Detrital-Zircon Age Spectra of Neoproterozoic-Paleozoic Sedimentary Rocks from the Ereendavaa Terrane in NE Mongolia: Implications for the Early-Stage Evolution of the Ereendavaa Terrane and the Mongol-Okhotsk Ocean
Abstract
:1. Introduction
2. Geological Setting
3. Sample Descriptions
4. Analytical Results
5. Discussion
5.1. Deposition/Formation Time of the Dated Strata
5.2. Constraints on the Evolution of the Ereendavaa Terrane
5.3. Implications for the Evolution of the MOO
6. Conclusions
- (1)
- Protoliths of the quartzite assemblage as part of the basement of the Ereendavaa terrane was deposited after ca. 1.2–1.15 Ga, most likely during the Late Mesoproterozoic (1.2–1.0 Ga), in a passive continental margin setting.
- (2)
- The thick intermediate-felsic volcanic sequence to the north of the Ondorkhan was formed during the Late Ordovician (ca. 450 Ma), rather than during the Vendian-early Cambrian as previously suggested. This volcanic sequence is interpreted as part of a Late-Neoproterozoic-Ordovician arc formation resulting from the northward (present coordinates) subduction of the Kherlen Ocean lithosphere beneath the proto Ereendavaa terrane.
- (3)
- The so-called Cambrian strata dated by this study, which yielded the youngest detrital zircon age peak at ca. 451 Ma that is similar to that of the nearby Silurian sequence, was deposited during the Silurian. All these strata and the nearby Devonian sedimentary sequence have a similar detrital zircon age spectrum with a maximum ca. 497–519 Ma, suggesting early Paleozoic arc provenance.
- (4)
- The Mongol-Okhotsk Ocean split the amalgamated early Paleozoic domain above a mantle plume after the early Silurian and developed an Andean-type continental margin along its northern margin during the Devonian and a bidirectional subduction system at ca. 325 Ma. This bidirectional subduction system might have lasted at least until the Triassic.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Natal’in, B. History and modes of mesozoic accretion in southeastern russia. Isl. Arc 1993, 2, 15–34. [Google Scholar] [CrossRef]
- Parfenov, L.M.; Popeko, L.I.; Tomurtogoo, O. Problems of tectonics of the Mongol–Okhotsk orogenic belt. Geol. Pac. Ocean 2001, 16, 797–830. [Google Scholar]
- Zonenshain, L.P.; Kuzmin, M.I.; Natapov, L.M. Geology of the USSR: A plate tectonic synthesis. Geodynamics 1990, 21, 97–120. [Google Scholar]
- Zorin, Y.A. Geodynamics of the western part of the Mongol–Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 1999, 306, 33–56. [Google Scholar] [CrossRef] [Green Version]
- Sengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–306. [Google Scholar] [CrossRef]
- Sengör, A.M.C.; Natal’in, B.A. Paleotectonics of Asia: Fragments of synthesis. In The Tectonic Evolution of Asia; Yin, A., Harrison, T.M., Eds.; Cambridge University Press: New York, NY, USA, 1996; pp. 486–640. [Google Scholar]
- Jahn, B.-M.; Wu, F.; Chen, B. Granitoids of the central Asian orogen and continental growth in the phanerozoic. Trans. R. Soc. Edinb. Earth Sci. 2000, 91, 181–193. [Google Scholar]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the central Asian orogenic belt. J. Geol. Soc. Lond. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Khain, E.V.; Bibikova, E.V.; Kröner, A.; Zhuravlev, D.Z.; Sklyarov, E.V.; Fedotova, A.A.; Kravchenko-Bereznoy, I.R. The most ancient ophiolites of the central Asian fold belt: U–Pb, and Pb–Pb zircon ages for the dunzhugur complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet. Sci. Lett. 2002, 199, 311–325. [Google Scholar] [CrossRef]
- Xiao, W.; Windley, B.F.; Hao, J.; Zhai, M. Accretion leading to collision and the Permian suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 2003, 22, 1069. [Google Scholar] [CrossRef] [Green Version]
- Bussien, D.; Gombojav, N.; Winkler, W.; Quadt, A. The Mongol–Okhotsk belt in Mongolia—An appraisal of the geodynamic development by the study of sandstone provenance and detrital zircons. Tectonophysics 2011, 510, 132–150. [Google Scholar] [CrossRef]
- Zorin, Y.A.; Belichenko, V.G.; Turutanov, E.K.; Kozhevnikov, V.M.; Ruzhentsev, S.V.; Dergunov, A.B.; Filippova, I.B.; Tomurtogoo, O.; Arvisbaatar, N.; Bayasgalan, T.; et al. The South Siberia–Central Mongolian transect. Tectonophysics 1993, 225, 361–378. [Google Scholar] [CrossRef]
- Badarch, G.; Cunningham, W.D.; Windley, B.F. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of central Asia. J. Asian Earth Sci. 2002, 21, 87–110. [Google Scholar] [CrossRef]
- Kravchinsky, V.A.; Cogné, J.P.; Harbert, W.P.; Kuzmin, M.I. Evolution of the Mongol-Okhotsk ocean as constrained by new paleomagnetic data from the Mongol-Okhotsk suture zone, Siberia. Geophys. J. Int. 2002, 148, 34–57. [Google Scholar] [CrossRef] [Green Version]
- Tomurtogoo, O.; Windley, B.F.; Kröner, A.; Badarch, G.; Liu, D.Y. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: Constraints on the evolution of the Mongol–Okhotsk ocean, suture and orogen. J. Geol. Soc. Lond. 2005, 162, 125–134. [Google Scholar] [CrossRef]
- Sorokin, A.A.; Zaika, V.A.; Kovach, V.P.; Kotov, A.B.; Xu, E.; Yang, H. Timing of closure of the eastern Mongol–Okhotsk Ocean: Constraints from U–Pb and Hf isotopic data of detrital zircons from metasediments along the Dzhagdy Transect. Gondwana Res. 2020, 81, 58–78. [Google Scholar] [CrossRef]
- Kurihara, T.; Tsukada, K.; Otoh, S.; Kashiwagi, K.; Chuluun, M.; Byambadash, D.; Boijir, B.; Gonchigdorj, S.; Nuramkhan, M.; Niwa, M.; et al. Upper Silurian and Devonian pelagic deep-water radiolarian chert from the Khangai–Khentei belt of central Mongolia: Evidence for middle Paleozoic subduction accretion activity in the central Asian orogenic belt. J. Asian Earth Sci. 2008, 34, 209–225. [Google Scholar] [CrossRef]
- Zhao, X.; Coe, R.S.; Zhou, Y.; Wu, H.; Wang, J. New palaeomagnetic results from northern China: Collision and suturing with Siberia and Kazakhstan. Tectonophysics 1990, 14, 43–81. [Google Scholar]
- Carrapa, B. Resolving tectonic problems by dating detrital minerals. Geology 2010, 38, 191–192. [Google Scholar] [CrossRef]
- Lawton, T.F.; Hunt, G.J.; Gehrels, G.E. Detrital zircon record of thrust belt unroofing in Lower Cretaceous synorogenic conglomerates, central Utah. Geology 2010, 38, 463–466. [Google Scholar] [CrossRef]
- Gehrels, G. Detrital zircon U-Pb geochronology applied to tectonics. Annu. Rev. Earth Planet. Sci. 2014, 42, 127–149. [Google Scholar] [CrossRef]
- Ruppen, D.; Knaf, A.; Bussien, D.; Winkler, W.; Chimedtseren, A.; von Quadt, A. Restoring the Silurian to Carboniferous northern active continental margin of the Mongol–Okhotsk ocean in Mongolia: Hangay–Hentey accretionary wedge and seamount collision. Gondwana Res. 2014, 25, 1517–1534. [Google Scholar] [CrossRef]
- Kelty, T.K.; Yin, A.; Dash, B.; Gehrels, G.E.; Ribeiro, A.E. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay–Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol–Okhotsk Ocean in central Asia. Tectonophysics 2008, 451, 290–311. [Google Scholar] [CrossRef]
- Lee, J.; Williams, I.; Ellis, D. Pb, U and Th diffusion in natural zircon. Nature 1997, 390, 159–162. [Google Scholar] [CrossRef]
- Miao, L.C.; Baatar, M.; Zhang, F.Q.; Anaad, C.; Zhu, M.S.; Yang, S.H. Cambrian kherlen ophiolite in northeastern Mongolia and its tectonic implications: SHRIMP zircon dating and geochemical constraints. Lithos 2016, 261, 128–143. [Google Scholar] [CrossRef]
- Miao, L.C.; Zhang, F.Q.; Baatar, M.; Zhu, M.S.; Anaad, C. SHRIMP zircon U-Pb ages and tectonic implications of igneous events in the Ereendavaa metamorphic terrane in NE Mongolia. J. Asian Earth Sci. 2017, 144, 243–260. [Google Scholar] [CrossRef]
- Yin, A.; Nie, S. A.; Nie, S. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In The Tectonics of Asia; Yin, A., Harrison, T.M., Eds.; Cambridge University Press: New York, NY, USA, 1996; pp. 442–485. [Google Scholar]
- Parfenov, L.M.; Bulgatov, A.N.; Gordienko, I.V. Terranes and accretionary history of the Transbaikal orogenic belts. Int. Geol. Rev. 1995, 37, 736–751. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, F.; Miao, L.; Baatar, M.; Anaad, C.; Yang, S.; Li, X. The late Carboniferous khuhu davaa ophiolite in northeastern Mongolia: Implications for the tectonic evolution of the Mongol–Okhotsk ocean. Geol. J. 2018, 53, 1263–1278. [Google Scholar] [CrossRef]
- Gusev, G.S.; Peskov, A.I. Geochemistry and conditions of ophiolite formations of eastern Transbaikalia. Geochem. 1996, 8, 723–737. [Google Scholar]
- Kovalenko, V.; Yarmolyuk, V.; Bogatikov, O. Magmatism, Geodynamics, and Metallogeny of Central Asia; MIKO—Commercial Herald Publishers: Moscow, Russia, 1995. [Google Scholar]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.-M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.X.; Ren, B.F.; Zhao, F.Q.; Ji, S.P.; Geng, J.Z. Late Paleoproterozoic magmatic records in Eerguna massif: Evidence from the zircon U-Pb dating of granitic gneisses (in Chinese with English abstract). Geol. Bull. China 2013, 32, 341–352. [Google Scholar]
- Tang, J.; Xu, W.; Wang, F.; Wang, W.; Xu, M.; Zhang, Y. Geochronology of Neoproterozoic magmatism in the Erguna Massif, NE China: Petrogenesis and implications for the breakup of the Rodinia supercontinent. Precambrian. Res. 2013, 224, 597–611. [Google Scholar] [CrossRef]
- Daoudene, Y.; Ruffet, G.; Cocherie, A.; Ledru, P. Timing of exhumation of the Ereendavaa metamorphic core complex (north-eastern Mongolia)—U-Pb and 40Ar/39Ar constraints. J. Asian Earth Sci. 2011, 62, 98–116. [Google Scholar] [CrossRef]
- Jamyandorj, U.; Tungalag, F.; Boishenko, A.F. Geological Map of the Central and Eastern Mongolia, Scale 1: 500,000; Institute of Geological Research Regional Geological Sector, Ministry of Heavy Industries: Ulaanbaatar, Mongolia, 1990. [Google Scholar]
- Kröner, A.; Windley, B.F.; Badarch, G.; Tomurtogoo, O.; Hegner, E.; Jahn, B.M.; Gruschka, S.; Khain, E.V.; Demoux, A.; Wingate, M.T.D. Accretionary growth and crust-formation in the central Asian orogenic belt and comparison with the Arabian–Nubian shield. Geol. Soc. Am. Mem. 2007, 200, 181–209. [Google Scholar]
- Mossakovsky, A.A.; Ruzhentsev, S.V.; Samygin, S.G.; Kheraskova, T.N. Central Asian fold belt: Geodynamic evolution and formation history. Geotektonika 1994, 27, 445–474. [Google Scholar]
- Xiao, W.; Windley, B.F.; Han, H.; Liu, W.; Wan, B.; Zhang, J.; Ao, S.; Zhang, Z.; Song, D. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in central Asia. Earth Sci. Rev. 2018, 186, 94–128. [Google Scholar] [CrossRef]
- Tomurtogoo, O.; Badarch, G.; Makhbadar, T.S.; Orolmaa, D.; Khosbayar, P. Geological Map of Mongolia, Scale 1: 1,000,000; General Directorate of Mineral Research & Exploration of Turkey: Ankara, Turkey, 1999. [Google Scholar]
- Jacobsen, Y.N.; Scherer, E.E.; Munker, C.; Mezger, K. Separation of U, Pb, Lu, and Hf from single zircons for combined U-Pb dating and Hf isotope measurements by TIMS and MC-ICPMS. Chem. Geol. 2005, 220, 105–120. [Google Scholar] [CrossRef]
- Gerdes, A.; Zen, A. Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in central Germany. Earth Planet. Sci. Lett. 2006, 249, 47–61. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, S.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Andersen, T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jager, E. Subcommission on geochronology: Convention on the use of decay constant in geo-and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; Volume 4, pp. 1–71. [Google Scholar]
- Narantsetseg, T.; Orolmaa, D.; Yuan, C.; Wang, T.; Guo, L.; Tong, Y.; Wang, X.; Orshikh, O.E.; Oyunchimeg, T.; Delgerzaya, P.; et al. Early-middle Paleozoic volcanic rocks from the Ereendavaa terrane (Tsarigiin gol area, NE Mongolia) with implications for tectonic evolution of the Kherlen massif. J. Asian Earth Sci. 2019, 175, 138–157. [Google Scholar] [CrossRef]
- Whattam, S.A.; Stern, R.J. The ‘subduction initiation rule’: A key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contrib. Miner. Petr. 2011, 162, 1031–1045. [Google Scholar] [CrossRef]
- Stern, R.J.; Reagan, M.; Ishizuka, O.; Ohara, Y.; Whattam, S. To understand subduction initiation, study forearc crust; to understand forearc crust, study ophiolites. Lithosphere 2012, 4, 469–483. [Google Scholar] [CrossRef] [Green Version]
- Reagan, M.K.; Pearce, J.A.; Petronotis, K.; Almeev, R.R.; Avery, A.J.; Carvallo, C.; Chapman, T.; Christeson, G.L.; Ferré, E.C.; Godard, M.; et al. Subduction initiation and ophiolite crust: New insights from IODP drilling. Int. Geol. Rev. 2017, 59, 1439–1450. [Google Scholar] [CrossRef]
- Stern, R.J.; Gerya, T. Subduction initiation in nature and models: A review. Tectonophysics 2018, 746, 173–198. [Google Scholar] [CrossRef]
- Whattam, S.A.; Montes, C.; Stern, R.J. Early central American forearc follows the subduction initiation rule. Gondwana Res. 2020, 79, 283–300. [Google Scholar] [CrossRef]
- Khain, E.V.; Bibikova, E.V.; Salnikova, E.E.; Kröner, A.; Gibsher, A.S.; Didenko, A.N.; Degtyarev, K.E.; Fedotova, A.A. The Palaeo-Asian Ocean in the Neoproterozoic and early Palaeozoic: New geochronologic data and palaeotectonic reconstructions. Precambrian Res. 2003, 122, 329–358. [Google Scholar] [CrossRef]
- Gordienko, I.V. Paleozoic geodynamic evolution of the Mongol-Okhotsk fold belt. J. Southeast Asian Earth Sci. 1994, 9, 429–433. [Google Scholar] [CrossRef]
- Winkler, W.; Bussien, D.; Baatar, M.; Anaad, C.; von Quadt, A. Detrital zircon provenance analysis in the central Asian orogenic belt of central and southeastern Mongolia—A Palaeotectonic model for the Mongolian Collage. Minerals 2020, accepted. [Google Scholar]
- Miao, L.; Zhang, F.; Jiao, S. Age, protoliths and tectonic implications of the Toudaoqiao blueschist, Inner Mongolia, China. J. Asian Earth Sci. 2015, 105, 360–373. [Google Scholar] [CrossRef]
- Zhao, P.; Xu, B.; Jahn, B. The Mongol-Okhotsk Ocean subduction-related Permian peraluminous granites in northeastern Mongolia: Constraints from zircon U-Pb ages, whole-rock elemental and Sr-Nd-Hf isotopic compositions. J. Asian Earth Sci. 2017, 144, 225–242. [Google Scholar] [CrossRef]
- Koval, P.V.; Grebenshchikova, V.I.; Lustenberg, E.E.; Henney, P.J. Database of granites in the Mongol-Okhotsk zone, Mongolia-Siberia, and its use in mineral exploration. J. Geochem. Explor. 1999, 66, 199–210. [Google Scholar] [CrossRef]
- Berzina, A.P.; Sotnikov, V.I. Character of formation of the Erdenet-Ovoo porphyry Cu-Mo magmatic center (northern Mongolia) in the zone of influence of a Permo-Triassic plume. Russ. Geol. Geophys. 2007, 48, 141–156. [Google Scholar] [CrossRef]
- Kang, Y.; She, H.; Lai, Y.; Wang, Z.; Li, J.; Zhang, Z.; Xiang, A.; Jiang, Z. Evolution of middle-late Triassic granitic intrusions from the Badaguan Cu-Mo deposit, Inner Mongolia: Constraints from zircon U-Pb dating, geochemistry and Hf isotopes. Ore Geol. Rev. 2018, 95, 195–215. [Google Scholar] [CrossRef]
- Mi, K.; Liu, Z.; Li, C.; Liu, R.; Wang, J.; Peng, R. Origin of the badaguan porphyry Cu-Mo deposit, Inner Mongolia, northeast China: Constraints from geology, isotope geochemistry and geochronology. Ore Geol. Rev. 2017, 81, 154–172. [Google Scholar] [CrossRef]
Sample No. | GPS Coordinate | Lithology | Structure/Texture | Major Components | Stratum Age | Maximum Age 1 (Ma) |
---|---|---|---|---|---|---|
MOE-152 | 47.348° N 110.571° E | Quartzite | Massive to weakly foliated structure, coarse-grained, | Mainly quartz with minor muscovite and/or Fe-oxide minerals | Vendian-Cambrian [36] | 1150 |
MOE-216 | 47.479° N 111.227° E | Quartzite | Foliated structure, coarse- to medium-grained texture | Mainly quartz with minor muscovite and Fe-oxide minerals | Riphean [36] or Vendian-Cambrian [40] | 1200 |
MOE-147 | 47.389° N 109.376° E | Rhyolite | Magma flow structure, porphyritic and aphanitic or microcrystalline texture | Phenocrysts: quartz and K-feldspar; aphanitic or tiny felsic minerals in matrix | Vendian-Cambrian [36,40] | 450 2 |
MOE-41 | 47.443° N 109.462° E | Sandstone | Foliated, bedding, kink and ripple fold structures porphyroclastic and medium-grained textures | Plagioclase, K-feldspar, quartz, and muscovite or sericite | Silurian [36,40] | 447 |
MOE-42 | 47.426° N 109.479° E | Siltstone | Foliated, kinking and ripple folding structures, fine-grained texture | Plagioclase, K-feldspar, quartz, and muscovite or sericite | Cambrian [36,40] | 452 |
MOE-44 | 47.213° N 109.449° E | Arkose | Bedding structure, coarse-grained texture | Plagioclase, K-feldspar, quartz, debris, and/or sercite | Devonian [36,40] | 428 |
MOE-51 | 47.178° N 109.460° E | Sandstone | Bedding structure, coarse-grained texture | Plagioclase, K-feldspar, quartz, debris, muscovite or sericite, and/or epidote | Devonian [36,40] | 434 |
MOE-104 | 47.460° N 109.795° E | Sandstone | Foliated and mylonitic structures, porphyroclastic texture | Plagioclase, K-feldspar, quartz, debris, sericite, and/or epidote | Devonian [36,40] | 436 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, L.; Zhu, M.; Liu, C.; Baatar, M.; Anaad, C.; Yang, S.; Li, X. Detrital-Zircon Age Spectra of Neoproterozoic-Paleozoic Sedimentary Rocks from the Ereendavaa Terrane in NE Mongolia: Implications for the Early-Stage Evolution of the Ereendavaa Terrane and the Mongol-Okhotsk Ocean. Minerals 2020, 10, 742. https://doi.org/10.3390/min10090742
Miao L, Zhu M, Liu C, Baatar M, Anaad C, Yang S, Li X. Detrital-Zircon Age Spectra of Neoproterozoic-Paleozoic Sedimentary Rocks from the Ereendavaa Terrane in NE Mongolia: Implications for the Early-Stage Evolution of the Ereendavaa Terrane and the Mongol-Okhotsk Ocean. Minerals. 2020; 10(9):742. https://doi.org/10.3390/min10090742
Chicago/Turabian StyleMiao, Laicheng, Mingshuai Zhu, Chenghao Liu, Munkhtsengel Baatar, Chimidtseren Anaad, Shunhu Yang, and Xingbo Li. 2020. "Detrital-Zircon Age Spectra of Neoproterozoic-Paleozoic Sedimentary Rocks from the Ereendavaa Terrane in NE Mongolia: Implications for the Early-Stage Evolution of the Ereendavaa Terrane and the Mongol-Okhotsk Ocean" Minerals 10, no. 9: 742. https://doi.org/10.3390/min10090742
APA StyleMiao, L., Zhu, M., Liu, C., Baatar, M., Anaad, C., Yang, S., & Li, X. (2020). Detrital-Zircon Age Spectra of Neoproterozoic-Paleozoic Sedimentary Rocks from the Ereendavaa Terrane in NE Mongolia: Implications for the Early-Stage Evolution of the Ereendavaa Terrane and the Mongol-Okhotsk Ocean. Minerals, 10(9), 742. https://doi.org/10.3390/min10090742