]
- Vernikovsky, V.A.; Pease, V.L.; Vernikovskaya, A.E.; Romanov, A.P.; Gee, D.J.; Travin, A.V. Early Triassic A-granites in the Taimyr region as a result of a North Asian superplume. Dokl. Earth Sci. 2001, 380, 758–763. [Google Scholar]
- Kamo, S.L.; Czamanske, G.K.; Amelin, Y.; Fedorenko, V.A.; Davis, D.W.; Trofimov, V.R. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth Plan. Sci. Let. 2003, 214, 75–91. [Google Scholar] [CrossRef]
- Augland, L.E.; Ryabov, V.V.; Vernikovsky, V.A.; Planke, S.; Polozov, A.G.; Callegaro, S.; Jerram, D.A.; Svensen, H.H. The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep. 2019, 9, 18723. [Google Scholar] [CrossRef] [Green Version]
- Ravich, M.G.; Chaika, L.A. Differentiated intrusion of trapp formation from Taimyr folded area. Izv. AN SSSR Ser. Geol. 1956, 1, 50–64. (In Russian) [Google Scholar]
- Ravich, M.G.; Chayka, L.A. Small intrusions of the Byrranga Ridge (Taimyr Pen). In Proceedings of the Institute of Arctic Geology (NIIGA); NIIGA: Leningrad, Russia, 1959; Volume 88, p. 147. (In Russian) [Google Scholar]
- Ravich, M.G.; Chayka, L.A. Metamorphic and magmatic formations of the Precambrian of Taimyr. In Petrography of Eastern Siberia; Publishing house of AS USSR: Moscow, Russia, 1962; Volume 2, pp. 590–719. (In Russian) [Google Scholar]
- Makhlaev, L.V.; Korobova, N.I. Genetic Granitoid Series of the Precambrian of Taimyr; Krasnoyarskoye knizhnoye izdatelstvo: Krasnoyarsk, Russia, 1972; p. 130. (In Russian) [Google Scholar]
- Vernikovsky, V.A.; Neimark, L.A.; Ponomarchuk, V.A.; Vernikovskaya, A.E.; Kireev, A.D.; Kuzmin, D.S. Geochemistry and age of collisional granitoids and metamorphites of the Kara microcontinent (Northern Taimyr). Rus. Geol. Geophys. 1995, 36, 46–60. [Google Scholar]
- Pease, V.L.; Kuzmichev, A.B.; Danukalova, M.K. The New Siberian Islands and evidence for the continuation of the Uralides, Arctic Russia. J. Geol. Soc. 2015, 172, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Kurapov, M.Y.; Ershova, V.B.; Makariev, A.A.; Makarieva, E.V.; Khudoley, A.K.; Luchitskaya, M.V.; Prokopiev, A.V. Carboniferous granitoid magmatism of Northern Taimyr: Results of isotopic-geochemical study and geodynamic interpretation. Geotectonics 2018, 52, 225–239. [Google Scholar] [CrossRef]
- Khudoley, A.K.; Verzhbitsky, V.E.; Zastrozhnov, D.A.; O’Sullivan, P.; Ershova, V.B.; Proskurnin, V.F.; Tuchkova, M.I.; Rogov, M.A.; Kyser, T.K.; Malyshev, S.V.; et al. Late Paleozoic—Mesozoic tectonic evolution of the Eastern Taimyr-Severnaya Zemlya Fold and Thrust Belt and adjoining Yenisey-Khatanga Depression. J. Geodynam. 2018, 119, 221–241. [Google Scholar] [CrossRef]
- Vernikovsky, V.A.; Sal’nikova, E.B.; Kotov, A.B.; Ponomarchuk, V.A.; Kovach, V.P.; Travin, A.V.; Yakovleva, S.Z.; Berezhnaya, N.G. Age of post-collisional granitoids, North Taimyr: U-Pb, Sm-Nd, Rb-Sr and Ar-Ar data. Dokl. Earth Sci. 1998, 363A, 1191–1194. [Google Scholar]
- Vernikovsky, V.A.; Vernikovskaya, A.E.; Kovach, V.P.; Kotov, A.B.; Sal’nikova, E.B. Sources of granitoids and the evolutionary stages of the continental crust in the Taymir folded area. Geochem. Int. 1999, 37, 493–502. [Google Scholar]
- Proskurnina, M.A.; Proskurnin, V.F.; Remizov, D.N.; Larionov, A.N. Ring intrusions of the Bespamyatnaya Areal: Manifestations of shoshonite-latite magmatism in Northern Taimyr. Reg. Geol. Met. 2019, 79, 5–22. (In Russian) [Google Scholar]
- Dewey, J.F.; Holdsworth, R.E.; Strachan, R.A. Transpression and transtension zones. Geol. Soc. Spec. Publ. 1998, 135, 1–14. [Google Scholar] [CrossRef]
- Korikovsky, S.P. Contrasting models of prograde-retrograde evolution of metamorphism of Phanerozoic fold belts in collision and subduction zones. Petrography 1995, 3, 45–63. (In Russian) [Google Scholar]
- Condie, K.C. Plate Tectonics and Crustal Evolution, 4th ed.; Butterworth Heinemann. Bookcraft (Bath) Ltd.: Oxford, UK, 1997; p. 287. [Google Scholar]
- Dewey, J.F. Extensional collapse of orogens. Tectonics 1988, 7, 1123–1139. [Google Scholar] [CrossRef]
- Gerdes, A.; Wörner, G.; Henk, A. Post-collisional granite generation and HT–LP metamorphism by radiogenic heating: The Variscan South Bohemian Batholith. J. Geol. Soc. 2000, 157, 577–587. [Google Scholar] [CrossRef]
- Maltsev, Y.M.; Bezzubtsev, V.V. Concerning thrust structures of the Taimyr folded area. Geol. Geofiz. 1979, 3, 47–54. (In Russian) [Google Scholar]
- Inger, S.; Scott, R.A.; Golionko, B. Tectonic evolution of the Taimyr Peninsula, northern Russia: Implications for Arctic continental assembly. J. Geol. Soc. 1999, 156, 1069–1072. [Google Scholar] [CrossRef]
- Badanina, I.Y.; Malitch, K.N.; Romanov, A.P. Isotopic-geochemical characteristics of the ore-bearing ultramafic-mafic intrusions of western Taimyr, Russia. Dokl. Earth Sci. 2014, 458, 1165–1167. [Google Scholar] [CrossRef]
- Makhlaev, L.V. Tectonic nature of the Mamont-Shrenk block (Central Taimyr). Izv. An. SSSR. Geol+. 1988, 4, 77–87. (In Russian) [Google Scholar]
- Vernikovsky, V.A.; Neimark, L.A.; Ponomarchuk, V.A.; Yakovleva, S.Z. New U-Pb, Sm-Nd, Rb-Sr, and K-Ar ages for the North Taymir collisional granites and metamorphites. Dokl. Earth Sci. 1996, 345A, 329–334. [Google Scholar]
- Vernikovsky, V.A.; Metelkin, D.V.; Vernikovskaya, A.E.; Sal’nikova, E.B.; Kovach, V.P.; Kotov, A.B. The oldest island arc complex of Taimyr: Concerning the issue of the Central-Taimyr accretionary belt formation and paleogeodynamic reconstructions in the arctic. Dokl. Earth Sci. 2011, 436, 186–192. [Google Scholar] [CrossRef]
- Pease, V.; Gee, D.G.; Vernikovsky, V.; Vernikovskaya, A.; Kireev, S. Geochronological evidence for late-Grenvillian magmatic and metamorphic events in central Taimyr, northern Siberia. Terra Nova 2001, 13, 270–280. [Google Scholar] [CrossRef]
- Vernikovsky, V.A.; Kotov, A.B.; Ponomarchuk, V.A.; Salnikova, E.B.; Kovach, V.P.; Travin, A.V. A Late Riphean—Vendian event in the formation of Northern Taimyr. Dokl. RAN 1997, 352, 218–221. (In Russian) [Google Scholar]
- Zakharov, Y.I.; Ravich, M.G.; Shulyatin, O.G. Metamorphic facies of the Taimyr folded area. In Metamorphic Complexes of Asia; Sobolev, V.S., Lepezin, G.G., Dobretsov, N.L., Eds.; Nauka: Novosibirsk, Russia, 1977; Volume 365, pp. 164–176. (In Russian) [Google Scholar]
- Demina, L.I.; Belov, V.P. Metamorphic zoning of the Precambrian of Northwestern Taimyr. Bull. MOIP Geol. Sec. 1979, 54, 55–66. (In Russian) [Google Scholar]
- Vernikovsky, V.A.; Zabiyaka, I.D. Metamorphic complexes of Northeastern Taimyr. Geol. Geofiz. 1985, 7, 57–64. (In Russian) [Google Scholar]
- Vernikovsky, V.A. Metamorphic formations and geodynamics of the Northern Taimyr. Rus. Geol. Geophys. 1992, 33, 42–49. [Google Scholar]
- Vernikovsky, V.A. Particularities of formation of metamorphic complexes of Northern Taimyr in the Riphean and Paleozoic. Petrology 1995, 3, 63–81. [Google Scholar]
- Kaban’kov, V.Y.; Sobolevskaya, R.F. Late Precambrian—Early Paleozoic stage of geological development of Taimyr–North Land folded area. In Tectonics of Baikal (Riphean) Megacomplex of Siberia; Bogolepov, K.V., Basharin, A.K., Eds.; Publishing house of IGG SB AS USSR: Novosibirsk, Russia, 1981; pp. 55–62. (In Russian) [Google Scholar]
- Proskurnin, V.F. Magmatic formations of the Taimyr-Severnaya Zemlya folded system, their ore potential and geodynamic formation particularities. In Ore Potential of Magmatic Formations of Siberia; SNIIGGIMS: Novosibirsk, Russia, 1991; pp. 33–39. (In Russian) [Google Scholar]
- Makar’ev, A.A.; Lazarenko, N.P.; Rogozov, Y.G. New data on Cambrian deposits from North Land Archipelago. In Lithology and Paleogeography of the Barents and Kara Seas; Sorokov, D.S., Kulakov, Y.N., Eds.; NIIGA Publishing House: Leningrad, Russia, 1981; pp. 97–109. (In Russian) [Google Scholar]
- Matukhin, R.G.; Menner, V.V. Stratigraphy Silurian and Devonian Strata of Severnaya Zemlya; SNIIGIMS: Novosibirsk, Russia, 1999; p. 174. (In Russian) [Google Scholar]
- Bogolepova, O.K.; Gubanov, A.P.; Raevskaya, E.G. The Cambrian of the Severnaya Zemlya Archipelago, Russia. Newsl. Stratig. 2001, 39, 73–91. [Google Scholar] [CrossRef]
- Kartseva, G.N.; Lopatin, B.G.; Orlov, V.P.; Pogrebitsky, Y.E. State Geological Map of the Russian Federation (New Series), Scale 1:1,000,000, Sheet S-47-49; VSEGEI Cartographic factory: St. Petersburg, Russia, 1998. (In Russian) [Google Scholar]
- Nagaytseva, N.N.; Lopatin, V.G. State Geological Map of the Russian Federation (New Series), Scale 1:1,000,000, Sheet T-44-46; VSEGEI Cartographic factory: St. Petersburg, Russia, 2000. (In Russian) [Google Scholar]
- Markovsky, V.A.; Shneider, G.V.; Proskurnin, V.F.; Kaban’kov, V.Y.; Sobolevskaya, R.F.; Lopatin, B.G. State Geological Map of the Russian Federation (New Series), Scale 1:1,000,000, Sheet T-48-50; VSEGEI Cartographic factory: St. Petersburg, Russia, 2003. (In Russian) [Google Scholar]
- Makaryev, A.A.; Makaryeva, E.M. State Geological Map of the Russian Federation (Third Generation), Scale 1:1,000,000, Sheet T-45-48; Polar Marine Geosurvey Expedition Stock Venture: Saint Petersburg, Russia, 2011. (In Russian) [Google Scholar]
- Proskurnin, V.F.; Shneider, G.V.; Gavrish, A.V.; Nagaitseva, N.N.; Romanov, A.P.; Gromov, P.A.; Proskurnina, M.A.; Mokhov, V.V.; Nelyubin, V.V.; Lokhov, D.K.; et al. State Geological Map of the Russian Federation. Scale 1:1,000,000. (Third Generation) Series Taimyr—Severnaya Zemlya. Sheet S-46—Tareya. Explanatory Note; VSEGEI Cartographic factory: St. Petersburg, Russia, 2016; p. 586. (In Russian) [Google Scholar]
- Malitch, N.S. State Geological Map of the Russian Federation. Scale 1:200,000. Series—Taimyr. Explanatory Note; Sevmorgeologiya: Moscow, Russia, 2000; p. 186. (In Russian) [Google Scholar]
- Zabiyaka, A.I.; Vernikovsky, V.A.; Zabiyaka, I.D.; Zlobin, M.I.; Korobeinikov, A.F.; Serduk, S.S. Geochemical model of gold distribution in the exocontact rim of a granitoid pluton. Dokl. Akad. Nauk 1990, 313, 959–962. (In Russian) [Google Scholar]
- Malitch, K.N.; Lokhov, D.K.; Proskurnin, V.F.; Puchkov, V.N.; Badanina, I.Y.; Chervyakovskaya, M.A. U-Pb and Lu-Hf isotopes in rocks of the Dyumtaley ore-bearing intrusion (Taimyr, Russia): New evidence for the role of the depleted mantle in its genesis. Dokl. Earth Sci. 2020, 492, 1–5. [Google Scholar]
- Makhlaev, L.V. The Isolithogenic Granitoid Series; Nauka: Novosibirsk, Russia, 1987; p. 153. (In Russian) [Google Scholar]
- Proskurnin, V.F.; Sal’nikov, V.I. Magmatogenic-metamorphogenic-hydrothermal zoning of the Chukotka-Olenkin region (Taimyr Peninsula). Geol. Ore Dep. 1990, 32, 91–95. (In Russian) [Google Scholar]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Allé, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; von Quadt, A.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newslet. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Larionov, A.N.; Andreichev, V.A.; Gee, D.G. The Vendian alkaline igneous suite of northern Timan: Ion microprobe U–Pb zircon ages of gabbros and syenite. In The Neoproterozoic Timanide Orogen of Eastern Baltica, 1st ed.; Gee, D.G., Pease, V.L., Eds.; Geology. Society, London, Memoirs: London, UK, 2004; Volume 30, pp. 69–74. [Google Scholar] [CrossRef]
- Ludwig, K.R. SQUID 1.12 A User’s Manual. A Geochronological Toolkit for Microsoft Excel, 1st ed.; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2005; p. 22. Available online: http://bgc.org/isoplot_etc/squid/SQUID2_5Manual.pdf (accessed on 25 June 2020).
- Ludwig, K.R. User’s Manual for ISOPLOT/Ex 3.22. A Geochronological Toolkit for Microsoft Excel, 1st ed.; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2005; p. 71. Available online: http://www.bgc.org/isoplot_etc/isoplot/Isoplot3_75-4_15manual.pdf (accessed on 25 June 2020).
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci. Let. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Travin, A.V.; Yudin, D.S.; Vladimirov, A.G.; Khromykh, S.V.; Volkova, N.I.; Mekhonoshin, A.S.; Kolotilina, T.B. Thermochronology of the Chernorud granulite zone, Ol’khon Region, Western Baikal area. Geochem. Int. 2009, 47, 1107–1124. [Google Scholar] [CrossRef] [Green Version]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A Geochemical Classification for Granitic Rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. The Composition of the Continental Crust. In Treatise on Geochemistry, The Crust, 1st. Ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier-Pergamon: Oxford, UK, 2003; Volume 3, pp. 1–64. [Google Scholar] [CrossRef]
- Evensen, N.M.; Hamilton, P.J.; O’Nions, R.K. Rare-earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta 1978, 42, 1199–1212. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–254. [Google Scholar] [CrossRef]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rocks series using multicationic parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Mason, R. Petrology of the Metamorphic Rocks; George Allen & Unwin: London, UK, 1978; p. 254. [Google Scholar]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A. Sources and settings of granitic rocks. Episodes 1996, 19, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Vernikovskaya, A.E.; Vernikovsky, V.A.; Matushkin, N.Y.; Romanova, I.V.; Berejnaya, N.G.; Larionov, A.N.; Travin, A.V. Middle Paleozoic and Early Mesozoic anorogenic magmatism of the South Yenisei Ridge: First geochemical and geochronological data. Rus. Geol. Geophys. 2010, 51, 548–562. [Google Scholar] [CrossRef]
- Lorenz, H.; Gee, D.G.; Whitehouse, M.J. New geochronological data on Palaeozoic igneous activity and deformation in the Severnaya Zemlya Archipelago, Russia, and implications for the development of the Eurasian Arctic margin. Geol. Mag. 2007, 144, 105–125. [Google Scholar] [CrossRef]
- Zhang, X.; Pease, V.; Skogseid, J.; Wohlgemuth-Ueberwasser, C. Reconstruction of tectonic events on the northern Eurasia margin of the Arctic, from U-Pb detrital zircon provenance investigations of late Paleozoic to Mesozoic sandstones in southern Taimyr Peninsula. Geol. Soc. Am. Bull. 2016, 128, 29–46. [Google Scholar] [CrossRef]
- Priyatkina, N.; Collins, W.J.; Khudoley, A.; Zastrozhnov, D.; Ershova, V.; Chambarlain, K.; Shatsillo, A.; Proskurnin, V. The Proterozoic evolution of northern Siberian Craton margin: A comparison of U-Pb-Hf signatures from sedimentary units of the Taimyr orogenic belt and the Siberian platform. Int. Geol. Rev. 2017, 59, 1632–1656. [Google Scholar] [CrossRef]
- Ershova, V.; Anfinson, O.; Prokopiev, A.; Khudoley, A.; Stockli, D.; Faleide, J.-I.; Gaina, C.; Malyshev, N. Detrital Zircon (U-Th)/He Ages from Paleozoic Strata of the Severnaya Zemlya Archipelago: Deciphering Multiple Episodes of Paleozoic Tectonic Evolution within the Russian High Arctic. J. Geodyn. 2018, 119, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Pease, V.; Lane, L.; Faliede, J.I.; Stephenson, R.; Coakley, B. Scientific network to decipher crustal evolution of the Arctic. EOS 2011, 92, 361–363. [Google Scholar] [CrossRef]
- Toro, J.; Miller, E.L.; Prokopiev, A.V.; Zhang, X.; Veselovskiy, R. Mesozoic orogens of the Arctic from Novaya Zemlya to Alaska. J. Geol. Soc. 2016, 173, 989–1006. [Google Scholar] [CrossRef]
- Embry, A. Geological and Geophysical Evidence in Support of the Hypothesis of Anticlockwise Rotation of Northern Alaska. Mar. Geol. 1990, 93, 317–329. [Google Scholar] [CrossRef]
- Grantz, A.; Clark, D.L.; Phillips, R.L.; Srivastava, S.P.; Blome, C.D.; Gray, L.B.; Haga, H.; Mamet, B.L.; McIntyre, D.J.; McNeil, D.H.; et al. Phanerozoic stratigraphy of Northwind Ridge, magnetic anomalies in the Canada basin, and thegeometry and timing of rifting in the Amerasia basin, Arctic Ocean. Geol. Soc. Am. Bull. 1998, 110, 801–820. [Google Scholar] [CrossRef]
- Lawver, L.A.; Grantz, A.; Gahagan, L.M. Plate kinematic evolution of the present Arctic region since the Ordovician. In Tectonic Evolution of the Bering Shelf–Chukchi Sea–Arctic Margin and Adjacent Landmasses. Special Paper; Miller, E.L., Grantz, A., Klemperer, S.L., Eds.; The Geological Society of America: Boulder, CO, USA, 2002; Volume 360, pp. 333–358. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vernikovsky, V.A.; Vernikovskaya, A.; Proskurnin, V.; Matushkin, N.; Proskurnina, M.; Kadilnikov, P.; Larionov, A.; Travin, A. Late Paleozoic–Early Mesozoic Granite Magmatism on the Arctic Margin of the Siberian Craton during the Kara-Siberia Oblique Collision and Plume Events. Minerals 2020, 10, 571. https://doi.org/10.3390/min10060571
Vernikovsky VA, Vernikovskaya A, Proskurnin V, Matushkin N, Proskurnina M, Kadilnikov P, Larionov A, Travin A. Late Paleozoic–Early Mesozoic Granite Magmatism on the Arctic Margin of the Siberian Craton during the Kara-Siberia Oblique Collision and Plume Events. Minerals. 2020; 10(6):571. https://doi.org/10.3390/min10060571
Chicago/Turabian StyleVernikovsky, Valery A., Antonina Vernikovskaya, Vasilij Proskurnin, Nikolay Matushkin, Maria Proskurnina, Pavel Kadilnikov, Alexander Larionov, and Alexey Travin. 2020. "Late Paleozoic–Early Mesozoic Granite Magmatism on the Arctic Margin of the Siberian Craton during the Kara-Siberia Oblique Collision and Plume Events" Minerals 10, no. 6: 571. https://doi.org/10.3390/min10060571
APA StyleVernikovsky, V. A., Vernikovskaya, A., Proskurnin, V., Matushkin, N., Proskurnina, M., Kadilnikov, P., Larionov, A., & Travin, A. (2020). Late Paleozoic–Early Mesozoic Granite Magmatism on the Arctic Margin of the Siberian Craton during the Kara-Siberia Oblique Collision and Plume Events. Minerals, 10(6), 571. https://doi.org/10.3390/min10060571