Chemostratigraphic Correlations of Deep-Sea Sediments in the Western North Pacific Ocean: A New Constraint on the Distribution of Mud Highly Enriched in Rare-Earth Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Information
2.2. Analytical Methods
3. Results
4. Discussion
4.1. Major Components of REY-Rich Mud
4.2. Geochemical Characterization and Classification of Samples
- REY peak: ΣREY (ppm) > 2000
- Unit I: Ba (ppm) > Co (ppm) + 330 (ppm) and ΣREY (ppm) < 400
- Unit II: TiO2 (wt.%) > 0.7 and ΣREY (ppm) > 400
- Unit III: Fe2O3* (wt.%)/TiO2 (wt.%) > 11 and ΣREY (ppm) > 400
- Unit IV: P2O5 (wt.%)/ΣREY (ppm) > 0.0018 and ΣREY (ppm) > 400
- Unit V: the remaining samples
4.3. Chemostratigraphic Correlations of Sediments in the Western North Pacific Ocean
4.3.1. South of Takuyo Daigo Seamount
4.3.2. East of Takuyo Daigo Seamount
4.3.3. North of Minamitorishima Island and Outer Basins around the Minamitorishima EEZ
4.3.4. Drilled cores at ODP Sites 800A and 801A
4.4. Spatial Continuity and Implications for the Formation Mechanism of the REY Peaks
4.4.1. South and east of Takuyo Daigo Seamount
4.4.2. North of Minamitorishima Island and outer basins around the Minamitorishima EEZ
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goodenough, K.M.; Wall, F.; Merriman, D. The rare earth elements: Demand, global resources, and challenges for resourcing future generations. Nat. Resour. Res. 2018, 27, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Alonso, E.; Sherman, A.M.; Wallington, T.J.; Everson, M.P.; Field, F.R.; Roth, R.; Kirchain, R.E. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environ. Sci. Technol. 2012, 46, 3406–3414. [Google Scholar] [CrossRef]
- Kato, Y.; Fujinaga, K.; Nakamura, K.; Takaya, Y.; Kitamura, K.; Ohta, J.; Toda, R.; Nakashima, T.; Iwamori, H. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat. Geosci. 2011, 4, 535–539. [Google Scholar] [CrossRef]
- Sa, R.; Sun, X.; He, G.; Xu, L.; Pan, Q.; Liao, J.; Zhu, K.; Deng, X. Enrichment of rare earth elements in siliceous sediments under slow deposition: A case study of the central North Pacific. Ore Geol. Rev. 2018, 94, 12–23. [Google Scholar] [CrossRef]
- Yasukawa, K.; Nakamura, K.; Fujinaga, K.; Iwamori, H.; Kato, Y. Tracking the spatiotemporal variations of statistically independent components involving enrichment of rare-earth elements in deep-sea sediments. Sci. Rep. 2016, 6, 29603. [Google Scholar] [CrossRef] [PubMed]
- Zawadzki, D.; Maciag, Ł.; Abramowski, T.; McCartney, K. Fractionation trends and variability of rare earth elements and selected critical metals in pelagic sediment from abyssal basin of NE Pacific (Clarion-Clipperton Fracture Zone). Minerals 2020, 10, 320. [Google Scholar] [CrossRef] [Green Version]
- Yasukawa, K.; Liu, H.; Fujinaga, K.; Machida, S.; Haraguchi, S.; Ishii, T.; Nakamura, K.; Kato, Y. Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean. J. Asian Earth Sci. 2014, 93, 25–36. [Google Scholar] [CrossRef]
- Yasukawa, K.; Nakamura, K.; Fujinaga, K.; Machida, S.; Ohta, J.; Takaya, Y.; Kato, Y. Rare-earth, major, and trace element geochemistry of deep-sea sediments in the Indian Ocean: Implications for the potential distribution of REY-rich mud in the Indian Ocean. Geochem. J. 2015, 49, 621–635. [Google Scholar] [CrossRef]
- Zhang, X.; Tao, C.; Shi, X.; Li, H.; Huang, M.; Huang, D. Geochemical characteristics of REY-rich pelagic sediments from the GC02 in central Indian Ocean Basin. J. Rare Earths 2017, 35, 1047–1058. [Google Scholar] [CrossRef]
- Menendez, A.; James, R.H.; Roberts, S.; Peel, K.; Connelly, D. Controls on the distribution of rare earth elements in deep-sea sediments in the North Atlantic Ocean. Ore Geol. Rev. 2017, 87, 100–113. [Google Scholar] [CrossRef]
- Iijima, K.; Yasukawa, K.; Fujinaga, K.; Nakamura, K.; Machida, S.; Takaya, Y.; Ohta, J.; Haraguchi, S.; Nishio, Y.; Usui, Y.; et al. Discovery of extremely REY-rich mud in the western North Pacific Ocean. Geochem. J. 2016, 50, 557–573. [Google Scholar] [CrossRef] [Green Version]
- Mimura, K.; Nakamura, K.; Yasukawa, K.; Machida, S.; Ohta, J.; Fujinaga, K.; Kato, Y. Significant impacts of pelagic clay on average chemical composition of subducting sediments: New insights from discovery of extremely rare-earth elements and yttrium-rich mud at Ocean Drilling Program Site 1149 in the western North Pacific Ocean. J. Asian Earth Sci. 2019, 186, 104059. [Google Scholar] [CrossRef]
- Yasukawa, K.; Ohta, J.; Mimura, K.; Tanaka, E.; Takaya, Y.; Usui, Y.; Fujinaga, K.; Machida, S.; Nozaki, T.; Iijima, K.; et al. A new and prospective resource for scandium: Evidence from the geochemistry of deep-sea sediment in the western North Pacific Ocean. Ore Geol. Rev. 2018, 102, 260–267. [Google Scholar] [CrossRef]
- Takaya, Y.; Yasukawa, K.; Kawasaki, T.; Fujinaga, K.; Ohta, J.; Usui, Y.; Nakamura, K.; Kimura, J.I.; Chang, Q.; Hamada, M.; et al. The tremendous potential of deep-sea mud as a source of rare-earth elements. Sci. Rep. 2018, 8, 5763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, E.; Nakamura, K.; Yasukawa, K.; Mimura, K.; Fujinaga, K.; Iijima, K.; Nozaki, T.; Kato, Y. Chemostratigraphy of deep-sea sediments in the western North Pacific Ocean: Implications for genesis of mud highly enriched in rare-earth elements and yttrium. Ore Geol. Rev. 2020, 119, 103392. [Google Scholar] [CrossRef]
- Ohta, J.; Yasukawa, K.; Machida, S.; Fujinaga, K.; Nakamura, K.; Takaya, Y.; Iijima, K.; Suzuki, K.; Kato, Y. Geological factors responsible for REY-rich mud in the western North Pacific Ocean: Implications from mineralogy and grain size distributions. Geochem. J. 2016, 50, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Ohta, J.; Yasukawa, K.; Nozaki, T.; Takaya, Y.; Mimura, K.; Fujinaga, K.; Nakamura, K.; Usui, Y.; Kimura, J.-I.; Chang, Q.; et al. Fish proliferation and rare-earth deposition by topographically induced upwelling at the late Eocene cooling event. Sci. Rep. 2020, 10, 9896. [Google Scholar] [CrossRef]
- Shipboard Scientific Party Site 800. In Proceedings of the Ocean Drilling Program, 129 Initial Reports; Lancelot, Y.; Larson, L. (Eds.) Ocean Drilling Program: College Station, TX, USA, 1990; Volume 129, pp. 33–89. [Google Scholar]
- Shipboard Scientific Party Site 801. In Proceedings of the Ocean Drilling Program, 129 Initial Reports; Lancelot, Y.; Larson, L. (Eds.) Ocean Drilling Program: College Station, TX, USA, 1990; Volume 129, pp. 91–170. [Google Scholar]
- Shipboard Scientific Party Explanatory Notes. In Proceedings of the Ocean Drilling Program, 129 Initial Reports; Lancelot, Y.; Larson, L. (Eds.) Ocean Drilling Program: College Station, TX, USA, 1990; Volume 129, pp. 49–79. [Google Scholar]
- Shipboard Scientific Party Shipboard core description: Site 800. In Proceedings of the Ocean Drilling Program, 129 Initial Reports; Lancelot, Y.; Larson, L. (Eds.) Ocean Drilling Program: College Station, TX, USA, 1990; pp. 247–302. [Google Scholar]
- Mazzullo, J.; Graham, G.A.; Braunstein, C. Handbook for Shipboard Sedimentologists; Ocean Drilling Program: College Station, TX, USA, 1988. [Google Scholar]
- Ocean Drilling Program Leg 129 Core Images. Available online: http://www-odp.tamu.edu/publications/129_IR/VOLUME/CORES/IMAGES/ (accessed on 11 June 2020).
- Karpoff, A.M. Cenozoic and Mesozoic Sediments from the Pigafetta Basin, Leg 129, Sites 800 and 801: Mineralogical and Geochemical Trends of the Deposits overlying the Oldest Oceanic Crust. In Ocean Drilling Program, 129 Scientific Results; Larson, L., Lancelot, Y., Eds.; Ocean Drilling Program: College Station, TX, USA, 1992; Volume 129, pp. 3–30. [Google Scholar]
- Shipboard Scientific Party Shipboard core description: Site 801. In Ocean Drilling Program, 129 Initial Reports; Lancelot, Y.; Larson, R.L. (Eds.) Ocean Drilling Program: College Station, TX, USA, 1990; pp. 303–418. [Google Scholar]
- Kato, Y.; Ohta, I.; Tsunematsu, T.; Watanabe, Y.; Isozaki, Y.; Maruyama, S.; Imai, N. Rare earth element variations in mid-Archean banded iron formations: Implications for the chemistry of ocean and continent and plate tectonics. Geochim. Cosmochim. Acta 1998, 62, 3475–3497. [Google Scholar] [CrossRef]
- Kato, Y.; Nakao, K.; Isozaki, Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: Implications for an oceanic redox change. Chem. Geol. 2002, 182, 15–34. [Google Scholar] [CrossRef]
- Kato, Y.; Fujinaga, K.; Suzuki, K. Major and trace element geochemistry and Os isotopic composition of metalliferous umbers from the Late Cretaceous Japanese accretionary complex. Geochem. Geophys. Geosyst. 2005, 6, Q07004. [Google Scholar] [CrossRef] [Green Version]
- Aries, S.; Valladon, M.; Polvé, M.; Dupré, B. A routine method for oxide and hydroxide interference corrections in ICP-MS chemical analysis of environmental and geological samples. Geostand. Newsl. 2000, 24, 19–31. [Google Scholar] [CrossRef]
- Pourmand, A.; Dauphas, N.; Ireland, T.J. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chem. Geol. 2012, 291, 38–54. [Google Scholar] [CrossRef]
- Fujinaga, K.; Yasukawa, K.; Nakamura, K.; Machida, S.; Takaya, Y.; Ohta, J.; Araki, S.; Liu, H.; Usami, R.; Maki, R.; et al. Geochemistry of REY-rich mud in the Japanese exclusive economic zone around Minamitorishima island. Geochem. J. 2016, 50, 575–590. [Google Scholar] [CrossRef] [Green Version]
- Kashiwabara, T.; Toda, R.; Nakamura, K.; Yasukawa, K.; Fujinaga, K.; Kubo, S.; Nozaki, T.; Takahashi, Y.; Suzuki, K.; Kato, Y. Synchrotron X-ray spectroscopic perspective on the formation mechanism of REY-rich muds in the Pacific Ocean. Geochim. Cosmochim. Acta 2018, 240, 274–292. [Google Scholar] [CrossRef]
- Liao, J.; Sun, X.; Wu, Z.; Sa, R.; Guan, Y.; Lu, Y.; Li, D.; Liu, Y.; Deng, Y.; Pan, Y. Fe-Mn (oxyhydr)oxides as an indicator of REY enrichment in deep-sea sediments from the central North Pacific. Ore Geol. Rev. 2019, 112, 103044. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust, Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Blackwell Scientific: Oxford, UK, 1985. [Google Scholar]
- Zhang, J.; Nozaki, Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean. Geochim. Cosmochim. Acta 1996, 60, 4631–4644. [Google Scholar] [CrossRef]
- Alibo, D.S.; Nozaki, Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochim. Cosmochim. Acta 1999, 63, 363–372. [Google Scholar] [CrossRef]
- Barrett, T.J.; Jarvis, I. Rare-earth element geochemistry of metalliferous sediments from DSDP Leg 92: The East Pacific Rise transect. Chem. Geol. 1988, 67, 243–259. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A. Deep-Ocean Ferromanganese Crusts and Nodules. In Treatise on Geochemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 13, ISBN 9780080983004. [Google Scholar]
- Machida, S.; Fujinaga, K.; Ishii, T.; Nakamura, K.; Hirano, N.; Kato, Y. Geology and geochemistry of ferromanganese nodules in the Japanese Exclusive Economic Zone around Minamitorishima Island. Geochem. J. 2016, 50, 539–555. [Google Scholar] [CrossRef] [Green Version]
- Elderfield, H.; Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 1996, 24, 191–224. [Google Scholar] [CrossRef]
- Craddock, P.R.; Bach, W.; Seewald, J.S.; Rouxel, O.J.; Reeves, E.; Tivey, M.K. Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins. Geochim. Cosmochim. Acta 2010, 74, 5494–5513. [Google Scholar] [CrossRef] [Green Version]
- De Baar, H.J.W.; Bacon, M.P.; Brewer, P.G.; Bruland, K.W. Rare earth elements in the Pacific and Atlantic Oceans. Geochim. Cosmochim. Acta 1985, 49, 1943–1959. [Google Scholar] [CrossRef]
- Liao, J.; Sun, X.; Li, D.; Sa, R.; Lu, Y.; Lin, Z.; Xu, L.; Zhan, R.; Pan, Y.; Xu, H. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies. Chem. Geol. 2019, 512, 58–68. [Google Scholar] [CrossRef]
- Trueman, C.N.; Tuross, N. Trace elements in recent and fossil bone apatite. Rev. Mineral. Geochem. 2002, 48, 489–521. [Google Scholar] [CrossRef]
- Deng, Y.; Ren, J.; Guo, Q.; Cao, J.; Wang, H.; Liu, C. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific. Sci. Rep. 2017, 7, 16539. [Google Scholar] [CrossRef] [Green Version]
- Piper, D.Z. Rare earth elements in the sedimentary cycle: A summary. Chem. Geol. 1974, 14, 285–304. [Google Scholar] [CrossRef]
- Addy, S.K. Rare earth element patterns in manganese nodules and micronodules from northwest Atlantic. Geochim. Cosmochim. Acta 1979, 43, 1105–1115. [Google Scholar] [CrossRef]
- Takahashi, Y.; Shimizu, H.; Usui, A.; Kagi, H.; Nomura, M. Direct observation of tetravalent cerium in ferromanganese nodules and crusts by X-ray-absorption near-edge structure (XANES). Geochim. Cosmochim. Acta 2000, 64, 2929–2935. [Google Scholar] [CrossRef]
- Yasukawa, K.; Ohta, J.; Miyazaki, T.; Vaglarov, B.S.; Chang, Q.; Ueki, K.; Toyama, C.; Kimura, J.-I.; Tanaka, E.; Nakamura, K.; et al. Statistic and isotopic characterization of deep-sea sediments in the western North Pacific Ocean: Implications for genesis of the sediment extremely enriched in rare-earth elements. Geochem. Geophys. Geosyst. 2019, 20, 3402–3430. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Machida, S.; Okino, K.; Masaki, Y.; Iijima, K.; Suzuki, K.; Kato, Y. Acoustic characterization of pelagic sediments using sub-bottom profiler data: Implications for the distribution of REY-rich mud in the Minamitorishima EEZ, western Pacific. Geochem. J. 2016, 50, 605–619. [Google Scholar] [CrossRef] [Green Version]
- McCave, I.N.; Manighetti, B.; Robinson, S.G. Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 1995, 10, 593–610. [Google Scholar] [CrossRef] [Green Version]
Core | Latitude | Longitude | Water Depth (mbsl) | Core Length (m) |
---|---|---|---|---|
ODP Leg 129 | ||||
800A | 21°55.38′ N | 152°19.37′ E | 5686 | 38.00 1 |
801A | 18°38.568′ N | 156°21.57′ E | 5674 | 55.80 1 |
Cruise MR16-07 | ||||
PC01 | 18°38.54′ N | 156°21.55′ E | 5682 | 1.38 |
PC02 | 18°38.51′ N | 156°21.59′ E | 5682 | 12.64 |
PC03 | 18°39.99′ N | 158°53.28′ E | 5746 | 12.91 |
PC04 | 21°55.41′ N | 152°19.39′ E | 5684 | 12.40 |
PC05 | 21°54.41′ N | 151°52.40′ E | 5649 | 12.28 |
PC06 | 21°44.97′ N | 153°55.97′ E | 5786 | 11.96 |
PC07 | 21°39.70′ N | 153°55.96′ E | 5792 | 11.76 |
PC08 | 20°53.00′ N | 158°59.96′ E | 5590 | 12.36 |
PC09 | 20°08.97′ N | 159°00.04′ E | 5565 | 11.81 |
PC10 | 22°31.29′ N | 158°37.98′ E | 5466 | 11.87 |
PC11 | 24°48.37′ N | 156°58.82′ E | 5900 | 11.90 |
PC12 | 26°45.97′ N | 150°49.72′ E | 5800 | 2.18 |
Cruise KM17-14C | ||||
PC01 | 22°52.49′ N | 153°57.99′ E | 5708 | 11.71 |
PC02 | 22°52.49′ N | 154°12.00′ E | 5613 | 12.79 |
GC03 | 23°00.00′ N | 154°20.00′ E | 5556 | 3.08 |
PC04 | 23°07.49′ N | 154°20.02′ E | 5564 | 9.92 |
PC05 | 23°07.50′ N | 154°13.50′ E | 5568 | 10.71 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, E.; Nakamura, K.; Yasukawa, K.; Mimura, K.; Fujinaga, K.; Ohta, J.; Iijima, K.; Nozaki, T.; Machida, S.; Kato, Y. Chemostratigraphic Correlations of Deep-Sea Sediments in the Western North Pacific Ocean: A New Constraint on the Distribution of Mud Highly Enriched in Rare-Earth Elements. Minerals 2020, 10, 575. https://doi.org/10.3390/min10060575
Tanaka E, Nakamura K, Yasukawa K, Mimura K, Fujinaga K, Ohta J, Iijima K, Nozaki T, Machida S, Kato Y. Chemostratigraphic Correlations of Deep-Sea Sediments in the Western North Pacific Ocean: A New Constraint on the Distribution of Mud Highly Enriched in Rare-Earth Elements. Minerals. 2020; 10(6):575. https://doi.org/10.3390/min10060575
Chicago/Turabian StyleTanaka, Erika, Kentaro Nakamura, Kazutaka Yasukawa, Kazuhide Mimura, Koichiro Fujinaga, Junichiro Ohta, Koichi Iijima, Tatsuo Nozaki, Shiki Machida, and Yasuhiro Kato. 2020. "Chemostratigraphic Correlations of Deep-Sea Sediments in the Western North Pacific Ocean: A New Constraint on the Distribution of Mud Highly Enriched in Rare-Earth Elements" Minerals 10, no. 6: 575. https://doi.org/10.3390/min10060575