Exploring Offshore Sediment Evidence of the 1755 CE Tsunami (Faro, Portugal): Implications for the Study of Outer Shelf Tsunami Deposits
Abstract
:1. Introduction
1.1. Study Site
1.2. Previous Study
2. Materials and Methods
2.1. Supporting Data
2.2. Sand Composition and Microtextural Analysis of Quartz Grains
2.3. 210. Pb and 14C Dating
2.4. Statistical Analysis
3. Results
3.1. Chronology
3.2. Multi Proxy Data
3.3. Sand Composition
3.4. Microtextural Analysis of Quartz Grains
4. Discussion
4.1. Correspondence to the 1755 CE Tsunami
4.2. Identifying Outer Shelf Tsunami Deposits
5. Conclusions
- In the present study, there is no pronounced single-proxy evidence for tsunami sedimentation. Yet, taking the sum of multiple small pieces of evidence reveals evidence of a tsunami-related deposition. Relative to non-tsunami samples, presumed tsunami samples have a subtle terrestrial fingerprint (increases of Al + Si ratio, quartz, terrestrial biogenic components), grain size variation, more abundant mollusk fragments, a decrease in total foraminifera abundance, and fine material input with deposit age ranges that overlap the 1755 CE event. The subtle terrestrial fingerprint of the tsunami sediments found here, as well as results in the literature, implies that the usage of methodologies that can reveal sedimentary structures related to the action of the tsunami wave and the backwash flow might have a higher potential. Moreover, outer shelf tsunami deposits depend greatly on the local geology and bathymetry, and differences between the two tsunami units were encountered related to the differing core location at 58 m and 91 m bsl. The site-specific tsunami deposit characteristics call for adapting the methodology to identify these deposits in similar environments.
- Microtextural analysis of quartz grain surfaces was performed for the first time in outer shelf tsunami samples. Although tsunami samples showed a minor increase in percussion marks, this increase was insignificant, and no other possible tsunami signature was detected, suggesting that microtextural analysis is not useful for identifying tsunami deposits in shelf settings, unlike for onshore high-energy deposits.
- A possible change in the general sedimentation following the tsunami event might have influenced the signature of the 1755 CE tsunami in the outer shelf sedimentary record. The contradicting result, that the 1755 CE tsunami is so far the only historical tsunami event that left geological evidence onshore and its subtle signature on the shelf, needs further investigation.
- The methods described here to study outer shelf tsunami deposits (CT scans, SC reinforced by XRF, magnetic parameters, and multivariate statistical analysis) can be applied for other potential tsunami deposits in the cores under study to ultimately improve the dataset of past tsunamis in Portugal, which lacks geological data and the extension to pre-historic times.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Costa, P.J.M.; Andrade, C. Tsunami deposits: Present knowledge and future challenges. Sedimentology 2020, 67, 1189–1206. [Google Scholar] [CrossRef]
- Smedile, A.; De Martini, P.M.; Pantosti, D.; Bellucci, L.; Del Carlo, P.; Gasperini, L.; Pirrotta, C.; Polonia, A.; Boschi, E. Possible tsunami signatures from an integrated study in the Augusta Bay offshore (Eastern Sicily-Italy). Mar. Geol. 2011, 281, 1–13. [Google Scholar] [CrossRef]
- Smedile, A.; Molisso, F.; Chagué, C.; Iorio, M.; De Martini, P.M.; Pinzi, S.; Collins, P.E.F.; Sagnotti, L.; Pantosti, D. New coring study in Augusta Bay expands understanding of offshore tsunami deposits (Eastern Sicily, Italy). Sedimentology 2020, 67, 1553–1576. [Google Scholar] [CrossRef] [Green Version]
- Tyuleneva, N.; Braun, Y.; Katz, T.; Suchkov, I.; Goodman-Tchernov, B. A new chalcolithic-era tsunami event identified in the offshore sedimentary record of Jisr al-Zarka (Israel). Mar. Geol. 2018, 396, 67–78. [Google Scholar] [CrossRef]
- Dawson, A.G.; Stewart, I. Tsunami deposits in the geological record. Sediment. Geol. 2007, 200, 166–183. [Google Scholar] [CrossRef]
- Rhodes, B.; Tuttle, M.; Horton, B.; Doner, L.; Kelsey, H.; Nelson, A.; Cisternas, M. Paleotsunami research. Eos Trans. Am. Geophys. Union 2006, 87, 205. [Google Scholar] [CrossRef]
- Goff, J.; Chagué-Goff, C.; Nichol, S.; Jaffe, B.; Dominey-Howes, D. Progress in palaeotsunami research. Sediment. Geol. 2012, 243–244, 70–88. [Google Scholar] [CrossRef]
- Toyofuku, T.; Duros, P.; Fontanier, C.; Mamo, B.; Bichon, S.; Buscail, R.; Chabaud, G.; Deflandre, B.; Goubet, S.; Grémare, A.; et al. Unexpected biotic resilience on the Japanese seafloor caused by the 2011 Tōhoku-Oki tsunami. Sci. Rep. 2014, 4, 7517. [Google Scholar] [CrossRef]
- Seike, K.; Kobayashi, G.; Kogure, K. Post-depositional alteration of shallow-marine tsunami-induced sand layers: A comparison of recent and ancient tsunami deposits, Onagawa Bay, northeastern Japan. Isl. Arc 2017, 26, e12174. [Google Scholar] [CrossRef]
- Feldens, P.; Schwarzer, K.; Sakuna, D.; Szczuciński, W.; Sompongchaiyakul, P. Sediment distribution on the inner continental shelf off Khao Lak (Thailand) after the 2004 Indian Ocean tsunami. Earth Planets Sp. 2012, 64, 875–887. [Google Scholar] [CrossRef] [Green Version]
- Milker, Y.; Wilken, M.; Schumann, J.; Sakuna, D.; Feldens, P.; Schwarzer, K.; Schmiedl, G. Sediment transport on the inner shelf off Khao Lak (Andaman Sea, Thailand) during the 2004 Indian Ocean tsunami and former storm events: Evidence from foraminiferal transfer functions. Nat. Hazards Earth Syst. Sci. 2013, 13, 3113–3128. [Google Scholar] [CrossRef] [Green Version]
- Weiss, R.; Bahlburg, H. A Note on the Preservation of Offshore Tsunami Deposits. J. Sediment. Res. 2006, 76, 1267–1273. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, X.; Xiang, R.; Wang, Y.; Sun, L. Palaeotsunami in the East China Sea for the past two millennia: A perspective from the sedimentary characteristics of mud deposit on the continental shelf. Quat. Int. 2017, 452, 54–64. [Google Scholar] [CrossRef]
- Riou, B.; Chaumillon, E.; Schneider, J.-L.; Corrège, T.; Chagué, C. The sediment-fill of Pago Pago Bay (Tutuila Island, American Samoa): New insights on the sediment record of past tsunamis. Sedimentology 2018, 67, 1577–1600. [Google Scholar] [CrossRef]
- Riou, B.; Chaumillon, E.; Chagué, C.; Sabatier, P.; Schneider, J.-L.; Walsh, J.-P.; Zawadzki, A.; Fierro, D. Backwash sediment record of the 2009 South Pacific Tsunami and 1960 Great Chilean Earthquake Tsunami. Sci. Rep. 2020, 10, 4149. [Google Scholar] [CrossRef] [Green Version]
- Noda, A.; Katayama, H.; Sagayama, T.; Suga, K.; Uchida, Y.; Satake, K.; Abe, K.; Okamura, Y. Evaluation of tsunami impacts on shallow marine sediments: An example from the tsunami caused by the 2003 Tokachi-oki earthquake, northern Japan. Sediment. Geol. 2007, 200, 314–327. [Google Scholar] [CrossRef]
- Abrantes, F.; Alt-Epping, U.; Lebreiro, S.; Voelker, A.; Schneider, R. Sedimentological record of tsunamis on shallow-shelf areas: The case of the 1969 AD and 1755 AD tsunamis on the Portuguese Shelf off Lisbon. Mar. Geol. 2008, 249, 283–293. [Google Scholar] [CrossRef]
- Feldens, P.; Schwarzer, K.; Szczuciński, W.; Stattegger, K.; Sakuna, D.; Somgpongchaiykul, P.; Kiel, D. Impact of the 2004 Indian Ocean Tsunami on seafloor morphology and sediments offshore Pakarang Cape, Thailand The research area Methods. Methods 2008, 18, 63–68. [Google Scholar]
- Sakuna, D.; Szczuciński, W.; Feldens, P.; Schwarzer, K.; Khokiattiwong, S. Sedimentary deposits left by the 2004 Indian Ocean tsunami on the inner continental shelf offshore of Khao Lak, Andaman Sea (Thailand). Earth Planets Sp. 2012, 64, 931–943. [Google Scholar] [CrossRef] [Green Version]
- Ikehara, K.; Irino, T.; Usami, K.; Jenkins, R.; Omura, A.; Ashi, J. Possible submarine tsunami deposits on the outer shelf of Sendai Bay, Japan resulting from the 2011 earthquake and tsunami off the Pacific coast of Tohoku. Mar. Geol. 2014, 349, 91–98. [Google Scholar] [CrossRef]
- Pongpiachan, S. Application of binary diagnostic ratios of polycyclic aromatic hydrocarbons for identification of tsunami 2004 backwash sediments in khao lak, Thailand. Sci. World J. 2014, 2014, 14. [Google Scholar] [CrossRef] [PubMed]
- Quintela, M.; Costa, P.J.M.; Fatela, F.; Drago, T.; Hoska, N.; Andrade, C.; Freitas, M.C. The AD 1755 tsunami deposits onshore and offshore of Algarve (south Portugal): Sediment transport interpretations based on the study of Foraminifera assemblages. Quat. Int. 2016, 408, 123–138. [Google Scholar] [CrossRef]
- Van den Bergh, G.D.; Boer, W.; De Haas, H.; van Weering, T.C.E.; van Wijhe, R. Shallow marine tsunami deposits in Teluk Banten (NW Java, Indonesia), generated by the 1883 Krakatau eruption. Mar. Geol. 2003, 197, 13–34. [Google Scholar] [CrossRef]
- Goodman-Tchernov, B.N.; Dey, H.W.; Reinhardt, E.G.; McCoy, F.; Mart, Y. Tsunami waves generated by the Santorini eruption reached Eastern Mediterranean shores. Geology 2009, 37, 943–946. [Google Scholar] [CrossRef]
- Goodman-Tchernov, B.N.; Austin, J.A. Deterioration of Israel’s Caesarea Maritima’s ancient harbor linked to repeated tsunami events identified in geophysical mapping of offshore stratigraphy. J. Archaeol. Sci. Rep. 2015, 3, 444–454. [Google Scholar] [CrossRef]
- Tchernov, B.G.; Katz, T.; Shaked, Y.; Qupty, N.; Kanari, M.; Niemi, T.; Agnon, A. Offshore evidence for an undocumented tsunami event in the “low risk” Gulf of Aqaba-Eilat, northern Red Sea. PLoS ONE 2016, 11, e0145802. [Google Scholar]
- Einsele, G.; Chough, S.K.; Shiki, T. Depositional events and their records—an introduction. Sediment. Geol. 1996, 104, 1–9. [Google Scholar] [CrossRef]
- Le Roux, J.P.; Vargas, G. Hydraulic behavior of tsunami backflows: Insights from their modern and ancient deposits. Environ. Geol. 2005, 49, 65–75. [Google Scholar] [CrossRef]
- Shanmugam, G. Process-sedimentological challenges in distinguishing paleo-tsunami deposits. Nat. Hazards 2012, 63, 5–30. [Google Scholar] [CrossRef]
- Chagué-Goff, C.; Szczuciński, W.; Shinozaki, T. Applications of geochemistry in tsunami research: A review. Earth-Science Rev. 2017, 165, 203–244. [Google Scholar] [CrossRef]
- Tamura, T.; Sawai, Y.; Ikehara, K.; Nakashima, R.; Hara, J.; Kanai, Y. Shallow-marine deposits associated with the 2011 Tohoku-oki tsunami in Sendai Bay, Japan. J. Quat. Sci. 2015, 30, 293–297. [Google Scholar] [CrossRef]
- Jagodziński, R.; Sternal, B.; Szczuciński, W.; Lorenc, S. Heavy minerals in 2004 tsunami deposits on Kho Khao Island, Thailand. Polish J. Environ. Stud. 2009, 18, 103–110. [Google Scholar]
- Mahaney, W.C.; Dohm, J.M. The 2011 Japanese 9.0 magnitude earthquake: Test of a kinetic energy wave model using coastal configuration and offshore gradient of Earth and beyond. Sediment. Geol. 2011, 239, 80–86. [Google Scholar] [CrossRef]
- Costa, P.J.M.; Andrade, C.; Dawson, A.G.; Mahaney, W.C.; Freitas, M.C.; Paris, R.; Taborda, R. Microtextural characteristics of quartz grains transported and deposited by tsunamis and storms. Sediment. Geol. 2012, 275–276, 55–69. [Google Scholar] [CrossRef]
- Bellanova, P.; Bahlburg, H.; Nentwig, V.; Spiske, M. Microtextural analysis of quartz grains of tsunami and non-tsunami deposits—A case study from Tirúa (Chile). Sediment. Geol. 2016, 343, 72–84. [Google Scholar] [CrossRef]
- Costa, P.J.M.; Park, Y.S.; Kim, Y.D.; Quintela, M.; Mahaney, W.C.; Dourado, F.; Dawson, S. Imprints in Silica Grains Induced During An Open-Channel Flow Experiment: Determination of Microtextural Signatures During Aqueous Transport. J. Sediment. Res. 2017, 87, 677–687. [Google Scholar] [CrossRef]
- Costa, P.J.M.; Rasteiro Da Silva, D.; Figueirinhas, L.; Lario, J. The importance of coastal geomorphological setting as a controlling factor on microtextural signatures of the 2010 maule (Chile) tsunami deposit. Geol. Acta 2019, 17, 1–10. [Google Scholar]
- Martínez Solares, J.M.; López Arroyo, A. The great historical 1755 earthquake. Effects and damage in Spain. J. Seismol. 2004, 8, 275–294. [Google Scholar] [CrossRef]
- Drago, T.; Silva, P.; Lopes, A.; Magalhães, V.; Roque, C.; Rodrigues, A.I.; Noiva, J.; Terrinha, P.; Mena, A.; Francés, G.; et al. Searching for tsunamis evidences on the Algarve (Southern Portugal) continental shelf sedimentary record. In Proceedings of the EGU General Assembly, Vienna, Austria, 17–22 April 2016; Volume 18. id. EPSC2016-16997. [Google Scholar]
- Dawson, A.G.; Hindson, R.; Andrade, C.; Freitas, C.; Parish, R.; Bateman, M. Tsunami sedimentation associated with the Lisbon earthquake of 1 November AD 1755: Boca do Rio, Algarve, Portugal. Holocene 1995, 5, 209–215. [Google Scholar] [CrossRef]
- Hindson, R.A.; Andrade, C.; Dawson, A.G. Sedimentary processes associated with the tsunami generated by the 1755 Lisbon earthquake on the Algarve coast, Portugal. Phys. Chem. Earth 1996, 21, 57–63. [Google Scholar] [CrossRef]
- Cuven, S.; Paris, R.; Falvard, S.; Miot-Noirault, E.; Benbakkar, M.; Schneider, J.L.; Billy, I. High-resolution analysis of a tsunami deposit: Case-study from the 1755 lisbon tsunami in southwestern spain. Mar. Geol. 2013, 337, 98–111. [Google Scholar] [CrossRef]
- Font, E.; Veiga-Pires, C.; Pozo, M.; Nave, S.; Costas, S.; Ruiz Muñoz, F.; Abad, M.; Simões, N.; Duarte, S.; Rodríguez-Vidal, J. Benchmarks and sediment source(s) of the 1755 Lisbon tsunami deposit at Boca do Rio Estuary. Mar. Geol. 2013, 343, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.J.M.; Costas, S.; González-Villanueva, R.; Oliveira, M.A.; Roelvink, D.; Andrade, C.; Freitas, M.C.; Cunha, P.P.; Martins, A.; Buylaert, J.P.; et al. How did the AD 1755 tsunami impact on sand barriers across the southern coast of Portugal? Geomorphology 2016, 268, 296–311. [Google Scholar] [CrossRef] [Green Version]
- Feist, L.; Frank, S.; Bellanova, P.; Laermanns, H.; Cämmerer, C.; Mathes-Schmidt, M.; Biermanns, P.; Brill, D.; Costa, P.J.M.; Teichner, F.; et al. The sedimentological and environmental footprint of extreme wave events in Boca do Rio, Algarve coast, Portugal. Sediment. Geol. 2019, 389, 147–160. [Google Scholar] [CrossRef]
- Vigliotti, L.; Andrade, C.; Conceição, F.; Capotondi, L.; Gallerani, A.; Bellucci, L.G. Paleomagnetic, rock magnetic and geochemical study of the 1755 tsunami deposit at Boca do Rio (Algarve, Portugal). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 514, 550–566. [Google Scholar] [CrossRef]
- Andrade, C.; Freitas, M.C.; Oliveira, M.A.; Costa, P.J.M. On the Sedimentological and Historical Evidences of Seismic-Triggered Tsunamis on the Algarve Coast of Portugal. In Plate Boundaries and Natural Hazards; Delve Publishing LLC: New York, NY, USA, 2016; pp. 219–238. [Google Scholar]
- Valencia, J.; Ercilla, G.; Hernández-Molina, F.J.; Casas, D. Oceanographic Mower Cruise. Isprs Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W5, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. Geochemistry Geophys. Geosystems 2019, 20, 5556–5564. [Google Scholar] [CrossRef] [Green Version]
- Roque, C.; Lobo, F.; Somoza, L.; Roque, C.; Hernández-Molina, F.J.; Lobo, F.; Somoza, L.; Díaz-de-Río, V.; Vázquez, J.T.; Dias, J. Geomorphology of the Eastern Algarve proximal continental margin (South Portugal, SW Iberia Peninsula): Sedimentary dynamics and its relationship with the last asymmetrical eustatic cycle. Ciencias da Terra 2010, 17, 28. [Google Scholar]
- García-Lafuente, J.; Delgado, J.; Criado-Aldeanueva, F.; Bruno, M.; del Río, J.; Miguel Vargas, J. Water mass circulation on the continental shelf of the Gulf of Cádiz. Deep. Res. Part II Top. Stud. Oceanogr. 2006, 53, 1182–1197. [Google Scholar] [CrossRef]
- Relvas, P.; Barton, E.D. Mesoscale patterns in the Cape São Vicente (Iberian Peninsula) upwelling region. J. Geophys. Res. C Ocean. 2002, 107, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Almeida, L.P.; Ferreira, Ó.; Vousdoukas, M.I.; Dodet, G. Historical variation and trends in storminess along the Portuguese South Coast. Nat. Hazards Earth Syst. Sci. 2011, 11, 2407–2417. [Google Scholar] [CrossRef] [Green Version]
- Alveirinho Dias, J.M.; Neal, W.J. Sea cliff retreat in southern Portugal: Profiles, processes, and problems. J. Coast. Res. 1992, 8, 641–654. [Google Scholar]
- Andrade, C.A.C.F. O ambiente de Barreira da Ria Formosa: Algarve-Portugal. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portuga, 1990; 645p. [Google Scholar]
- Trindade, M.J.; Rocha, F.; Dias, M.I.; Prudêncio, M.I. Mineralogy and grain-size distribution of clay-rich rock units of the Algarve Basin (South Portugal). Clay Miner. 2013, 48, 59–83. [Google Scholar] [CrossRef]
- Magalhães, F. Os sedimentos da Plataforma Continental Portuguesa: Contrastes Espaciais; Instituto Hidrográfico: Lisboa, Portugal, 2001. [Google Scholar]
- Moita, I. Noticia Explicativa da Carta dos Sedimentos Superficiais da Plataforma, Folha SED 8; Instituto Hidrográfico: Lisboa, Portugal, 1986. [Google Scholar]
- Lobo, F.J.; Sánchez, R.; González, R.; Dias, J.M.A.; Hernández-Molina, F.J.; Fernández-Salas, L.M.; Díaz Del Río, V.; Mendes, I. Contrasting styles of the Holocene highstand sedimentation and sediment dispersal systems in the northern shelf of the Gulf of Cadiz. Cont. Shelf Res. 2004, 24, 461–482. [Google Scholar] [CrossRef]
- Terrinha, P.; Noiva, J.; Brito, P.; Baptista, L.; Roque, C.; Drago, T.; Silva, P.F.; Magalhães, V.; Rodrigues, A.I.; Lopes, A. New Results of the Offshore Record of Tsunami Deposits and MTDs in the NEAM Region: The Southwestern Iberian Margin case. Available online: http://www.astarte-project.eu/index.php/deliverables.html (accessed on 9 August 2020).
- Blott, S.J.; Pye, K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landforms 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Tatzber, M.; Stemmer, M.; Spiegel, H.; Katzlberger, C.; Haberhauer, G.; Gerzabek, M.H. An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ. Chem. Lett. 2007, 5, 9–12. [Google Scholar] [CrossRef]
- Chagué-Goff, C.; Chan, J.C.H.; Goff, J.; Gadd, P. Late Holocene record of environmental changes, cyclones and tsunamis in a coastal lake, Mangaia, Cook Islands. Isl. Arc 2016, 25, 333–349. [Google Scholar] [CrossRef]
- Mena, A.; Francés, G.; Pérez-Arlucea, M.; Aguiar, P.; Barreiro-Vázquez, J.D.; Iglesias, A.; Barreiro-Lois, A. A novel sedimentological method based on CT-scanning: Use for tomographic characterization of the Galicia Interior Basin. Sediment. Geol. 2015, 321, 123–138. [Google Scholar] [CrossRef]
- Rorden, C.; Brett, M. Lesion analysis. Behav. Neurol. 2000, 12, 191–200. [Google Scholar] [CrossRef]
- Krumbein, W.C. Size Frequency Distributions of Sediments. Sepm J. Sediment. Res. 1934, 4, 65–77. [Google Scholar] [CrossRef]
- Kümmerer, V. Anomalous Layers in the Southern Portuguese Continental Shelf Sedimentary Record: Potential Evidence of the 1755 CE Lisbon Tsunami. Master’s Thesis, Universidade do Algarve, Faro, Portugal, 2019. [Google Scholar]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image Processing with ImageJ Second Edition; Laurin Publishing: Pittsfield, MA, USA, 2004; Volume 11, ISBN 9781785889837. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Yen, J.C.; Chang, F.J.; Chang, S. A New Criterion for Automatic Multilevel Thresholding. IEEE Trans. Image Process. 1995, 4, 370–378. [Google Scholar] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2020. Available online: https://www.r-project.org (accessed on 4 April 2020).
- Takashimizu, Y.; Iiyoshi, M. New parameter of roundness R: Circularity corrected by aspect ratio. Prog. Earth Planet. Sci. 2016, 3, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Powers, M.C. A New Roundness Scale for Sedimentary Particles. Sepm J. Sediment. Res. 1953, 23, 117–119. [Google Scholar]
- Lira, C.; Pina, P. Granulometry on classified images of sand grains. In Proceedings of the 11th International Coastal Symposium ICS2011, Szczecin, Poland, 9–13 May 2011; pp. 1697–1701. [Google Scholar]
- Blaauw, M.; Christen, J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar]
- Blaauw, M.; Christen, J.A.; Bennett, K.D.; Reimer, P.J. Double the dates and go for Bayes—Impacts of model choice, dating density and quality on chronologies. Quat. Sci. Rev. 2018, 188, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Monge Soares, A.M. The 14C Content of Marine Shells: Evidence for Variability in Coastal Upwelling off Portugal during the Holocene; International Atomic Energy Agency (IAEA): Vienna, Austria, 1993; ISBN 0074-1884. [Google Scholar]
- Krishnaswamy, S.; Lal, D.; Martin, J.M.; Meybeck, M. Geochronology of lake sediments. Earth Planet. Sci. Lett. 1971, 11, 407–414. [Google Scholar] [CrossRef]
- Bruel, R.; Rosalie, B.; Pierre, S.; Blanc, U.S. serac: A R package for ShortlivEd RAdionuclide Chronology of recent sediment cores. EarthArXiv 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Ishizawa, T.; Goto, K.; Yokoyama, Y.; Goff, J. Dating tsunami deposits: Present knowledge and challenges. Earth-Sci. Rev. 2020, 200, 102971. [Google Scholar] [CrossRef]
- Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R; Springer: Berlin, Germany, 2018; ISBN 331971404X. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. 2019. Available online: http://www.sortie-nd.org/lme/R%20Packages/vegan.pdf (accessed on 9 August 2020).
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Morton, R.A.; Gelfenbaum, G.; Jaffe, B.E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment. Geol. 2007, 200, 184–207. [Google Scholar] [CrossRef]
- Freitas, J.G.; Dias, J.A. 1941 windstorm effects on the Portuguese Coast. What lessons for the future? J. Coast. Res. 2013, 65, 714–719. [Google Scholar] [CrossRef]
- Fortunato, A.B.; Freire, P.; Bertin, X.; Rodrigues, M.; Ferreira, J.; Liberato, M.L.R. A numerical study of the February 15, 1941 storm in the Tagus estuary. Cont. Shelf Res. 2017, 144, 50–64. [Google Scholar] [CrossRef]
- Sakuna-Schwartz, D.; Feldens, P.; Schwarzer, K.; Khokiattiwong, S.; Stattegger, K. Internal structure of event layers preserved on the Andaman Sea continental shelf, Thailand: Tsunami vs. storm and flash-flood deposits. Nat. Hazards Earth Syst. Sci. 2015, 15, 1181–1199. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.A.; Garzón, G. A contribution to improved flood magnitude estimation in base of palaeoflood record and climatic implications—Guadiana River (Iberian Peninsula). Nat. Hazards Earth Syst. Sci. 2009, 9, 229–239. [Google Scholar] [CrossRef]
- Fowler, A.J.; Gillespie, R.; Hedges, R.E.M. Radiocarbon Dating of Sediments. Radiocarbon 1986, 28, 441–450. [Google Scholar] [CrossRef] [Green Version]
- Andrés Christen, J.; Pérez, E.S. A New Robust Statistical Model for Radiocarbon Data. Radiocarbon 2009, 51, 1047–1059. [Google Scholar] [CrossRef] [Green Version]
- Aquino-López, M.A.; Blaauw, M.; Christen, J.A.; Sanderson, N.K. Bayesian Analysis of 210 Pb Dating. J. Agric. Biol. Environ. Stat. 2018, 23, 317–333. [Google Scholar] [CrossRef] [Green Version]
- Ishizawa, T.; Goto, K.; Yokoyama, Y.; Miyairi, Y.; Sawada, C.; Nishimura, Y.; Sugawara, D. Sequential radiocarbon measurement of bulk peat for high-precision dating of tsunami deposits. Quat. Geochronol. 2017, 41, 202–210. [Google Scholar] [CrossRef]
- Gràcia, E.; Vizcaino, A.; Escutia, C.; Asioli, A.; Rodés, Á.; Pallàs, R.; Garcia-Orellana, J.; Lebreiro, S.; Goldfinger, C. Holocene earthquake record offshore Portugal (SW Iberia): Testing turbidite paleoseismology in a slow-convergence margin. Quat. Sci. Rev. 2010, 29, 1156–1172. [Google Scholar] [CrossRef]
- Wronna, M.; Baptista, M.A.; Miranda, J.M. Reanalysis of the 1761 transatlantic tsunami. Nat. Hazards Earth Syst. Sci. 2019, 19, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Baptista, M.A.; Miranda, J.M. Revision of the portuguese catalog of tsunamis. Nat. Hazards Earth Syst. Sci. 2009, 9, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Kümmerer, V.; Drago, T.; Pires, C.V.; Silva, P.; Lopes, A.; Magalhaes, V.; Roque, C.; Rodrigues, A.I.; Terrinha, P.; Mena, A.; et al. Offshore 1755 CE Lisbon Tsunami Deposit in the Southern Portuguese Continental Shelf. In Proceedings of the EGU General Assembly, Vienna, Austria, 4–8 May 2020; Volume 2020. id. EGU2020-20. [Google Scholar]
- Abrantes, F.; Lebreiro, S.; Rodrigues, T.; Gil, I.; Bartels-Jónsdóttir, H.; Oliveira, P.; Kissel, C.; Grimalt, J.O. Shallow-marine sediment cores record climate variability and earthquake activity off Lisbon (Portugal) for the last 2000 years. Quat. Sci. Rev. 2005, 24, 2477–2494. [Google Scholar] [CrossRef]
- Puga-Bernabéu, Á.; Aguirre, J. Contrasting storm- versus tsunami-related shell beds in shallow-water ramps. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 471, 1–14. [Google Scholar] [CrossRef]
- Riou, B. Shallow Marine Sediment Record of Tsunamis: Analysis of the Sediment-Fill of Bays of Tutuila (American Samoa) and Backwash Deposits of the 2009 South Pacific Tsunami; Université de La Rochelle (France): La Rochelle, France, 2019. [Google Scholar]
- Rosa, F.; Rufino, M.M.; Ferreira, Ó.; Matias, A.; Brito, A.C.; Gaspar, M.B. The influence of coastal processes on inner shelf sediment distribution: The Eastern Algarve shelf (Southern Portugal). Geol. Acta 2013, 11, 59–73. [Google Scholar]
- Jagodziński, R.; Sternal, B.; Szczuciński, W.; Sugawara, D. Heavy minerals in the 2011 Tohoku-oki tsunami deposits—insights into sediment sources and hydrodynamics. Sediment. Geol. 2012, 282, 57–64. [Google Scholar] [CrossRef]
- Vos, K.; Vandenberghe, N.; Elsen, J. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth-Sci. Rev. 2014, 128, 93–104. [Google Scholar] [CrossRef]
- Seike, K.; Kitahashi, T.; Noguchi, T. Sedimentary features of Onagawa Bay, northeastern Japan after the 2011 off the Pacific coast of Tohoku Earthquake: Sediment mixing by recolonized benthic animals decreases the preservation potential of tsunami deposits. J. Oceanogr. 2016, 72, 141–149. [Google Scholar] [CrossRef]
- Liu, Q.; Roberts, A.P.; Larrasoaa, J.C.; Banerjee, S.K.; Guyodo, Y.; Tauxe, L.; Oldfield, F. Environmental magnetism: Principles and applications. Rev. Geophys. 2012, 50, 1–50. [Google Scholar]
- Yoshii, T.; Tanaka, S.; Matsuyama, M. Tsunami deposits in a super-large wave flume. Mar. Geol. 2017, 391, 98–107. [Google Scholar] [CrossRef]
- Feist, L.; Reicherter, K.; Costa, P.J.M.; Bellanova, P.; Santisteban, J.I.; Bosnic, I.; Val-peón, C.; Schwarzbauer, J.; Frenken, M.; Vött, A.; et al. The Continental Shelf as an Offshore Archive for Tsunami Deposits—An Example from Southwest Iberia (RV METEOR Cruise M152). 2020. Available online: https://doi.org/10.5194/egusphere-egu2020-8504 (accessed on 9 August 2020).
- Mendes, I.; Rosa, F.; Dias, J.A.; Schönfeld, J.; Ferreira, Ó.; Pinheiro, J. Inner shelf paleoenvironmental evolution as a function of land-ocean interactions in the vicinity of the Guadiana River, SW Iberia. Quat. Int. 2010, 221, 58–67. [Google Scholar] [CrossRef]
- Mendes, I.; Dias, J.A.; Schönfeld, J.; Ferreira, Ó.; Rosa, F.; Gonzalez, R.; Lobo, F.J. Natural and human-induced Holocene paleoenvironmental changes on the Guadiana shelf (northern Gulf of Cadiz). Holocene 2012, 22, 1011–1024. [Google Scholar] [CrossRef] [Green Version]
- Mil-Homens, M.; Vale, C.; Naughton, F.; Brito, P.; Drago, T.; Anes, B.; Raimundo, J.; Schmidt, S.; Caetano, M. Footprint of roman and modern mining activities in a sediment core from the southwestern Iberian Atlantic shelf. Sci. Total Environ. 2016, 571, 1211–1221. [Google Scholar] [CrossRef]
- Pacheco, A.; Williams, J.J.; Ferreira, Ó.; Garel, E.; Reynolds, S. Applicability of sediment transport models to evaluate medium term evolution of tidal inlet systems. Estuar. Coast. Shelf Sci. 2011, 95, 119–134. [Google Scholar] [CrossRef]
- Burdloff, D.; Araújo, M.F.; Jouanneau, J.M.; Mendes, I.; Monge Soares, A.M.; Dias, J.M.A. Sources of organic carbon in the Portuguese continental shelf sediments during the Holocene period. Appl. Geochem. 2008, 23, 2857–2870. [Google Scholar] [CrossRef]
- Maitre, J.; Bouchard, K.; Bédard, L.P. Mineral grains recognition using computer vision and machine learning. Comput. Geosci. 2019, 130, 84–93. [Google Scholar] [CrossRef]
- Paris, R.; Falvard, S.; Chagué, C.; Goff, J.; Etienne, S.; Doumalin, P. Sedimentary fabric characterized by X-ray tomography: A case-study from tsunami deposits on the Marquesas Islands, French Polynesia. Sedimentology 2020, 67, 1207–1229. [Google Scholar] [CrossRef]
- Priest, G.R.; Witter, R.C.; Zhang, Y.J.; Goldfinger, C.; Wang, K.; Allan, J.C. New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites. Nat. Hazards 2017, 88, 285–313. [Google Scholar] [CrossRef]
Groups | Components |
---|---|
Terrigenous | Quartz, Mica, Opaque, Aggregate, Other Terrigenous |
Biogenic | Planktonic Foraminifera, Benthic Foraminifera, Mollusk, Terrestrial Biogenic, Other Biogenic |
Non-Identified | Non-Identified |
Depth (cm) (Core) | Laboratory Reference | Material | Conventional Radiocarbon Age ± σ (BP) | δ13C | Calibrated Radiocarbon Ages (prob) |
---|---|---|---|---|---|
100.5 (M106) | Beta-463031 | Foraminifera | 780 ± 30 | −0.4 | 1573–1950 CE (95%) |
135.5 (M106) | Beta-463032 | Foraminifera | 910 ± 30 | 0.0 | 1472–1904 CE (91.9%) |
175.5 (M106) | Beta-463033 | Foraminifera | 1450 ± 30 | −0.1 | 984–1432 CE (95%) |
215.5 (M106) | Beta-463034 | Foraminifera | 1620 ± 30 | −0.2 | 789–1280 CE (95%) |
265.5 (M106) | Beta-457936 | Shell | 2340 ± 30 | +2.0 | 20–587 CE (95%) |
318.5 (M106) | Beta-457937 | Shell | 3120 ± 30 | +0.3 | 919–353 BCE (95%) |
350.5 (M106) | Beta-463035 | Foraminifera | 3950 ± 30 | −0.1 | 1976–1371 BCE (95%) |
28.5 (M107) | A1610401 | Shell | 1380 ± 40 | - | 1036–1457 CE (95%) |
68.5 (M107) | A1610401 | Shell | 3380 ± 30 | - | 1299–715 BCE (95%) |
90.5 (M107) | A1610401 | Shell + Gastropod | 5260 ± 30 | - | 3639–3031 BCE (95%) |
110.5 (M107) | Beta-457940 | Shell | 5600 ± 40 | +3.1 | 4032–3492 BCE (95%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kümmerer, V.; Drago, T.; Veiga-Pires, C.; Silva, P.F.; Magalhães, V.; Mena, A.; Lopes, A.; Rodrigues, A.I.; Schmidt, S.; Terrinha, P.; et al. Exploring Offshore Sediment Evidence of the 1755 CE Tsunami (Faro, Portugal): Implications for the Study of Outer Shelf Tsunami Deposits. Minerals 2020, 10, 731. https://doi.org/10.3390/min10090731
Kümmerer V, Drago T, Veiga-Pires C, Silva PF, Magalhães V, Mena A, Lopes A, Rodrigues AI, Schmidt S, Terrinha P, et al. Exploring Offshore Sediment Evidence of the 1755 CE Tsunami (Faro, Portugal): Implications for the Study of Outer Shelf Tsunami Deposits. Minerals. 2020; 10(9):731. https://doi.org/10.3390/min10090731
Chicago/Turabian StyleKümmerer, Vincent, Teresa Drago, Cristina Veiga-Pires, Pedro F. Silva, Vitor Magalhães, Anxo Mena, Ana Lopes, Ana Isabel Rodrigues, Sabine Schmidt, Pedro Terrinha, and et al. 2020. "Exploring Offshore Sediment Evidence of the 1755 CE Tsunami (Faro, Portugal): Implications for the Study of Outer Shelf Tsunami Deposits" Minerals 10, no. 9: 731. https://doi.org/10.3390/min10090731
APA StyleKümmerer, V., Drago, T., Veiga-Pires, C., Silva, P. F., Magalhães, V., Mena, A., Lopes, A., Rodrigues, A. I., Schmidt, S., Terrinha, P., & Baptista, M. A. (2020). Exploring Offshore Sediment Evidence of the 1755 CE Tsunami (Faro, Portugal): Implications for the Study of Outer Shelf Tsunami Deposits. Minerals, 10(9), 731. https://doi.org/10.3390/min10090731