Decarbonation Reactions Involving Ankerite and Dolomite under upper Mantle P,T-Parameters: Experimental Modeling
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Evans, K.A. The redox budget of subduction zones. Earth Sci. Rev. 2012, 113, 11–32. [Google Scholar] [CrossRef] [Green Version]
- Luth, R.W. Carbon and carbonates in mantle. In Mantle Petrology: Field Observation and High Pressure Experimentation: A Tribute to Francis, R. (Joe) Boyd; Fei, Y., Bertka, M.C., Mysen, B.O., Eds.; The Geochemical Society: Washington, DC, USA, 1999; pp. 297–316. ISBN 0-941809-05-6. [Google Scholar]
- Stagno, V. Carbon, carbides, carbonates and carbonatitic melts in the Earth’s interior. J. Geol. Soc. 2019, 176, 375–387. [Google Scholar] [CrossRef]
- Dasgupta, R.; Hirschmann, M.M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 2010, 298, 1–13. [Google Scholar] [CrossRef]
- Jones, A.; Genge, M.; Carmody, L. Carbonate melts and carbonatites. Rev. Miner. Geochem. 2013, 75, 289–322. [Google Scholar] [CrossRef] [Green Version]
- Shatskiy, A.F.; Litasov, K.D.; Palyanov, Y.N. Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: Review of experimental data. Russ. Geol. Geophys. 2015, 56, 113–142. [Google Scholar] [CrossRef]
- Morlidge, M.; Pawley, A.; Droop, G. Double carbonate breakdown reactions at high pressures: An experimental study in the system CaO-MgO-FeO-MnO-CO2. Contrib. Miner. Pet. 2006, 152, 365–373. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Selverstone, J.; Sharp, Z.D.; Compagnoni, R. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat. Geosci. 2011, 4, 703–706. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Manning, C.E. Reevaluating carbon fluxes in subduction zones. Proc. Natl. Acad. Sci. USA 2015, 112, E3997–E4006. [Google Scholar] [CrossRef] [Green Version]
- Gunn, S.C.; Luth, R.W. Carbonate reduction by Fe–S–O melts at high pressure and high temperature. Am. Miner. 2006, 91, 1110–1116. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Borzdov, Y.M.; Bataleva, Y.V.; Sokol, A.G.; Palyanova, G.A.; Kupriyanov, I.N. Reducing role of sulfides and diamond formation in the Earth’s mantle. Earth Planet. Sci. Lett. 2007, 260, 242–256. [Google Scholar] [CrossRef]
- Bataleva, Y.V.; Palyanov, Y.N.; Sokol, A.G.; Borzdov, Y.M.; Bayukov, O.A. Wüstite stability in the presence of a CO2-fluid and a carbonate-silicate melt: Implications for the graphite/diamond formation and generation of Fe-rich mantle metasomatic agents. Lithos 2016, 244, 20–29. [Google Scholar] [CrossRef]
- Newton, R.C.; Sharp, W.E. Stability of forsterite + CO2 and its bearing on the role of CO2 in the mantle. Earth Planet. Sci. Lett. 1975, 26, 239–244. [Google Scholar] [CrossRef]
- Koziol, A.M.; Newton, R.C. Experimental determination of the reaction: Magnesite + enstatite = forsterite + CO2 in the ranges 6–25 kbar and 700–1100 °C. Am. Min. 1998, 83, 213–219. [Google Scholar] [CrossRef]
- Wyllie, P.J.; Huang, W.-L.; Otto, J.; Byrnes, A.P. Carbonation of peridotites and decarbonation of siliceous dolomites represented in the system CaO-MgO-SiO2-CO2 to 30 kbar. Tectonophys. 1983, 100, 359–388. [Google Scholar] [CrossRef]
- Pal’yanov, Y.N.; Sokol, A.G.; Tomilenko, A.A.; Sobolev, N.V. Conditions of diamond formation through carbonate-silicate interaction. Eur. J. Miner. 2005, 17, 207–214. [Google Scholar] [CrossRef]
- Luth, R.W. Experimental determination of the reaction dolomite + 2 coesite = diopside + 2 CO2 to 6 GPa. Contrib. Miner. Pet. 1995, 122, 152–158. [Google Scholar] [CrossRef]
- Wyllie, P.J. Magmas and volatile components. Am. Miner. 1979, 64, 469–500. [Google Scholar]
- Eggler, D.H. The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35 kbar, with an analysis of melting in a peridotite-H2O-CO2 system. Am. J. Sci. 1978, 278, 305–343. [Google Scholar] [CrossRef]
- Knoche, R.; Sweeney, R.J.; Luth, R.W. Carbonation and decarbonation of eclogites: The role of garnet. Contrib. Miner. Pet. 1999, 135, 332–339. [Google Scholar] [CrossRef]
- Pal’yanov, Y.N.; Sokol, A.G.; Borzdov, Y.M.; Khokhryakov, A.F.; Sobolev, N.V. Diamond formation through carbonate-silicate interaction. Am. Miner. 2002, 87, 1009–1013. [Google Scholar] [CrossRef]
- Connolly, J.A.D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 2005, 236, 524–541. [Google Scholar] [CrossRef]
- Gorman, P.J.; Kerrick, D.M.; Connolly, J.A.D. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 2006, 7, Q04007. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.F.; Poli, S. Carbonate stability and fluid composition in subducted oceanic crust: An experimental study on H2O-CO2-bearing basalts. Earth Planet. Sci. Lett. 2000, 176, 295–310. [Google Scholar] [CrossRef]
- Poli, S.; Franzolin, E.; Fumagalli, P.; Crottini, A. The transport of carbon and hydrogen in subducted oceanic crust: An experimental study to 5 GPa. Earth Planet. Sci. Lett. 2009, 278, 350–360. [Google Scholar] [CrossRef]
- Bulanova, G.P. The formation of diamond. J. Geochem. Explor. 1995, 53, 2–23. [Google Scholar] [CrossRef]
- Wang, A.; Pasteris, J.D.; Meyer, H.O.A.; DeleDuboi, M.L. Magnesite-bearing inclusion assemblage in natural diamond. Earth Planet. Sci. Lett. 1996, 141, 293–306. [Google Scholar] [CrossRef]
- Navon, O.; Hutcheon, I.D.; Rossman, G.R.; Wasserburg, G.J. Mantle-derived fluids in diamond micro-inclusions. Nature 1988, 335, 784–789. [Google Scholar] [CrossRef]
- Schrauder, M.; Navon, O. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim. Cosmochim. Acta 1994, 58, 761–771. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Kaminsky, F.V.; Griffin, W.L.; Yefimova, E.S.; Win, T.T.; Ryan, C.G.; Botkunov, A.I. Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos 1997, 39, 135–157. [Google Scholar] [CrossRef]
- Izraeli, E.S.; Harris, J.W.; Navon, O. Brine inclusions in diamonds: A new upper mantle fluid. Earth Planet. Sci. Lett. 2001, 187, 1–10. [Google Scholar] [CrossRef]
- Stachel, T.; Harris, J.W.; Brey, G.P. Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib. Miner. Pet. 1998, 132, 34–47. [Google Scholar] [CrossRef]
- Brenker, F.E.; Vollmer, C.; Vincze, L.; Vekemans, B.; Szymanski, A.; Janssens, K.; Szaloki, I.; Nasdala, L.; Joswig, W.; Kaminsky, F. Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet. Sci. Lett. 2007, 260, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kaminsky, F.; Wirth, R.; Schreiber, B. Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: New minerals in the carbonate-halide association. Can. Miner. 2013, 51, 669–688. [Google Scholar] [CrossRef]
- Bataleva, Y.V.; Novoselov, I.D.; Kruk, A.N.; Furman, O.V.; Reutsky, V.N.; Palyanov, Y.N. Experimental modeling of decarbonation reactions resulting in the formation of Mg, Fe-garnets and CO2-fluid under mantle P,T-parameters. Russ. Geol. Geophys. 2020, 61, 650–662. [Google Scholar]
- Cerantola, V.; Bykova, E.; Kupenko, I.; Merlini, M.; Ismailova, L.; McCammon, C.; Bykov, M.; Chumakov, A.I.; Petitgirard, S.; Kantor, I.; et al. Stability of iron-bearing carbonates in the deep Earth’s interior. Nat. Commun. 2017, 8, 15960. [Google Scholar] [CrossRef]
- Cerantola, V.; Wilke, M.; Kantor, I.; Ismailova, L.; Kupenko, I.; McCammon, C.; Pascarelli, S.; Dubrovinsky, L.S. Experimental investigation of FeCO3 (siderite) stability in Earth’s lower mantle using XANES spectroscopy. Am. Miner. 2019, 104, 1083–1091. [Google Scholar] [CrossRef]
- Tao, R.; Fei, Y.; Zhang, L. Experimental determination of siderite stability at high pressure. Am. Min. 2013, 98, 1565–1572. [Google Scholar] [CrossRef]
- Kang, N.; Schmidt, M.W.; Poli, S.; Franzolin, E.; Connolly, J.A.D. Melting of siderite to 20 GPa and thermodynamic properties of FeCO3-melt. Chem. Geol. 2015, 400, 34–43. [Google Scholar] [CrossRef]
- Liu, J.; Lin, J.-F.; Prakapenka, V.B. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci. Rep. 2015, 5, 7640. [Google Scholar] [CrossRef] [Green Version]
- Bayarjargal, L.; Fruhner, C.-J.; Schrodt, N.; Winkler, B. CaCO3 phase diagram studied with Raman spectroscopy at pressures up to 50 GPa and high temperatures and DFT modeling. Phys. Earth Planet. Inter. 2018, 281, 31–45. [Google Scholar] [CrossRef]
- Gavryushkin, P.N.; Martirosyan, N.S.; Inerbaev, T.M.; Popov, Z.I.; Rashchenko, S.V.; Likhacheva, A.Y.; Lobanov, S.S.; Goncharov, A.F.; Prakapenka, V.B.; Litasov, K.D. Aragonite-II and CaCO3-VII: New high-pressure, high-temperature polymorphs of CaCO3. Cryst. Growth Des. 2017, 17, 6291–6296. [Google Scholar] [CrossRef]
- Solopova, N.A.; Dubrovinsky, L.; Spivak, A.V.; Litvin, Y.A.; Dubrovinskaia, N. Melting and decomposition of MgCO3 at pressures up to 84 GPa. Phys. Chem. Miner. 2015, 42, 73–81. [Google Scholar] [CrossRef]
- Katsura, T.; Ito, E. Melting and subsolidus phase relations in the MgSiO3–MgCO3 system at high pressures: Implications to evolution of the Earth’s atmosphere. Earth Planet. Sci. Lett. 1990, 99, 110–117. [Google Scholar] [CrossRef]
- Fiquet, G.; Guyot, F.; Kunz, M.; Matas, J.; Andrault, D.; Hanfland, M. Structural refinements of magnesite at very high pressure. Am. Miner. 2002, 87, 1261–1265. [Google Scholar] [CrossRef]
- Suito, K.; Namba, J.; Horikawa, T.; Taniguchi, Y.; Sakurai, N.; Kobayashi, M.; Onodera, A.; Shimomura, O.; Kikegawa, T. Phase relations of CaCO3 at high pressure and high temperature. Am. Miner. 2001, 86, 997–1002. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Lange, R.; Liu, J.; Militzer, B. Determination of calcium carbonate and sodium carbonate melting curves up to Earth’s transition zone pressures with implications for the deep carbon cycle. Earth Planet. Sci. Lett. 2017, 457, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, C.S.; Kennedy, G.C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 1976, 81, 2467–2470. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Borzdov, Y.M.; Khokhryakov, A.F.; Kupriyanov, I.N.; Sokol, A.G. Effect of nitrogen impurity on diamond crystal growth processes. Cryst. Growth Des. 2010, 10, 3169–3175. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Sokol, A.G. The effect of composition of mantle fluids/melts on diamond formation processes. Lithos 2009, 112S, 690–700. [Google Scholar] [CrossRef]
- Sokol, A.G.; Khokhryakov, A.F.; Palyanov, Y.N. Composition of primary kimberlite magma: Constraints from melting and diamond dissolution experiments. Contrib. Miner. Pet. 2015, 170, 26. [Google Scholar] [CrossRef]
- Sokol, A.G.; Borzdov, Y.M.; Palyanov, Y.N.; Khokhryakov, A.F. High-temperature calibration of a multi-anvil high pressure apparatus. High Press. Res. 2015, 35, 139–147. [Google Scholar] [CrossRef]
- Bataleva, Y.V.; Palyanov, Y.N.; Sokol, A.G.; Borzdov, Y.M.; Palyanova, G.A. Conditions for the origin of oxidized carbonate-silicate melts: Implications for mantle metasomatism and diamond formation. Lithos 2012, 128, 113–125. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Bataleva, Y.V.; Sokol, A.G.; Borzdov, Y.M.; Kupriyanov, I.N.; Reutsky, V.N.; Sobolev, N.V. Mantle–slab interaction and redox mechanism of diamond formation. Proc. Natl. Acad. Sci. USA 2013, 110, 20408–20413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bataleva, Y.V.; Palyanov, Y.N.; Sokol, A.G.; Borzdov, Y.M.; Bayukov, O.A. The role of rocks saturated with metallic iron in the formation of ferric carbonate–silicate melts: Experimental modeling under PT-conditions of lithospheric mantle. Russ. Geol. Geophys. 2015, 56, 143–154. [Google Scholar] [CrossRef]
- Boettcher, A.L.; Mysen, B.O.; Allen, J.C. Techniques for the control of water fugacity and oxygen fugacity for experimentation in solid-media high-pressure apparatus. J. Geophys. Res. 1973, 80, 5898–5901. [Google Scholar] [CrossRef]
- Luth, R.W. Natural versus experimental control of oxidation state: Effects on the composition and speciation of C-O-H fluids. Am. Miner. 1989, 74, 50–57. [Google Scholar]
- Berman, R.G. Thermobarometry using multiequilibrium calculations: A new technique with petrologic applications. Can. Miner. 1991, 29, 833–855. [Google Scholar]
- Ogasawara, Y.; Liou, J.G.; Zhang, R.Y. Thermochemical calculation of logfO2-T-P stability relations of diamond-bearing assemblages in the model system CaO-MgO-SiO2-CO2-H2O. Russ. Geol. Geophys. 1997, 2, 587–598. [Google Scholar]
- Robie, R.A.; Hemingway, B.S.; Fischer, J.R. Geological Survey Bulletin 1452; United States Government, Printing Office: Washington, DC, USA, 1978.
- Holland, T.J.B.; Powell, L. An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: K2O–Na2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. J. Metamorph. Geol. 1990, 8, 89–124. [Google Scholar] [CrossRef]
- Wendlandt, R.F.; Huebner, S.J.; Harrison, W.J. The redox potential of boron nitride and implications for its use as a crucible material in experimental petrology. Am. Miner. 1982, 67, 170–174. [Google Scholar]
- Farokhpoor, R.; Bjørkvik, B.J.A.; Lindeberg, E.; Torsæter, O. CO2 Wettability Behavior During CO2 Sequestration in Saline Aquifer -An Experimental Study on Minerals Representing Sandstone and Carbonate. Energy Procedia. 2013, 37, 5339–5351. [Google Scholar] [CrossRef] [Green Version]
- Chiquet, P.; Broseta, D.; Thibeau, S. Wettability alteration of caprock minerals by carbon dioxide. Geofluids 2007, 7, 112–122. [Google Scholar] [CrossRef]
- McCandless, T.E.; Gurney, J.J. Sodium in garnet and potassium in clinopyroxene: Criteria for classifying mantle eclogites. In Kimberlites and Related Rocks, Vol. 2. Their Mantle/Crust Setting, Diamonds and Diamond Exploration; Ross, J., Ed.; Geological Society of Australia, Special Publications: Melbourne, Australia, 1989; Volume 14, pp. 827–832. [Google Scholar]
- Bulanova, G.P.; Walter, M.J.; Smith, C.B.; Kohn, S.C.; Armstrong, L.S.; Blundy, J.; Gobbo, L. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib. Miner. Pet. 2010, 160, 489–510. [Google Scholar] [CrossRef]
- Stachel, T.; Harris, J.W.; Brey, G.P.; Joswig, W. Kankan diamonds (Guinea) II: Lower mantle inclusion parageneses. Contrib. Miner. Pet. 2000, 140, 16–27. [Google Scholar] [CrossRef]
- Walmsley, J.C.; Lang, A.R. On sub-micrometre inclusions in diamond coat: Crystallography and composition of ankerites and related rhombohedral carbonates. Miner. Mag. 1992, 56, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Skuzovatov, S.Y.; Zedgenizov, D.A.; Ragozin, A.L.; Shatsky, V.S. Growth medium composition of coated diamonds from the Sytykanskaya kimberlite pipe (Yakutia). Russ. Geol. Geophys. 2012, 53, 1197–1208. [Google Scholar] [CrossRef]
- Aulbach, S.; Viljoen, K.S.; Gerdes, A. Diamondiferous and barren eclogites and pyroxenites from the western Kaapvaal craton record subduction processes and mantle metasomatism, respectively. Lithos 2020, 368–369, 105588. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Sokol, A.G.; Khokhryakov, A.F.; Kruk, A.N. Conditions of diamond crystallization in kimberlite melt: Experimental data. Russ. Geol. Geophys. 2015, 56, 196–210. [Google Scholar] [CrossRef]
- Pal’yanov, Y.N.; Sokol, A.G.; Khokhryakov, A.F.; Pal’yanova, G.A.; Borzdov, Y.M.; Sobolev, N.V. Diamond and graphite crystallization in COH fluid at PT parameters of the natural diamond formation. Dokl. Earth Sci. 2000, 375, 1395–1398. [Google Scholar]
- Palyanov, Y.N.; Shatsky, V.S.; Sokol, A.G.; Tomilenko, A.A.; Sobolev, N.V. Crystallization of metamorphic diamond: An experimental modeling. Dokl. Earth Sci. 2001, 381, 935–938. [Google Scholar]
System | P, GPa | Weight, mg | ||
---|---|---|---|---|
Carbonate | SiO2 | Al2O3 | ||
CaMg(CO3)2-SiO2-Al2O3 | 3.0 | 5.0 | 3.2 | 1.8 |
6.3 | 5.0 | 3.2 | 1.8 | |
7.5 | 4.0 | 2.6 | 1.4 | |
Ca(Mg,Fe)(CO3)2-SiO2-Al2O3 | 3.0 | 5.2 | 3.1 | 1.8 |
6.3 | 5.2 | 3.1 | 1.8 | |
7.5 | 4.1 | 2.5 | 1.4 |
Run N | System | P, GPa | T, °C | t, h | Final Mineral Phases |
---|---|---|---|---|---|
1744-A | Ca(Mg,Fe)(CO3)2-SiO2-Al2O3 | 3.0 | 950 | 60 | Ky, Ank, Arg, Coe, Crn |
1738-A | 3.0 | 1050 | 60 | Grt, Ky, Ank, Coe, Crn | |
2117-A | 6.3 | 1100 | 40 | Ky, Ank, Coe, Crn | |
2119-A | 6.3 | 1200 | 40 | Ky, Ank, Coe, Crn | |
2115-A | 6.3 | 1300 | 20 | Grt, Ky, Ank, Coe, Crn | |
2113-A | 6.3 | 1400 | 10 | Grt, Ky, Ank, Coe, Crn | |
2137-A | 7.5 | 1150 | 60 | Ky, Ank, Coe, Crn | |
2135-A | 7.5 | 1250 | 40 | Ky, Ank, Coe, Crn | |
2141-A | 7.5 | 1350 | 10 | Ky, Ank, Coe, Crn | |
2145-A | 7.5 | 1450 | 10 | Grt, Ky, Ank, Coe, Crn | |
1743-D | CaMg(CO3)2-SiO2-Al2O3 | 3.0 | 1050 | 60 | Ky, Dol, Coe, Crn |
2122-D | 3.0 | 1150 | 60 | Grt, Ky, Dol, Coe, Crn | |
2160-D | 6.3 | 1200 | 40 | Ky, Dol, Coe, Crn | |
2155-D | 6.3 | 1250 | 40 | Ky, Dol, Coe, Crn | |
2128-D | 6.3 | 1350 | 20 | Grt, Ky, Dol, Coe, Crn | |
2120-D | 6.3 | 1450 | 10 | Grt, Ky, Dol, Coe | |
2161-D | 7.5 | 1450 | 10 | Ky, Dol, Coe, Crn | |
2157-D | 7.5 | 1550 | 15 min | Grt, Coe, Crn |
Run N | 2115-A | 2145-A | 2122-D | 2155-D | 2157-D |
---|---|---|---|---|---|
Phase | Alm36Pp38Grs26 | Alm43Prp34Grs23 | Pp74Grs26 | Pp70Grs30 | Prp84Grs16 |
Raman Shift, cm−1 | |||||
R(SiO4)4− | - | 173 | - | - | - |
- | 267 | - | - | 270 | |
- | 293 | 299 | 301 | 297 | |
- | - | 324 | 325 | - | |
358 | 354 | 368 | 369 | 368 | |
- | - | - | 390 | - | |
- | - | 402 | 403 | - | |
- | - | - | 436 | - | |
485 | - | 485 | 485 | - | |
505 | 505 | - | 509 | - | |
- | 520 | - | - | 520 | |
(Si-O)bend, υ2 | 557 | 556 | 561 | 559 | 562 |
638 | 638 | 647 | 640 | 646 | |
- | 720 | - | - | - | |
- | - | - | - | 827 | |
853 | 853 | 853 | 851 | 860 | |
(Si-O)str, υ1 | 911 | 911 | 915 | 912 | 920 |
- | - | - | 949 | - |
Run N | P, GPa | T, °C | Phase | Mass Concentrations, wt. % | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | FeO | MnO | MgO | CaO | CO2 * | Total | ||||
1744-A | 950 | 3.0 | Ky | 34(1) | 66.1(4) | 0.6(1) | - | - | - | - | 100.5 |
Ank | - | - | 17(3) | 0.5(1) | 9(1) | 28(4) | 45(1) | 100.0 | |||
1738-A | 1050 | 3.0 | Grt | 39.3(3) | 21.8(1) | 21.7(5) | 0.5(0) | 7.3(5) | 9.0(3) | - | 100.5 |
Ky | 34.5(4) | 64(1) | 0.9(1) | - | - | - | - | 99.3 | |||
Ank | - | - | 15(2) | 0.4(1) | 12.8(4) | 28(2) | 43.9(7) | 100.0 | |||
2117-A | 1100 | 6.3 | Ky | 35.8(8) | 63.6(7) | 0.5(1) | - | - | - | - | 100.0 |
Ank | - | - | 13.4(4) | 0.5(0) | 9.6(3) | 32.6(4) | 44.0(4) | 100.0 | |||
2119-A | 1200 | 6.3 | Ky | 35.6(3) | 64.1(9) | 1.0(0) | - | - | - | - | 100.3 |
Ank | - | - | 17.8(9) | 0.6(1) | 10(1) | 28(1) | 45(1) | 100.0 | |||
2115-A | 1300 | 6.3 | Grt | 39.9(4) | 22.0(5) | 18(3) | 0.6(1) | 10.3(9) | 9(1) | - | 100.2 |
Ank | - | - | 14.9(1) | - | 8.4(2) | 30.2(1) | 46.3(3) | 100.0 | |||
Ky | 35.5(7) | 64(1) | 1.0(1) | - | - | - | - | 100.3 | |||
2113-A | 1400 | 6.3 | Grt | 39.4(5) | 21.4(5) | 20(1) | 0.7(0) | 10.1(3) | 9(1) | - | 99.7 |
Ank | - | - | 18(2) | 0.3(0) | 7.2(8) | 29.2(7) | 45.3(6) | 100.0 | |||
Ky | 36(1) | 62(1) | 2.0(2) | - | - | - | - | 99.8 | |||
2137-A | 1150 | 7.5 | Ky | 36.5(4) | 62.9(4) | 0.7(2) | - | - | - | - | 100.2 |
Ank | - | - | 19(1) | 0.5(1) | 11(1) | 26(2) | 43.4(8) | 100.0 | |||
2135-A | 1250 | 7.5 | Ky | 36.1(1) | 62.4(3) | 0.5(9) | - | - | 0.4(2) | - | 99.6 |
Ank | - | 0.2(0) | 15(2) | 0.5(1) | 12(2) | 28(3) | 44.9(8) | 100.0 | |||
2141-A | 1350 | 7.5 | Ky | 36.1(2) | 62.9(5) | 1.7(2) | - | - | - | - | 99.5 |
Ank | - | - | 17(1) | 0.5(1) | 11.2(6) | 26.1(8) | 45.3(9) | 100.0 | |||
2145-A | 1450 | 7.5 | Grt | 39.5(4) | 21.7(1) | 20.8(5) | 0.7(0) | 9.1(7) | 8.6(5) | - | 100.4 |
Ky | 35.3(3) | 62.5(7) | 1.7(4) | - | - | 0.2(3) | - | 99.6 | |||
Ank | - | - | 13.5(4) | 0.5(1) | 13.0(6) | 28(1) | 44.6(6) | 100.0 |
Run N | P, GPa | T, °C | Phase | Mass Concentrations, wt. % | |||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | MgO | CaO | CO2 | Total | ||||
1743-D | 3.0 | 1050 | Ky | 36.0(1) | 64.2(6) | - | - | - | 100.2 |
Dol | - | - | 21.6(8) | 29.8(4) | 48.6(9) | 100.0 | |||
2122-D | 3.0 | 1150 | Grt | 43.3(3) | 24.2(1) | 21.6(4) | 10.7(8) | - | 99.7 |
Ky | 33(2) | 67(2) | - | - | - | 100.1 | |||
Dol | - | - | 18(1) | 34(1) | 47.7(5) | 100.0 | |||
2160-D | 6.3 | 1200 | Ky | 36.2(3) | 63.8(7) | - | - | - | 100.1 |
Dol | - | - | 25.3(5) | 24.9(5) | 49.8(4) | 100.0 | |||
2155-D | 6.3 | 1250 | Ky | 35.3(6) | 64.8(5) | - | - | - | 100.1 |
Dol | - | - | 20.7(8) | 30.4(9) | 48.9(3) | 100.0 | |||
2128-D | 6.3 | 1350 | Grt | 43.3(3) | 24.3(1) | 22.8(3) | 9.1(3) | - | 99.5 |
Ky | 36.7(1) | 62.5(2) | - | - | - | 99.1 | |||
Dol | - | - | 26.2(6) | 24.6(0) | 49.0(4) | 100.0 | |||
2120-D | 6.3 | 1450 | Grt | 44.1(3) | 22.9(3) | 23.2(2) | 9.3(4) | - | 100.6 |
Ky | 34.1(4) | 66.2(4) | - | - | - | 100.3 | |||
Dol | - | - | 16.3(8) | 38.7(7) | 45.0(3) | 100.0 | |||
2161-D | 7.5 | 1450 | Ky | 36.5(5) | 63.6(4) | - | - | - | 100.1 |
Dol | - | - | 25.2(4) | 25.6(0) | 49.2(3) | 100.0 | |||
2157-D | 7.5 | 1550 | Grt | 42.1(3) | 23.5(1) | 21.5(2) | 11.5(5) | - | 99.5 |
Ky | 33.7(2) | 66.5(0) | - | - | - | 100.2 | |||
Dol | - | - | 19.8(1) | 31.7(2) | 48.5(5) | 100.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bataleva, Y.V.; Kruk, A.N.; Novoselov, I.D.; Furman, O.V.; Palyanov, Y.N. Decarbonation Reactions Involving Ankerite and Dolomite under upper Mantle P,T-Parameters: Experimental Modeling. Minerals 2020, 10, 715. https://doi.org/10.3390/min10080715
Bataleva YV, Kruk AN, Novoselov ID, Furman OV, Palyanov YN. Decarbonation Reactions Involving Ankerite and Dolomite under upper Mantle P,T-Parameters: Experimental Modeling. Minerals. 2020; 10(8):715. https://doi.org/10.3390/min10080715
Chicago/Turabian StyleBataleva, Yuliya V., Aleksei N. Kruk, Ivan D. Novoselov, Olga V. Furman, and Yuri N. Palyanov. 2020. "Decarbonation Reactions Involving Ankerite and Dolomite under upper Mantle P,T-Parameters: Experimental Modeling" Minerals 10, no. 8: 715. https://doi.org/10.3390/min10080715