Oxidation State of the Lithospheric Mantle Beneath Komsomolskaya–Magnitnaya Kimberlite Pipe, Upper Muna Field, Siberian Craton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting
2.2. Samples
2.3. Analytical Methods
3. Results
3.1. Petrography
3.2. Major- and Minor-Element Mineral Composition
3.3. Trace Element Composition of Minerals
3.4. Oxythermobarometry
4. Discussion
4.1. Mantle Metasomatism
4.2. Oxidation State of SCLM Beneath the KM Pipe
5. Conclusions
- The first Mössbauer-based oxygen fugacity estimations for 13 peridotite xenoliths from the KM pipe (Upper Muna field) showed a relatively narrow range, from −2.6 to 0.3 ∆logfO2 (FMQ) at depths of 120–220 km;
- The SCLM beneath the Upper Muna filed was affected by a melt metasomatism at depths of 170 km and deeper, whereas a fluid metasomatism was prevalent at shallower depths. In the Udachnaya pipe (Daldyn field), fluid- and melt-metasomatized garnet xenoliths had a more complex distribution in the lithospheric column;
- Garnets from three out of thirteen studied KM peridotite xenoliths show a much higher Zr content (up to 180 ppm) than garnets from the Udachnaya peridotites (135 ppm). This indicates that the SCLM beneath the KM pipe at a 130–170-km depth was reworked by a low-temperature phlogopite metasomatism more significantly than the SCLM beneath the Udachnaya pipe;
- The redox conditions recorded by the studied KM peridotites (−2.6 to 0.3 ∆logfO2 (FMQ)) are comparable to the redox state of the SCLM beneath the Udachnaya pipe (−4.95 to 0.23 ∆logfO2 (FMQ)). However, the SCLM beneath the Udachnaya pipe may comprise more reduced mantle domains. Thus, the established difference between the KM and Udachnaya peridotites may indicate a lateral heterogeneity in the oxidation conditions of the Siberian SCLM.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kadik, A.A.; Sobolev, N.V.; Zharkova, E.V.; Pokhilenko, N.P. Redox conditions of formations of diamond-bearing peridotite xenoliths from Udachnaya kimberlite pipe, Yakutia. Geokhimiya 1989, 27, 1120–1135. [Google Scholar]
- Eggler, D.H. The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O2-MgO-SiO2-CO2 to 35 kb, with an analysis of melting in a peridotite-H2O-CO2 system. Am. J. Sci. 1978, 278, 305–343. [Google Scholar] [CrossRef]
- Foley, S.F.; Yaxley, G.M.; Rosenthal, A.; Buhre, S.; Kiseeva, E.S.; Rapp, R.P.; Jacob, D.E. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 2009, 112, 274–283. [Google Scholar] [CrossRef]
- Taylor, W.R.; Green, D.H. Measurement of reduced peridotite-C-O-H solidus and implications for redox melting of the mantle. Nature 1988, 332, 349–352. [Google Scholar] [CrossRef]
- Wood, B.J.; Bryndzia, L.T.; Johnson, K.E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 1990, 248, 337–345. [Google Scholar] [CrossRef]
- Stagno, V. Carbon, carbides, carbonates and carbonatitic melts in the Earth’s interior. J. Geol. Soc. 2019, 176, 375–387. [Google Scholar] [CrossRef]
- Foley, S.F. A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time. J. Pet. 2011, 52, 1363–1391. [Google Scholar] [CrossRef]
- Frost, D.J.; McCammon, C.A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 2008, 36, 389–420. [Google Scholar] [CrossRef]
- Ballhaus, C.; Berry, R.F.; Green, D.H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle. Contrib. Miner. Pet. 1991, 107, 27–40. [Google Scholar] [CrossRef]
- Gudmundsson, G.; Wood, B.J. Experimental tests of garnet peridotite oxygen barometry. Contrib. Miner. Pet. 1995, 119, 56–67. [Google Scholar] [CrossRef]
- Stagno, V.; Ojwang, D.O.; McCammon, C.A.; Frost, D.J. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 2013, 493, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.G.R.; Holland, T.J.B.; Gibson, S.A. Garnet and spinel oxybarometers: New internally consistent multi-equilibria models with applications to the oxidation state of the lithospheric mantle. J. Pet. 2016, 57, 1199–1222. [Google Scholar] [CrossRef] [Green Version]
- Creighton, S.; Stachel, T.; Matveev, S.; Hofer, H.; McCammon, C.; Luth, R.W. Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contrib. Miner. Pet. 2009, 157, 491–504. [Google Scholar] [CrossRef]
- Creighton, S.; Stachel, T.; Eichenberg, D.; Luth, R.W. Oxidation state of the lithospheric mantle beneath diavik diamond mine, central slave craton, NWT, Canada. Contrib. Miner. Pet. 2010, 159, 645–657. [Google Scholar] [CrossRef]
- Yaxley, G.; Berry, A.; Rosenthal, A.; Woodland, A.; Paterson, D. Redox preconditioning deep cratonic lithosphere for kimberlite genesis-evidence from the central slave craton. Sci. Rep. 2017, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Lazarov, M.; Woodland, A.B.; Brey, G.P. Thermal state and redox conditions of the Kaapvaal mantle: A study of xenoliths from the Finsch mine, South Africa. Lithos 2009, 112, 913–923. [Google Scholar] [CrossRef]
- McCammon, C.; Kopylova, M.G. A redox profile of the slave mantle and oxygen fugacity control in the cratonic mantle. Contrib. Miner. Pet. 2004, 148, 55–68. [Google Scholar] [CrossRef]
- Woodland, A.B.; Kornprobst, J.; Tabit, A. Ferric iron in orogenic lherzolite massifs and controls of oxygen fugacity in the upper mantle. Lithos 2006, 89, 222–241. [Google Scholar] [CrossRef]
- Yaxley, G.M.; Berry, A.J.; Kamenetsky, V.S.; Woodland, A.B.; Golovin, A.V. An oxygen fugacity profile through the Siberian craton–Fe K-edge XANES determinations of Fe3+/Fe in garnets in peridotite xenoliths from the Udachnaya East kimberlite. Lithos 2012, 140, 142–151. [Google Scholar] [CrossRef]
- Pokhilenko, L.N.; Pokhilenko, N.P.; Fedorov, I.I.; Tomilenko, A.A.; Usova, L.V.; Fomina, L.N. Fluide regime peculiarities of the lithoshere mantle of the Siberian platform. In Deep-seated Magmatism, its Sources and Plumes; Vladykin, N.V., Ed.; Russian Academy of Sciences: Irkutsk, Russia, 2008; pp. 122–136. [Google Scholar]
- Goncharov, A.G.; Ionov, D.A.; Doucet, L.S.; Pokhilenko, L.N. Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet. Sci. Lett. 2012, 357, 99–110. [Google Scholar] [CrossRef]
- Rosen, O.M.; Manakov, A.V.; Suvorov, V.D. The collisional system in the northeastern Siberian craton and a problem of diamond-bearing lithospheric keel. Geotectonics 2005, 39, 456–479. [Google Scholar]
- Alifirova, T.A.; Pokhilenko, L.N.; Korsakov, A.V. Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia. Lithos 2015, 226, 31–49. [Google Scholar] [CrossRef]
- Zonenshain, L.P.; Kuzmin, M.I.; Natapov, L.M. Geology of the USSR: Plate Tectonic Synthesis; American Geophysical Union: Washington, DC, USA, 1989; Volume 21. [Google Scholar]
- Rosen, O.; Condie, K.C.; Natapov, L.M.; Nozhkin, A. Archean and early proterozoic evolution of the Siberian craton: A preliminary assessment. In Developments in Precambrian Geology; Elsevier: Amsterdam, The Netherlands, 1994; Volume 11, pp. 411–459. [Google Scholar]
- Smelov, A.P.; Timofeev, V.F. The age of the North Asian Cratonic basement: An overview. Gondwana Res. 2007, 12, 279–288. [Google Scholar] [CrossRef]
- Rosen, O.M.; Serenko, V.P.; Spetsius, Z.V.; Manakov, A.V.; Zinchuk, N.N. Yakutian kimberlite province: Position in the structure of the Siberian craton and composition of the upper and lower crust. Geol. I Geofiz. 2002, 43, 3–26. [Google Scholar]
- Griffin, W.; Belousova, E.; O’Neill, C.; O’Reilly, S.Y.; Malkovets, V.; Pearson, N.; Spetsius, S.; Wilde, S. The world turns over: Hadean–Archean crust–mantle evolution. Lithos 2014, 189, 2–15. [Google Scholar] [CrossRef]
- Shatsky, V.S.; Malkovets, V.G.; Belousova, E.A.; Tretiakova, I.G.; Griffin, W.L.; Ragozin, A.L.; Gibsher, A.A.; O’Reilly, S.Y. Tectonothermal evolution of the continental crust beneath the Yakutian diamondiferous province (Siberian craton): U–Pb and Hf isotopic evidence on zircons from crustal xenoliths of kimberlite pipes. Precambrian Res. 2016, 282, 1–20. [Google Scholar] [CrossRef]
- Shatsky, V.S.; Malkovets, V.G.; Belousova, E.A.; Tretiakova, I.G.; Griffin, W.L.; Ragozin, A.L.; Wang, Q.; Gibsher, A.A.; O’Reilly, S.Y. Multi-stage modification of paleoarchean crust beneath the anabar tectonic province (Siberian craton). Precambrian Res. 2018, 305, 125–144. [Google Scholar] [CrossRef]
- Agashev, A.M.; Pokhilenko, N.P.; Tolstov, A.V.; Polyanichko, V.V.; Mal’kovets, V.G.; Sobolev, N.V. New age data on kimberlites from the yakutian diamondiferous province. Dokl. Earth Sci. 2004, 399, 1142–1145. [Google Scholar]
- Davies, G.L.; Sobolev, N.V.; Kharkiv, A.D. New data on the age of Yakutian kimberlites (U–Pb zircon method). Dokl. Akad. Nauk SSSR 1980, 254, 175–179. (In Russian) [Google Scholar]
- Kinny, P.D.; Griffin, B.J.; Heaman, L.M.; Brakhfogel, F.F.; Spetsius, Z.V. SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Geol. I Geofiz. 1997, 38, 91–99. [Google Scholar]
- Sun, J.; Liu, C.-Z.; Tappe, S.; Kostrovitsky, S.I.; Wu, F.-Y.; Yakovlev, D.; Yang, Y.-H.; Yang, J.-H. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U–Pb and Sr–Nd perovskite isotope analysis. Earth Planet. Sci. Lett. 2014, 404, 283–295. [Google Scholar] [CrossRef]
- Tretiakova, I.G.; Belousova, E.A.; Malkovets, V.G.; Griffin, W.L.; Piazolo, S.; Pearson, N.J.; O’Reilly, S.Y.; Nishido, H. Recurrent magmatic activity on a lithosphere-scale structure: Crystallization and deformation in kimberlitic zircons. Gondwana Res. 2017, 42, 126–132. [Google Scholar] [CrossRef]
- Kostrovitsky, S.; Spetsius, Z.; Yakovlev, D.; Flaass, G.F.D.; Bogush, I.; Pokhilenko, N. Atlas of the Igneous Rocks and Diamond Deposits of the Yakut Kimberlite Province; Pokhilenko, N., Ed.; MPG: Mirniy, Russia, 2015; p. 480. [Google Scholar]
- Yakovlev, D.A.; Kostrovitsky, S.I.; Alymova, N.V. Composition features of kimberlites from the upper muna field (Yakutia). Izv. Earth Sci. Sect. Rans 2009, 1, 111–119. (In Russian) [Google Scholar]
- Griffin, W.L.; Ryan, C.G.; Kaminsky, F.V.; O’Reilly, S.Y.; Natapov, L.M.; Win, T.T.; Kinny, P.D.; Ilupin, I.P. The Siberian lithosphere traverse: Mantle terranes and the assembly of the Siberian craton. Tectonophysics 1999, 310, 1–35. [Google Scholar] [CrossRef]
- Levchenkov, O.A.; Gaidamako, I.M.; Levskii, L.K.; Komarov, A.N.; Yakovleva, S.Z.; Rizvanova, N.G.; Makeev, A.F. U-Pb age of zircon from the Mir and 325 Let Yakutii pipes. Dokl. Earth Sci. 2005, 400, 99–101. [Google Scholar]
- Lepekhina, E.; Rotman, A.; Antonov, A.; Sergeev, S. SIMS SHRIMP U-Pb dating of perovskite from kimberlites of the Siberian platform (Verhnemunskoe and Alakite-Marhinskoe fields). In Proceedings of the 9th International Kimberlite Conference: Extended Abstracts, Frankfurt, Germany, 10–15 August 2008; p. 9IKC-A-00353. [Google Scholar]
- Lepekhina, E.; Rotman, A.; Antonov, A.; Sergeev, S. SHRIMP U-Pb zircon ages of Yakutian kimberlite pipes. In Proceedings of the 9th International Kimberlite Conference: Extended Abstracts, Frankfurt, Germany, 10–15 August 2008; p. 9IKC-A-00354. [Google Scholar]
- Sun, J.; Tappe, S.; Kostrovitsky, S.I.; Liu, C.-Z.; Skuzovatov, S.Y.; Wu, F.-Y. Mantle sources of kimberlites through time: A U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chem. Geol. 2018, 479, 228–240. [Google Scholar] [CrossRef]
- Sarsadskih, N.N.; Blagulkina, V.A.; Silin, Y.I. On the absolute age of the Yakutian kimberlites. Doklady Akademii Nauk SSR. 1966, 168, 420–423. (In Russian) [Google Scholar]
- Zaitsev, A.; Smelov, A. Isotope Geochronology of Rocks of the Yakutian Kimberlite Province; DPMGI SB RAS: Yakutsk, Russia, 2010. (In Russian) [Google Scholar]
- Kostrovitsky, S.I.; Solov’eva, L.V.; Yakovlev, D.A.; Suvorova, L.F.; Sandimirova, G.P.; Travin, A.V.; Yudin, D.S. Kimberlites and megacrystic suite: Isotope-geochemical studies. Petrology 2013, 21, 127–144. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, Z.-Y.; Xia, X.-P.; Yang, Q.; Hong, L.-B.; Wu, D. In situ determination of trace elements in melt inclusions using laser ablation inductively coupled plasma sector field mass spectrometry. Rapid Commun. Mass Spectrom. 2019, 33, 361–370. [Google Scholar] [CrossRef]
- Le Bas, M.; Streckeisen, A. The IUGS systematics of igneous rocks. J. Geol. Soc. 1991, 148, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Pearson, G.; Brooks, N. The formation and evolution of cratonic mantle lithosphere–evidence from mantle xenoliths. In Treatise on Geochemistry; Carlson, R.W., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 3, pp. 255–292. [Google Scholar]
- O’Neill, H.S.C.; Wood, B.J. An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contrib. Miner. Pet. 1979, 70, 59–70. [Google Scholar] [CrossRef]
- Nimis, P.; Grütter, H. Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib. Miner. Pet. 2010, 159, 411–427. [Google Scholar] [CrossRef]
- Taylor, W. An experimental test of some geothermometer and geobaro-meter formulations for upper mantle peridotites with application to the ther-mobarometry of fertile lherzolite and garnet websterite. Neues Jahrb. Für Mineral. Abh. 1998, 172, 381–408. [Google Scholar]
- Nickel, K.; Green, D. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet. Sci. Lett. 1985, 73, 158–170. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Lavrent’ev, Y.G.; Pokhilenko, N.P.; Usova, L.V. Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contrib. Miner. Pet. 1973, 40, 39–52. [Google Scholar] [CrossRef]
- Grutter, H.S.; Gurney, J.J.; Menzies, A.H.; Winter, F. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 2004, 77, 841–857. [Google Scholar] [CrossRef]
- Harte, B. Rock nomenclature with particular relation to deformation and recrystallisation textures in olivine-bearing xenoliths. J. Geol. 1977, 85, 279–288. [Google Scholar] [CrossRef]
- Dawson, J.B. Contrasting types of upper mantle metasomatism. In Kimberlites, II: The Mantle and Crust-Mantle Relationships; Kornprobst, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 289–294. [Google Scholar]
- Yudin, D.S.; Tomilenko, A.A.; Alifirova, T.A.; Travin, A.V.; Murzintsev, N.G.; Pokhilenko, N.P. Results of 40Ar/39Ar dating of phlogopites from kelyphitic rims around garnet grains (Udachnaya-Vostochnaya kimberlite pipe). Dokl. Earth Sci. 2016, 469, 728–731. [Google Scholar] [CrossRef]
- Solov’eva, L.V.; Yasnygina, T.A.; Egorov, K.N. Metasomatic parageneses in deep-seated xenoliths from pipes Udachnaya and Komsomol’skaya-Magnitnaya as indicators of fluid transfer through the mantle lithosphere of the Siberian craton. Russ. Geol. Geophys. 2012, 53, 1304–1323. [Google Scholar] [CrossRef]
- Dawson, J.B. Metasomatism and partial melting in upper-mantle peridotite xenoliths from the lashaine volcano, Northern Tanzania. J. Pet. 2002, 43, 1749–1777. [Google Scholar] [CrossRef] [Green Version]
- Boullier, A.M.; Nicolas, A. Classification of texture and fabric of peridotite xenoliths from South African kimberlits. Phys. Chem. Earth 1975, 9, 467–476. [Google Scholar] [CrossRef]
- Stachel, T.; Aulbach, S.; Brey, G.P.; Harris, J.W.; Leost, I.; Tappert, R.; Viljoen, K.S. The trace element composition of silicate inclusions in diamonds: A review. Lithos 2004, 77, 1–19. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Griffin, W.L.; Ryan, C.G. Trace-elements in indicator minerals-area selection and target evaluation in diamond exploration. J. Geochem. Explor. 1995, 53, 311–337. [Google Scholar] [CrossRef]
- Dobrovolsky, D.D. PTQuick Software. Available online: http://www.dimadd.ru/en/Programs/ptquick (accessed on 1 May 2011).
- Dymshits, A.M.; Sharygin, I.S.; Malkovets, V.G.; Yakovlev, I.V.; Gibsher, A.A.; Alifirova, T.A.; Vorobei, S.S.; Potapov, S.V.; Garanin, V.K. Thermal state, thickness and composition of the lithospheric mantle beneath the upper muna kimberlite field (Siberian craton) constrained by clinopyroxene xenocrysts and comparison with daldyn and mirny fields. Minerals 2020, 10, 549. [Google Scholar] [CrossRef]
- Mather, K.A.; Pearson, D.G.; McKenzie, D.; Kjarsgaard, B.A.; Priestley, K. Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos 2011, 125, 729–742. [Google Scholar] [CrossRef]
- Ziberna, L.; Nimis, P.; Kuzmin, D.; Malkovets, V.G. Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. Am. Miner. 2016, 101, 2222–2232. [Google Scholar] [CrossRef]
- Kennedy, C.S.; Kennedy, G.C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 1976, 81, 2467–2470. [Google Scholar] [CrossRef]
- McKenzie, D.; Bickle, M.J. The volume and composition of melt generated by extension of the lithosphere. J. Pet. 1988, 29, 625–679. [Google Scholar] [CrossRef]
- Stagno, V.; Frost, D.J. Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet. Sci. Lett. 2010, 300, 72–84. [Google Scholar] [CrossRef]
- Ionov, D.A.; Doucet, L.S.; Carlson, R.W.; Golovin, A.V.; Korsakov, A.V. Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re–Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite. Geochim. Cosmochim. Acta 2015, 165, 466–483. [Google Scholar] [CrossRef]
- Doucet, L.S.; Ionov, D.A.; Golovin, A.V.; Pokhilenko, N.P. Depth, degrees and tectonic settings of mantle melting during craton formation: Inferences from major and trace element compositions of spinel harzburgite xenoliths from the Udachnaya kimberlite, central Siberia. Earth Planet. Sci. Lett. 2012, 359–360, 206–218. [Google Scholar] [CrossRef]
- Shu, Q.; Brey, G.P. Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: Temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth Planet. Sci. Lett. 2015, 418, 27–39. [Google Scholar] [CrossRef]
- Agashev, A.M.; Ionov, D.A.; Pokhilenko, N.P.; Golovin, A.V.; Cherepanova, Y.; Sharygin, I.S. Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 2013, 160, 201–215. [Google Scholar] [CrossRef]
- Howarth, G.H.; Barry, P.H.; Fisher, J.F.P.; Baziotis, I.P.; Pokhilenko, N.P.; Pokhilenko, L.N.; Bodnar, R.J.; Taylor, L.A.; Agashev, A.M. Superplume metasomatism: Evidence from Siberian mantle xenoliths. Lithos 2014, 184, 209–224. [Google Scholar] [CrossRef]
- Shimizu, N.; Pokhilenko, N.P.; Boyd, F.R.; Pearson, D.G. Geochemical characteristics of mantle xenoliths from Udachnaya kimberlite pipe. Geol. I Geofiz. 1997, 38, 194–205. [Google Scholar]
- Doucet, L.S.; Ionov, D.A.; Golovin, A.V. The origin of coarse garnet peridotites in cratonic lithosphere: New data on xenoliths from the Udachnaya kimberlite, central Siberia. Contrib. Miner. Pet. 2013, 165, 1225–1242. [Google Scholar] [CrossRef]
- Ionov, D.A.; Doucet, L.S.; Strandmann, P.A.E.; Golovin, A.V.; Korsakov, A.V. Links between deformation, chemical enrichments and Li-isotope compositions in the lithospheric mantle of the central Siberian craton. Chem. Geol. 2017, 475, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Griffin, W.L.; Shee, S.R.; Ryan, C.G.; Win, T.T.; Wyatt, B.A. Harzburgite to lherzolite and back again: Metasomatic processes in ultramafic xenoliths from the wesselton kimberlite, Kimberley, South Africa. Contrib. Miner. Pet. 1999, 134, 232–250. [Google Scholar] [CrossRef]
- Kostrovitsky, S.I.; Morikiyo, T.; Serov, I.V.; Yakovlev, D.A.; Amirzhanov, A.A. Isotope-geochemical systematics of kimberlites and related rocks from the Siberian platform. Russ. Geol. Geophys. 2007, 48, 272–290. [Google Scholar] [CrossRef]
- Pokhilenko, N.P.; Sobolev, N.V.; Kuligin, S.S.; Shimizu, N. Peculiarities of distribution of pyroxenite paragenesis garnets in Yakutian kimberlites and some aspects of the evolution of the Siberian craton lithospheric mantle. In Proceedings of the 7th International Kimberlite Conference, Cape Town, South Africa, 17 April 1998; pp. 689–698. [Google Scholar]
- Alifirova, T.; Mikhailenko, D.; Korsakov, A.; Golovin, A.; Klemme, S.; Berndt, J. Genetic code of subsolidus garnet and its role in deciphering of Siberian craton metasomatic history. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 8–13 April 2018; p. 841. [Google Scholar]
- Gibson, S.A. On the nature and origin of garnet in highly-refractory archean lithospheric mantle: Constraints from garnet exsolved in Kaapvaal craton orthopyroxenes. Miner. Mag. 2017, 81, 781–809. [Google Scholar] [CrossRef]
- Ionov, D.A.; Doucet, L.S.; Ashchepkov, I.V. Composition of the lithospheric mantle in the Siberian craton: New constraints from fresh peridotites in the Udachnaya-East kimberlite. J. Pet. 2010, 51, 2177–2210. [Google Scholar] [CrossRef] [Green Version]
- Stachel, T.; Harris, J.W. The origin of cratonic diamonds-constraints from mineral inclusions. Ore Geol. Rev. 2008, 34, 5–32. [Google Scholar] [CrossRef]
- Stachel, T.; Harris, J.W. Syngenetic inclusions in diamond from the Birim field (Ghana)—A deep peridotitic profile with a history of depletion and re-enrichment. Contrib. Miner. Pet. 1997, 127, 336–352. [Google Scholar] [CrossRef]
- Simon, N.S.C.; Irvine, G.J.; Davies, G.R.; Pearson, D.G.; Carlson, R.W. The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos 2003, 71, 289–322. [Google Scholar] [CrossRef]
- Boyd, F.R.; Pokhilenko, N.P.; Pearson, D.G.; Mertzman, S.A.; Sobolev, N.V.; Finger, L.W. Composition of the Siberian cratonic mantle: Evidence from Udachnaya peridotite xenoliths. Contrib. Miner. Pet. 1997, 128, 228–246. [Google Scholar] [CrossRef]
- Gregoire, M.; Bell, D.R.; Roex, A.P.L. Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: Their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib. Miner. Pet. 2002, 142, 603–625. [Google Scholar] [CrossRef]
- Bryndzia, L.T.; Wood, B.J. Oxygen thermobarometry of abyssal spinel peridotites: The redox state and C–O–H volatile composition of the Earth’s sub-oceanic upper mantle. Am. J. Sci. 1990, 290, 1093–1116. [Google Scholar] [CrossRef]
- Lee, C.-T.A.; Brandon, A.D.; Norman, M. Vanadium in peridotites as a proxy for paleo-fO2 during partial melting: Prospects, limitations, and implications. Geochim. Cosmochim. Acta 2003, 67, 3045–3064. [Google Scholar] [CrossRef]
- Wood, B.J.; Pawley, A.; Frost, D.R.; Jephcoat, A.P.; Angel, R.J.; O’Nions, R.K. Water and carbon in the Earth’s mantle. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1996, 354, 1495–1511. [Google Scholar] [CrossRef]
- Woodland, A.B.; Koch, M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet. Sci. Lett. 2003, 214, 295–310. [Google Scholar] [CrossRef]
- Litasov, K.D. Physicochemical conditions for melting in the Earth’s mantle containing a C-O-H fluid (from experimental data). Russ. Geol. Geophys. 2011, 52, 475–492. [Google Scholar] [CrossRef]
- Shirey, S.B.; Cartigny, P.; Frost, D.J.; Keshav, S.; Nestola, F.; Nimis, P.; Pearson, D.G.; Sobolev, N.V.; Walter, M.J. Diamonds and the geology of mantle carbon. Rev. Miner. Geochem. 2013, 75, 355–421. [Google Scholar] [CrossRef] [Green Version]
- Pokhilenko, N.; Agashev, A.; Litasov, K.; Pokhilenko, L. Carbonatite metasomatism of peridotite lithospheric mantle: Implications for diamond formation and carbonatite-kimberlite magmatism. Russ. Geol. Geophys. 2015, 56, 280–295. [Google Scholar] [CrossRef]
- Kolganov, V.F.; Akishev, A.N.; Drozdov, A.V. Mining and Geological Features of the Primary Deposits of Diamonds in Yakutia; Mirny Printing House: Mirniy, Russia, 2013. (In Russian) [Google Scholar]
- Malkovets, V.G.; Griffin, W.L.; O’Reilly, S.Y.; Wood, B.J. Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link. Geology 2007, 35, 339–342. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Pal’Yanov, Y.N. The evolution of diamond morphology in the process of dissolution: Experimental data. Am. Miner. 2007, 92, 909–917. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Pal’yanov, Y.N. Influence of the fluid composition on diamond dissolution forms in carbonate melts. Am. Miner. 2010, 95, 1508–1514. [Google Scholar] [CrossRef]
- Fedortchouk, Y.; Manghnani, M.H.; Hushur, A.; Shiryaev, A.; Nestola, F. An atomic force microscopy study of diamond dissolution features: The effect of H2O and CO2 in the fluid on diamond morphology. Am. Miner. 2011, 96, 1768–1775. [Google Scholar] [CrossRef]
- Kozai, Y.; Arima, M. Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300–1420 °C and 1 GPa with controlled oxygen partial pressure. Am. Miner. 2005, 90, 1759–1766. [Google Scholar] [CrossRef]
- Robinson, D.; Scott, J.; Niekerk, A.V.; Anderson, V. Events reflected in the diamonds of some southern African kimberlites. In Proceedings of the Fourth International Kimberlite Conference: Extended Abstracts, Perth, Western Australia, 11–15 August 1986; pp. 421–423. [Google Scholar]
- Fedortchouk, Y.; Canil, D.; Carlson, J.A. Dissolution forms in Lac de Gras diamonds and their relationship to the temperature and redox state of kimberlite magma. Contrib. Miner. Pet. 2005, 150, 54–69. [Google Scholar] [CrossRef]
- Shirey, S.B.; Shigley, J.E. Recent advances in understanding the geology of diamonds. Gems Gemol. 2013, 49, 188–222. [Google Scholar] [CrossRef] [Green Version]
- Nowicki, A.V.; Galloway, M.; Roex, A.L.; Gurney, J.; Smith, C.; Canil, D. Iron-in-perovskite oxygen barometry and diamond resorption in kimberlites and lamproites from southern Africa, Russia and Australia. In Proceedings of the 9th International Kimberlite Conference, Frankfurt, Germany, 10–15 August 2008; p. abstract No. 9IKC-A-00301. [Google Scholar]
- Kharkiv, A.D.; Zinchuk, N.N.; Kryuchkov, A.I. Primary Diamond Deposits of the World; Nedra: Moscow, Russia, 1998; p. 555. (In Russian) [Google Scholar]
- Zinchuk, N.N.; Koptil, V.I. Typomorphizm of the Siberian Platmorm Diamonds; Nedra: Moscow, Russia, 2003; p. 603. (In Russian) [Google Scholar]
- Rielli, A.; Tomkins, A.G.; Nebel, O.; Brugger, J.; Etschmann, B.; Paterson, D. Garnet peridotites reveal spatial and temporal changes in the oxidation potential of subduction. Sci. Rep. 2018, 8, 16411. [Google Scholar] [CrossRef] [PubMed]
- McCammon, C.A.; Griffin, W.L.; Shee, S.R.; O’Neill, H.S.C. Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite, South Africa: Implications for the survival of diamond. Contrib. Miner. Pet. 2001, 141, 287–296. [Google Scholar] [CrossRef]
Sample No. | AKM 5c | AKM 14 | AKM 29l | AKM 36 | AKM 45° | AKM 52 | AKM 54p | AKM 56 | AKM 58 | TKM 10/11 | TKM 13/11 | TKM 26/11 | TKM 16/11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rock type | L | H | H | H | L | D | L | L | H | L | H | H | L |
Texture | C | C | C | C | C | C | P | P | C | C | C | C | C |
Ol | 91 | 92 | 90 | 94 | 89 | 97 | 84 | 80 | 93 | 89 | 92 | 92 | 81 |
Grt | 2 | 6 | 4 | 4 | 4 | 3 | 5 | 10 | 3 | 6 | 3 | 3 | 7 |
Opx | 5 | 2 | 6 | 2 | 6 | – | <1 | 6 | 4 | 1 | 5 | 5 | 2 |
Cpx | <1 | – | – | – | 1 | – | 10 | 4 | – | 4 | – | – | 10 |
Sp/Phl | –/– | –/– | –/<1 | 1/<1 | –/– | –/– | –/– | –/– | –/– | –/– | –/– | –/– | –/– |
Garnet class | G9 | G10 | G10 | G10 | G9 | G10 | G9 | G9 | G9 | G9 | G10 | G10 | G9 |
REEN pattern | SIN | HUM | HUM | SIN | NOR | SIN | SIN | NOR | NOR | HUM | SIN | SIN | NOR |
Fe3+/ΣFe | 0.070 | 0.104 | 0.104 | 0.024 | 0.104 | 0.050 | 0.124 | 0.140 | 0.112 | 0.095 | 0.055 | 0.037 | 0.120 |
TOW79 (°C) P fix | 982 | 974 | 1010 | 823 | 1208 | 1062 | 1249 | 1475 | 1185 | 1142 | 949 | 979 | 1158 |
TNG10/T98 (°C) | 944 | 878 | 958 | 853 | 1174 | 1127 | 1312 | 1394 | 1277 | 1052 | 979 | 989 | 1118 |
PNG85 (GPa) | 4.4 | 4.3 | 5.4 | 3.8 | 6.0 | 5.8 | 6.9 | 6.7 | 6.2 | 5.0 | 4.5 | 4.6 | 5.7 |
logfO2 (∆FMQ)M16 | −1.05 | 0.26 | −1.03 | −1.53 | −1.98 | −2.34 | −2.64 | −1.95 | −1.93 | −1.37 | −1.40 | −2.00 | −1.47 |
logfO2 (∆FMQ)S13 | −1.87 | −0.91 | −1.77 | −2.65 | −2.44 | −2.72 | −2.82 | −2.22 | −2.27 | −1.99 | −2.17 | −2.90 | −1.98 |
TOW79 (°C) | 995 | 1146 | 1037 | 810 | 1215 | 1065 | 1214 | 1499 | 1149 | 1160 | 941 | 975 | 1216 |
PNG85 (GPa) | 4.3 | 5.1 | 5.7 | 3.3 | 6.5 | 4.1 | 5.7 | 7.8 | 5.2 | 5.4 | 3.7 | 4.0 | 6.1 |
logfO2 (∆FMQ)M16 | −1.44 | −1.31 | −1.48 | −1.16 | −2.14 | −1.85 | −2.37 | −1.78 | −1.39 | −2.00 | −1.13 | −1.91 | −1.88 |
Mg# Grt | 82.3 | 84.5 | 84.2 | 84.52 | 84.4 | 86.8 | 82.4 | 83.6 | 82.2 | 85.0 | 83.7 | 84.4 | 83.2 |
Mg# Ol | 92.1 | 92.4 | 92.4 | 93.1 | 92.6 | 93.5 | 91.4 | 90.6 | 91.5 | 91.8 | 92.7 | 92.5 | 92.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymshits, A.; Sharygin, I.; Liu, Z.; Korolev, N.; Malkovets, V.; Alifirova, T.; Yakovlev, I.; Xu, Y.-G. Oxidation State of the Lithospheric Mantle Beneath Komsomolskaya–Magnitnaya Kimberlite Pipe, Upper Muna Field, Siberian Craton. Minerals 2020, 10, 740. https://doi.org/10.3390/min10090740
Dymshits A, Sharygin I, Liu Z, Korolev N, Malkovets V, Alifirova T, Yakovlev I, Xu Y-G. Oxidation State of the Lithospheric Mantle Beneath Komsomolskaya–Magnitnaya Kimberlite Pipe, Upper Muna Field, Siberian Craton. Minerals. 2020; 10(9):740. https://doi.org/10.3390/min10090740
Chicago/Turabian StyleDymshits, Anna, Igor Sharygin, Zhe Liu, Nester Korolev, Vladimir Malkovets, Taisia Alifirova, Igor Yakovlev, and Yi-Gang Xu. 2020. "Oxidation State of the Lithospheric Mantle Beneath Komsomolskaya–Magnitnaya Kimberlite Pipe, Upper Muna Field, Siberian Craton" Minerals 10, no. 9: 740. https://doi.org/10.3390/min10090740
APA StyleDymshits, A., Sharygin, I., Liu, Z., Korolev, N., Malkovets, V., Alifirova, T., Yakovlev, I., & Xu, Y. -G. (2020). Oxidation State of the Lithospheric Mantle Beneath Komsomolskaya–Magnitnaya Kimberlite Pipe, Upper Muna Field, Siberian Craton. Minerals, 10(9), 740. https://doi.org/10.3390/min10090740