Trace Element Geochemistry of Sulfides from the Ashadze-2 Hydrothermal Field (12°58′ N, Mid-Atlantic Ridge): Influence of Host Rocks, Formation Conditions or Seawater?
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
4. Results
4.1. Textures and Mineralogy of Sulfides
4.1.1. Station 233
4.1.2. Station 240
4.1.3. Station 219
4.2. Trace Element Composition of Sulfides
4.3. Physico-Chemical Modeling
5. Discussion
5.1. Mode of Occurrence of Trace Elements in Sulfides
5.1.1. Pyrite, Station 233
5.1.2. Isocubanite, Station 233
5.1.3. Covellite, Station 233
5.1.4. Chalcopyrite, Station 240
5.1.5. Bornite, Station 240
5.1.6. Isocubanite + Chalcopyrite Mixture, Station 219
5.2. Remarkable Features of TE Composition of the Ashadze-2 Sulfides
5.2.1. Pyrite
5.2.2. Isocubanite
5.2.3. Chalcopyrite
5.2.4. Bornite
5.2.5. Isocubanite + Chalcopyrite Mixture
5.3. Behavior of Gold in Ashadze-2 Sulfides
5.4. Role of Seawater in TE Redistribution in Sulfides
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Large, R.R.; Danyushevsky, L.; Hollit, H.; Maslennikov, V.V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Econ. Geol. 2009, 104, 1111–1141. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.; Danyushevsky, L.; Herrington, R.J.; Ayupova, N.R.; Zaykov, V.V.; Lein, A.Y.; Tseluyko, A.S.; Melekestseva, I.Y.; et al. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers. Ore Geol. Rev. 2017, 85, 64–106. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Saini-Eidukat, B.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Danyushevsky, L.; Gilbert, S. Minor and trace elements in bornite and associated Cu–(Fe)-sulfides: A LA-ICP-MS study. Geochim. Cosmochim. Acta 2011, 75, 6473–6496. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Williams, T. The mineralogy and mineral chemistry of indium in sulphide deposits and implications for mineral processing. Hydrometallurgy 2011, 108, 226–228. [Google Scholar] [CrossRef]
- George, L.; Cook, N.J.; Ciobanu, C.L.; Wade, B.P. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. Amer. Mineral. 2015, 100, 548–569. [Google Scholar] [CrossRef]
- Wohlgemuth-Ueberwasser, C.C.; Viljonen, F.; Petersen, S.; Vrster, C. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochim. Cosmochim. Acta 2015, 159, 16–41. [Google Scholar] [CrossRef]
- Keith, M.; Häckel, F.; Haase, K.M.; Schwarz-Schampera, U.; Klemd, R. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol. Rev. 2016, 72, 728–745. [Google Scholar] [CrossRef]
- Reich, M.; Román, N.; Barra, F.; Morata, D. Silver-rich chalcopyrite from the active Cerro Pabellón geothermal system, Northern Chile. Minerals 2020, 10, 113. [Google Scholar] [CrossRef] [Green Version]
- Melekestseva, I.Y.; Tret’yakov, G.A.; Nimis, P.; Yuminov, A.M.; Maslennikov, V.V.; Maslennikova, S.P.; Kotlyarov, V.A.; Beltenev, V.E.; Danyushevsky, L.V.; Large, R. Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87′ N): Evidence for phase separation and magmatic input. Mar. Geol. 2014, 349, 37–54. [Google Scholar] [CrossRef]
- Melekestseva, I.Y.; Maslennikov, V.V.; Maslennikova, S.P.; Danyushevsky, L.; Large, R. Covellite from Semenov-2 hydrothermal field (13°31.13´ N, Mid-Atlantic Ridge): Enrichment in trace elements according to LA-ICP-MS analysis. Dokl. Earth Sci. 2017, 473, 291–295. [Google Scholar] [CrossRef]
- Melekestseva, I.Y.; Maslennikov, V.V.; Tret’yakov, G.A.; Nimis, P.; Beltenev, V.E.; Rozhdestvenskaya, I.I.; Maslennikova, S.P.; Belogub, E.V.; Danyushevsky, L.; Large, R.; et al. Gold- and silver-rich massive sulfides from the Semenov-2 hydrothermal field, 13°31.13´ N, Mid-Atlantic Ridge: A case of magmatic contribution? Econ. Geol. 2017, 112, 741–773. [Google Scholar] [CrossRef]
- Melekestseva, I.Y.; Maslennikov, V.V.; Safina, N.P.; Nimis, P.; Maslennikova, S.P.; Beltenev, V.; Rozhdestvenskaya, I.; Danyushevsky, L.; Large, R.; Artemyev, D.A.; et al. Sulfide breccias from the Semenov-3 hydrothermal field, Mid-Atlantic Ridge: Authigenic mineral formation and trace element pattern. Minerals 2018, 8, 321. [Google Scholar] [CrossRef] [Green Version]
- Butler, I.B.; Nesbitt, R.V. Trace element distribution in the chalcopyrite wall of a black smoker chimney: Insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Earth Planet. Sci. Lett. 1999, 167, 335–345. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, X.; Xu, H.; Konishi, H.; Wang, Y.; Wang, C.; Dai, Y.; Deng, X.; Yu, M. Occurrences and distribution of “invisible” precious metals in sulfide deposits from the Edmond hydrothermal field, Central Indian Ridge. Ore Geol. Rev. 2016, 79, 105–132. [Google Scholar] [CrossRef]
- Wang, Y.; Han, X.; Petersen, S.; Frische, M.; Qiu, Z.; Li, H.; Wu, Z.; Cui, R. Mineralogy and trace element geochemistry of sulfide minerals from the Wocan hydrothermal field on the slow-spreading Carlsberg Ridge, Indian Ocean. Ore Geol. Rev. 2017, 84, 1–19. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Chu, F.; Li, Z.; Wang, J.; Yu, X.; Bi, D. Mineralogy, geochemistry, and Sr-Pb isotopic geochemistry of hydrothermal massive sulfides from the 15.2°S hydrothermal field, Mid-Atlantic Ridge. J. Mar. Syst. 2018, 180, 220–227. [Google Scholar] [CrossRef]
- Beltenev, V.; Nescheretov, A.; Shilov, V.; Ivanov, V.; Shagin, A.; Stepanova, T.; Cherkashev, G.; Batuev, B.; Samovarov, M.; Rozhdestvenskaya, I.; et al. New discoveries at 12°58′ N and 44°52′ W, MAR: Initial results from the Professor Logatchev-22 cruise. InterRidge News 2003, 12, 13–14. [Google Scholar]
- Beltenev, V.E.; Nescheretov, A.V.; Ivanov, V.N.; Shilov, V.; Rozhdestvenskaya, I.I.; Shagin, A.; Stepanova, T.V.; Andreeva, I.A.; Semenov, Y.P.; Sergeev, M.B.; et al. A new hydrothermal field in the axial zone of the Mid-Atlantic Ridge. Dokl. Earth Sci. 2004, 397, 690–693. (In Russian) [Google Scholar]
- Cherkashev, G.A.; Ivanov, V.N.; Bel’tenev, V.I.; Lazareva, L.I.; Rozhdestvenskaya, I.I.; Samovarov, M.L.; Poroshina, I.M.; Sergeev, M.B.; Stepanova, T.V.; Dobretsova, I.G.; et al. Massive sulfide ores of the northern equatorial Mid-Atlantic Ridge. Oceanology 2013, 53, 607–619. [Google Scholar] [CrossRef]
- Fouquet, Y.; Cherkashev, G.; Charlou, J.L.; Ondréas, H.; Birot, D.; Cannat, M.; Bortnikov, N.; Silantyev, S.; Sudarikov, S.; Cambon-Bonavita, M.A.; et al. Serpentine cruise ultramafic hosted hydrothermal deposits on the Mid-Atlantic Ridge: First submersible studies on Ashadze 1 and 2, Logatchev 2 and Krasnov vent fields. InterRidge News 2008, 17, 15–19. [Google Scholar]
- Ondréas, H.; Cannat, M.; Fouquet, Y.; Normand, A. Geological context and vents morphology of the ultramafic-hosted Ashadze hydrothermal areas (Mid-Atlantic Ridge 13°N). Geochem. Geophys. Geosys. 2012, 13, Q0AG14. [Google Scholar] [CrossRef]
- Firstova, A.; Stepanova, T.; Cherkashov, G.; Goncharov, A.; Babaeva, S. Composition and formation of gabbro-peridotite hosted seafloor massive sulfide deposits from the Ashadze-1 hydrothermal field, Mid-Atlantic Ridge. Minerals 2016, 6, 19. [Google Scholar] [CrossRef]
- Cherkashev, G.A.; Stepanova, T.V.; Andreev, S.I.; Firstova, A.V.; Egorov, I.V.; Bel’tenev, V.I.; Ivanov, V.N.; Samovarov, M.L.; Rozhdestvenskaya, I.I.; Lazareva, L.I.; et al. Ore objects within Russian application area in the Northern equatorial part of the Mid-Atlantic Ridge. In World Ocean. Vol. III. Solid Mineral Deposits and Gas Hydrates in the Ocean; Lobkovsky, L.I., Cherkashev, G.A., Eds.; Nauchny Mir: Moscow, Russia, 2018; pp. 90–122. (In Russian) [Google Scholar]
- Ayupova, N.R.; Melekestseva, I.Y.; Maslennikov, V.V.; Tseluyko, A.S.; Blinov, I.A.; Beltenev, V.E. Uranium accumulation in modern and ancient Fe-oxide sediments: Examples from the Ashadze-2 hydrothermal sulfide field (Mid-Atlantic Ridge) and Yubileynoe massive sulfide deposit (South Urals, Russia). Sediment. Geol. 2018, 367, 164–174. [Google Scholar] [CrossRef]
- Danyushevsky, L.V.; Robinson, R.; Gilbert, S.; Norman, M.; Large, R.; McGoldrick, P.; Shelley, J.M.G. Routine quantitative multielement analysis of sulfide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochem. Explor. Environ. Anal. 2011, 11, 51–60. [Google Scholar] [CrossRef]
- Longerich, H.P.; Jackson, S.E.; Gunte, D. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 1996, 11, 899–904. [Google Scholar] [CrossRef]
- Smirnov, V.I. Correlation Methods in Paragenetic Analysis; Nedra: Moscow, Russia, 1981; 174p. (In Russian) [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Barton, P.B., Jr. Some ore textures involving sphalerite from the Furutobe mine, Akita Prefecture. Jpn. Min. Geol. 1978, 28, 293–300. [Google Scholar] [CrossRef]
- Karpov, I.K.; Chudnenko, K.V.; Kulik, D.A. Modeling chemical mass transfer in geochemical processes: Thermodynamic relations, conditions of equilibrium, and numerical algorithms. Am. J. Sci. 1997, 297, 767–806. [Google Scholar] [CrossRef]
- Steele, J.H.; Thorpe, S.A.; Turekian, K.K. (Eds.) Marine Chemistry and Geochemistry: A Derivative of Encyclopedia of Ocean Sciences, 2nd ed.; Elsiever: London, UK, 2010; 631p. [Google Scholar]
- Tivey, M.K. Modeling chimney growth and associated fluid flow at seafloor hydrothermal vent sites. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions; Geophysical Monograph 91; Wiley: Hoboken, NJ, USA, 1995; pp. 158–173. [Google Scholar]
- Koschinsky, A.; Garbe-Schönberg, D.; Sander, S.; Schmidt, K.; Gennerich, H.-H.; Strauss, H. Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge. Geology 2008, 36, 615–618. [Google Scholar] [CrossRef]
- Metz, S.; Trefry, J.H. Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochim. Cosmochim. Acta 2000, 64, 2267–2279. [Google Scholar] [CrossRef]
- Tivey, M.K.; McDuff, R.E. Mineral precipitation in the walls of black smoker chimneys: A quantitative model of transport and chemical reaction. J. Geophys. Res. 1990, 95, 12617–12637. [Google Scholar] [CrossRef]
- Chudnenko, K.V. Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Software, and Applications; Geo: Novosibirsk, Russia, 2010; 287p. (In Russian)
- Hannington, M.D.; Jonasson, I.R.; Herzig, P.M.; Petersen, S. Physical and chemical processes of seafloor mineralization at mid-ocean ridges. In Seafloor Hydrothermal Processes; Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., Thomson, R.E., Eds.; Geophysical Monograph 91; Wiley: Hoboken, NJ, USA, 1995; pp. 115–157. [Google Scholar]
- Huston, D.L.; Sie, S.H.; Suter, G.F.; Cooke, D.R.; Both, R.A.Q. Trace elements in sulfide minerals from eastern Australian volcanic hosted massive sulfide deposits. Part I. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite. Part II. Selenium levels in pyrite comparison with δ34S values and implication for the source of sulfur in volcanogenic hydrothermal systems. Econ. Geol. 1995, 90, 1167–1196. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Ewing, R.C.; Hough, R.; Walshe, J. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 2011, 42, 32–46. [Google Scholar] [CrossRef]
- D’Orazio, M.; Biagioni, C.; Dini, A.; Vezzoni, S. Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy: Constraints for their origin and environmental concerns. Miner Deposita 2017, 52, 687–707. [Google Scholar] [CrossRef]
- Brumsack, H.-J. Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geologische Rundschau 1989, 78, 851–882. [Google Scholar] [CrossRef]
- Mikhailik, P.E.; Mikhailik, E.V.; Blokhin, M.G.; Zarubina, N.V. Sources of gallium in ferromanganese crusts from the Sea of Japan. Rus. Geol. Geophys. 2015, 56, 1148–1153. [Google Scholar] [CrossRef]
- Abraitis, P.K.; Pattrick, R.A.D.; Vaughan, D.J. Variations in the compositional, textural and electrical properties of natural pyrite: A review. Int. J. Miner. Process. 2004, 74, 41–59. [Google Scholar] [CrossRef]
- Dekov, V.; Scholten, J.; Garbe-Schönberg, C.-D.; Botz, R.; Cuadros, J.; Schmidt, M.; Stoffers, P. Hydrothermal sediment alteration at a seafloor vent field: Grimsey graben, Tjörnes Fracture Zone, north of Iceland. J. Geophys. Res. 2008, 113, B11101. [Google Scholar] [CrossRef] [Green Version]
- Brett, R.; Evans, H.T., Jr.; Gibson, E.K., Jr.; Hedenquist, J.Y.; Windless, M.-V.; Sommer, M.A. Mineralogical studies of sulfide samples and volatile concentrations of basalt glasses from the Southern Juan de Fuca Ridge. J. Geophys. Res. 1987, 92, 11373–11379. [Google Scholar] [CrossRef] [PubMed]
- George, L.L.; Cook, N.J.; Ciobanu, C.L. Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geol. Rev. 2016, 77, 97–116. [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Browie, B.B.P.; Ciobanu, C.L. Trace elements in hydrothermal chalcopyrite. Mineral. Mag. 2018, 82, 59–88. [Google Scholar] [CrossRef]
- Rybicka, E.H.; Calmano, W.; Breeger, A. Heavy metals sorption/desorption on competing clay minerals; an experimental study. Appl. Clay Sci. 1995, 9, 369–381. [Google Scholar] [CrossRef]
- Zhao, X.; Qiang, S.; Wu, H.; Yang, Y.; Shao, D.; Fang, L.; Liang, J.; Li, P.; Fan, Q. Exploring the sorption mechanism of Ni(II) on illite: Batch sorption, modelling, EXAFS and extraction investigations. Sci. Rep. 2017, 7, 8495. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.-Y.; Liang, C.-H.; Yin, Y.; Du, L.-Y. Thermal activation of serpentine for adsorption of cadmium. J. Hazard. Mater. 2017, 329, 222–229. [Google Scholar] [CrossRef]
- Martin, L.A.; Wissocq, A.; Benedetti, M.F.; Latrille, C. Thallium (Tl) sorption onto illite and smectite: Implications for Tl mobility in the environment. Geochim. Cosmochim. Acta 2018, 230, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Donat, R. The removal of uranium (VI) from aqueous solutions onto natural sepiolite. J. Chem. Thermodynam. 2009, 41, 829–835. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Wang, X. The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modelling techniques. Vol. Geochim. Cosmochim. Acta 2009, 140, 621–643. [Google Scholar] [CrossRef]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based deposits. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Hein, J.R.; Spinardi, F.; Okamoto, N.; Mizell, K.; Thorburn, D.; Tawake, A. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions. Ore Geol. Rev. 2015, 68, 97–116. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A. Deep-ocean ferromanganese crusts and nodules. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Bogdanov, Y.A.; Vikent’ev, I.V.; Lein, A.Y.; Bogdanova, O.Y.; Sagalevich, A.M.; Sivtsov, A.V. Low-temperature hydrothermal deposits in the rift zone of the Mid-Atlantic Ridge. Geol. Ore Dep. 2008, 50, 119–134. [Google Scholar] [CrossRef]
- Hannington, M.; Herzig, P.; Scott, S.; Thompson, G.; Rona, P. Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges. Mar. Geol. 1991, 101, 217–248. [Google Scholar] [CrossRef]
- Belissont, R.; Munoz, M.; Boiron, M.-C.; Luais, B.; Mathon, O. Germanium crystal chemistry in Cu-bearing sulfides from micro-XRF mapping and micro-XANES spectroscopy. Minerals 2019, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Firstova, A.; Stepanova, T.; Sukhanova, A.; Cherkashov, G.; Poroshina, I. Au and Te minerals in seafloor massive sulphides from Semyenov-2 hydrothermal field, Mid-Atlantic Ridge. Minerals 2019, 9, 294. [Google Scholar] [CrossRef] [Green Version]
- Mozgova, N.N.; Trubkin, N.V.; Borodaev, Y.S.; Cherkashov, G.A.; Stepanova, T.V.; Semkova, T.A.; Uspenskaya, T.Y. Mineralogy of massive sulfides from the Ashadze hydrothermal field, 13°N, Mid-Atlantic Ridge. Can. Miner. 2008, 46, 545–567. [Google Scholar] [CrossRef]
- Mozgova, N.N.; Krasnov, S.G.; Batuyev, B.N.; Borodaev, Y.S.; Efimov, A.V.; Markov, V.F.; Stepanova, T.V. The first report of cobalt pentlandite from a Mid-Atlantic Ridge hydrothermal deposit. Can. Miner. 1996, 34, 23–28. [Google Scholar]
- Lein, A.Y.; Cherkashov, G.A.; Ul’yanov, A.A.; Ul’yanova, N.V.; Stepanova, T.V.; Sagalevich, A.M.; Bogdanov, Y.A.; Gurvich, E.G.; Torokhov, M.P. Mineralogy and geochemistry of sulfide ores from the Logachev-2 and Rainbow fields: Similar and distinctive features. Geokhimiya 2003, 41, 271–294. (In Russian) [Google Scholar]
- Marques, A.F.A.; Barriga, F.J.A.S.; Chavagnac, V.; Fouquet, Y. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge. Miner. Deposita 2006, 41, 52–67. [Google Scholar] [CrossRef] [Green Version]
- Marques, A.F.A.; Barriga, F.J.A.S.; Scott, S.D. Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu–Zn–(Co)-rich massive sulfides. Mar. Geol. 2007, 245, 20–39. [Google Scholar] [CrossRef]
- Borodaev, Y.S.; Bryzgalov, I.A.; Mozgova, N.N.; Uspenskaya, T.Y. Pentlandite and Co-enriched pentlandite as characteristic minerals of modern hydrothermal sulfide mounds hosted by serpentinized ultramafic rocks (Mid-Atlantic Ridge). Moscow Univ. Geol. Bul. 2007, 62, 85–97. [Google Scholar] [CrossRef]
- Fouquet, Y.; Cambon, P.; Etoubleau, J.; Charlou, J.-L.; Ondréas, H.; Barriga, F.J.A.S.; Cherkashov, G.; Semkova, T.; Poroshina, I.; Bohn, M.; et al. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposits. In Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges; Rona, P.A., Devey, C.W., Dyment, J., Murton, B.J., Eds.; AGU Geophys. Monograph; Wiley: Hoboken, NJ, USA, 2010; pp. 321–368. [Google Scholar]
- Toffolo, L.; Nimis, P.; Tret’yakov, G.A.; Melekestseva, I.Y.; Beltenev, V.E. Seafloor massive sulfides from mid-ocean ridges: Exploring the causes of their geochemical variability with multivariate analysis. Earth-Sci. Rev. 2020, 201, 102958. [Google Scholar] [CrossRef]
- Bogdanov, Y.A.; Bortnikov, N.S.; Vikent’ev, I.V.; Lein, A.Y.; Gurvich, E.G.; Sagalevich, A.M.; Simonov, V.A.; Ikorskii, S.V.; Stavrova, O.O.; Apollonov, V.N. Mineralogical–geochemical peculiarities of hydrothermal sulfide ores and fluids in the Rainbow field associated with serpentinites, Mid-Atlantic Ridge (36°14’ N). Geol. Rudn. Mestorozh. 2002, 44, 444–473. (In Russian) [Google Scholar]
- Scott, S.D. Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineral. Mag. 1983, 47, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Douville, E.; Charlou, J.L.; Oelkers, E.H.; Bienvenu, P.; Jove Colon, C.F.; Donval, J.P.; Fouquet, Y.; Prieur, D.; Appriou, P. The Rainbow vent fluids (36°14’ N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol. 2002, 184, 37–48. [Google Scholar] [CrossRef]
- Watenphul, A.; Scholten, L.; Beermann, O.; Kavner, A.; Alraun, P.; Falkenberg, G.; Newville, M.; Lanzirotti, A.; Schmidt, C. Cu and Ni solubility in high-temperature aqueous fluids. In Proceedings of the AGU 2013 Fall Meeting, San Francisco, CA, USA, 9–13 December 2013. abstract id MR33A-2311. [Google Scholar]
- Charlou, J.L.; Donval, J.P.; Konn, C.; Ondréas, H.; Fouquet, Y. High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. In Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges; Rona, P.A., Devey, C.W., Dyment, J., Murton, B.J., Eds.; AGU Geophys. Monograph; Wiley: Hoboken, NJ, USA, 2010; pp. 265–296. [Google Scholar]
- Bischoff, J.L.; Rosenbauer, R.J. The critical point and two-phase boundary of seawater, 200–500 °C. Earth Planet. Sci. Let. 1984, 68, 172–180. [Google Scholar] [CrossRef]
- Auclair, G.; Fouquet, Y.; Bohn, M. Distribution of selenium in high-temperature hydrothermal sulfide deposits at 13°N, East Pacific Rise. Can. Mineral. 1987, 25, 577–588. [Google Scholar]
- Bethke, P.M.; Barton, P.B. Distribution of some minor elements between coexisting sulfide minerals. Econ. Geol. 1971, 66, 140–163. [Google Scholar] [CrossRef]
- Butler, I.B.; Fallick, A.E.; Nesbitt, R.V. Mineralogy, sulphur isotope geochemistry and the development of sulphide structures at the Broken Spur hydrothermal vent site, 29°10′N, Mid-Atlantic Ridge. J. Geol Soc. 1998, 155, 773–785. [Google Scholar] [CrossRef]
- Halbach, P.; Blum, N.; Münch, U.; Plüger, W.; Garbe-Schönberg, D.; Zimmer, M. Formation and decay of a modern massive sulfide deposit in the Indian Ocean. Miner. Deposita 1998, 33, 302–309. [Google Scholar] [CrossRef]
- Berkenbosch, H.A.; de Ronde, C.E.J.; Gemmel, J.B.; McNeil, A.W.; Goemann, K. Mineralogy and formation of black smoker chimneys from Brothers submarine volcano, Kermadec Arc. Econ. Geol. 2012, 107, 1613–1633. [Google Scholar] [CrossRef]
- Fouquet, Y.; Wafik, A.; Cambon, P.; Mevel, C.; Meyer, G.; Gente, P. Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposit (Mid-Atlantic Ridge at 23° N). Econ. Geol. 1993, 88, 2018–2036. [Google Scholar] [CrossRef]
- Hannington, M.D.; Tivey, M.K.; Larocque, A.C.; Petersen, S.; Rona, P.A. The occurrence of gold in sulfide deposits on the TAG hydrothermal field, Mid-Atlantic Ridge. Can. Miner. 1995, 33, 1285–1310. [Google Scholar]
- Petersen, S.; Herzig, P.M.; Schwarz-Schampera, U.; Hannington, M.D.; Jonasson, I.R. Hydrothermal precipitates associated with bimodal volcanism in the Central Bransfield Strait, Antarctica. Miner. Deposita 2004, 39, 358–379. [Google Scholar] [CrossRef]
- Ocean Drilling Program Leg 106 Scientific Party. Drilling the Snake Pit hydrothermal sulfide deposit on the Mid-Atlantic Ridge at 23°22′ N. Geology 1986, 14, 1004–1007. [Google Scholar] [CrossRef]
- Auclair, M.; Gauthier, M.; Trottier, J.; Jebrak, M.; Chartrand, F. Mineralogy, geochemistry and paragenesis of the Eastern Metals serpentinite-associated Ni-Cu-Zn Deposit, Quebec Appalachians. Econ. Geol. 1993, 88, 123–138. [Google Scholar] [CrossRef]
- Foose, M.P.; Economou, M.; Panayiotou, A. Compositional and mineralogic constraints on the genesis of ophiolite hosted nickel mineralization in the Pevkos Area, Limassol Forest, Cyprus. Mineral. Deposita 1985, 20, 234–240. [Google Scholar] [CrossRef]
- Thalhammer, O.; Stumpfl, E.F.; Panayiotou, A. Postmagmatic, hydrothermal origin of sulfide and arsenide mineralization at Limassol Forest, Cyprus. Mineral. Deposita 1986, 21, 95–105. [Google Scholar] [CrossRef]
- Leblanc, M. Co-Ni arsenide deposits, with accessory gold, in ultramafic rocks from Morocco. Can. J. Earth Sci. 1986, 23, 1592–1602. [Google Scholar] [CrossRef]
- Peltola, E. Origin of Precambrian copper sulfides of the Outokumpu district, Finland. Econ. Geol. 1978, 73, 461–477. [Google Scholar] [CrossRef]
- Nimis, P.; Tesalina, S.G.; Omenetto, P.; Tartarotti, P.; Lerouge, C. Phyllosilicate minerals in the hydrothermal mafic–ultramafic-hosted massive-sulfide deposit of Ivanovka (southern Urals): Comparison with modern ocean seafloor analogues. Contrib. Mineral. Petrol. 2004, 147, 363–383. [Google Scholar] [CrossRef]
- Melekestseva, I.Y.; Zaykov, V.V.; Nimis, P.; Tret’yakov, G.A.; Tesalina, S.G. Cu–(Ni–Co–Au)-bearing massive sulfide deposits associated with mafic–ultramafic rocks of the Main Urals Fault, South Urals: Geological structures, ore textural and mineralogical features, comparison with modern analogs. Ore Geol. Rev. 2013, 52, 18–36. [Google Scholar] [CrossRef]
- Melekestseva, I.Y. Heterogeneous Cobalt-bearing Massive Sulfide Deposits in Ultramafic Rocks from the Paleoisland–arc Structures; Nauka: Moscow, Russia, 2007; 245p. (In Russian) [Google Scholar]
- Hannington, M.D.; Thompson, G.; Rona, P.A.; Scott, S.D. Gold and native copper in supergene sulphides from the Mid-Atlantic Ridge. Nature 1988, 333, 64–66. [Google Scholar] [CrossRef]
- Herzig, P.M.; Hannington, M.D.; Fouquet, Y.; von Stackelberg, U.; Petersen, S. Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific. Econ. Geol. 1993, 88, 2182–2209. [Google Scholar] [CrossRef]
- Petersen, S.; Kuhn, T.; Herzig, P.M.; Hannington, M.D. Factors controlling precious and base-metal enrichments at the ultramafic-hosted Logatchev hydrothermal field, 14°45′N on the MAR: New insights from cruise M60/3. In Mineral Deposits Research: Meeting the Global Challenge; Mao, J., Bierlein, F.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Chapter 6–21; pp. 679–983. [Google Scholar]
- Murphy, P.J.; Meyer, G. A gold-copper association in ultramafic-hosted hydrothermal sulfides from the Mid-Atlantic Ridge. Econ. Geol. 1998, 93, 1076–1083. [Google Scholar] [CrossRef]
- De Ronde, C.E.J.; Massoth, G.J.; Butterfield, D.A.; Christenson, B.W.; Ishibashi, J.; Ditchburn, R.G.; Hannington, M.D.; Brathwaite, R.L.; Lupton, J.E.; Kamenetsky, V.S.; et al. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Miner. Deposita 2011, 46, 541–584. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Akinfiev, N.N.; Borisova, A.Y.; Zotov, A.V.; Kouzmanov, K. Gold speciation and transport in geological fluids: Insights from experiments and physical-chemical modeling. Geol. Soc. Spec. Publ. 2014, 402, 9–70. [Google Scholar] [CrossRef]
- Evrard, C.; Fouquet, Y.; Moëlo, Y.; Rinnert, E.; Etoubleau, J.; Langlade, J.A. Tin concentration in hydrothermal sulphides related to ultramafic rocks along the Mid-Atlantic Ridge: A mineralogical study. Eur. J. Mineral. 2015, 27, 627–638. [Google Scholar] [CrossRef]
Station Number | Date | Time | Latitude | Longitude | Depth, m |
---|---|---|---|---|---|
219 | May 27 | 19:32 | 12°59.322 | 44°54.443 | 3281 |
233 | May 30 | 01:37 | 12°59.525 | 44°54.411 | 3266 |
240 | May 31 | 13:55 | 12°59.504 | 44°54.395 | 3273 |
Laboratory Number of Analysis | Au | Ag | Pb | Zn | Fe | Cu | Se | S | Total |
---|---|---|---|---|---|---|---|---|---|
Sphalerite | |||||||||
27085a | 58.63 | 6.56 | 0.89 | 33.34 | 99.42 | ||||
27085d | 59.03 | 6.40 | 0.65 | 33.31 | 99.39 | ||||
Clausthalite | |||||||||
27085b | 74.43 | 22.21 | 2.75 | 99.38 | |||||
27085c | 73.00 | 23.72 | 2.54 | 99.26 | |||||
Galena | |||||||||
27085e | 76.60 | 4.88 | 2.19 | 15.42 | 99.10 | ||||
Native Gold | |||||||||
27086c * | 99.24 | 0.76 | 100.00 | ||||||
27086b * | 96.36 | 3.64 | 100.00 | ||||||
27089a | 92.65 | 7.35 | 100.00 |
Mineral | Formula | Vol% | Mole/kg |
---|---|---|---|
Isocubanite | CuFe2S3 | ~30 | 0.988745 |
Chalcopyrite | CuFeS2 | ~30 | 1.593732 |
Bornite | Cu5FeS4 | ~25 | 0.575394 |
Sphalerite | ZnS | ~10 | 0.956737 |
Pyrite | FeS2 | ~5 | 0.4760325 |
Galena | PbS | 0.003 | 0.0000721 |
Clausthalite | PbSe | 12 ppm | 0.0000349 |
Native gold | Au | 5 ppm | 0.0000254 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melekestseva, I.; Maslennikov, V.; Tret’yakov, G.; Maslennikova, S.; Danyushevsky, L.; Kotlyarov, V.; Large, R.; Beltenev, V.; Khvorov, P. Trace Element Geochemistry of Sulfides from the Ashadze-2 Hydrothermal Field (12°58′ N, Mid-Atlantic Ridge): Influence of Host Rocks, Formation Conditions or Seawater? Minerals 2020, 10, 743. https://doi.org/10.3390/min10090743
Melekestseva I, Maslennikov V, Tret’yakov G, Maslennikova S, Danyushevsky L, Kotlyarov V, Large R, Beltenev V, Khvorov P. Trace Element Geochemistry of Sulfides from the Ashadze-2 Hydrothermal Field (12°58′ N, Mid-Atlantic Ridge): Influence of Host Rocks, Formation Conditions or Seawater? Minerals. 2020; 10(9):743. https://doi.org/10.3390/min10090743
Chicago/Turabian StyleMelekestseva, Irina, Valery Maslennikov, Gennady Tret’yakov, Svetlana Maslennikova, Leonid Danyushevsky, Vasily Kotlyarov, Ross Large, Victor Beltenev, and Pavel Khvorov. 2020. "Trace Element Geochemistry of Sulfides from the Ashadze-2 Hydrothermal Field (12°58′ N, Mid-Atlantic Ridge): Influence of Host Rocks, Formation Conditions or Seawater?" Minerals 10, no. 9: 743. https://doi.org/10.3390/min10090743
APA StyleMelekestseva, I., Maslennikov, V., Tret’yakov, G., Maslennikova, S., Danyushevsky, L., Kotlyarov, V., Large, R., Beltenev, V., & Khvorov, P. (2020). Trace Element Geochemistry of Sulfides from the Ashadze-2 Hydrothermal Field (12°58′ N, Mid-Atlantic Ridge): Influence of Host Rocks, Formation Conditions or Seawater? Minerals, 10(9), 743. https://doi.org/10.3390/min10090743