Geochemical Approach to the Reconstruction of Sedimentation Processes in Kamyshovoye Lake (SE Baltic, Russia) during the Late Glacial and Holocene
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Lithology
3.2. Radiocarbon Analysis and Sedimentation Rate
3.3. Geochemical Analysis
3.3.1. Loss-on-Ignition (LOI)
3.3.2. Elementary Analysis
3.4. Statistical Processing
3.4.1. Correlation Analysis
3.4.2. PCA
4. Results and Interpretation
4.1. Lithology
4.2. Radiocarbon Analysis, Age–Depth Model, and Sedimentation Rate
4.3. Statistical Processing
4.3.1. Correlation Analysis
4.3.2. PCA
4.4. Geochemistry
5. Discussion
5.1. Reconstruction of Sedimentation Processes
5.1.1. Terrigenous Deposits
5.1.2. Chemogenic Deposits
5.1.3. Increase in Organic Matter
5.2. Indicators of Anthropogenic Influence Inferred from Geochemical Data
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Subetto, D.A. Bottom Sediments of Lakes: Palaeolimnological Reconstructions; RGPU Herzen: St. Petersburg, Russia, 2009; p. 344. (In Russian) [Google Scholar]
- Arslanov, K.A.; Druzhinina, O.A.; Savelieva, L.A.; Subetto, D.A.; Skhodnov, I.; Dolukhanov, P.M.; Kuzmin, G.F.; Chernov, S.B.; Maksimov, F.E.; Kovalenkov, S. Geochronology of vegetation stages of south-east Baltic coast (Kaliningrad region) during the middle and Late Holocene. Geochronometria 2011, 38, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Druzhinina, O.; Subetto, D.; Stančikaitė, M.; Vaikutienė, G.; Kublitsky, J.; Arslanov, K.H. Sediment record from the Kamyshovoye Lake: History of vegetation during Late Glacial and early Holocene (Kaliningrad District, Russia). Baltica 2015, 28, 121–134. [Google Scholar] [CrossRef]
- Napreenko-Dorokhova, T.V.; Napreenko, M.G.; Subetto, D.A. History of the development of natural ecosystems in the Central part of the Kaliningrad region in connection with changes in the General geographical situation and human activity. Soc. Environ. Dev. 2016, 2, 101–109. (In Russian) [Google Scholar]
- Napreenko-Dorokhova, T.V. Paleoecological Reconstruction of the Vegetation Cover of the Southeastern Part of the Baltic Region in the Holocene. Ph.D. Thesis, Kaliningrad University, Kaliningrad, Russia, 2015. (In Russian). [Google Scholar]
- Druzhinina, O.; Kublitskiy, Y.; Stančikait, M.; Nazarova, L.; Syrykh, L.; Gedminien, L.; Uogintas, D.; Skipityte, R.; Arslanov, K.; Vaikutien, G.; et al. The Late Pleistocene–Early Holocene palaeoenvironmental evolution in the SE Baltic region: A new approach based on chironomid, geochemical and isotopic data from Kamyshovoye Lake, Russia. Boreas 2020, 49, 544–561. [Google Scholar] [CrossRef]
- Guobytė, R.; Satkūnas, J. Pleistocene Glaciations in Lithuania. In Quaternary Glaciations Extent and Chronology—A Closer Look; Ehlers, J., Gibbard, P.L., Hughes, P.D., Eds.; Elsevier BV: Amsterdam, The Netherlands, 2011; Volume 15, pp. 231–246. [Google Scholar]
- Litvin, V. Relief and geomorphological areas. In Kaliningradskaya Oblast: Ocherki Prirody; Berenbeim, D., Litvin, V., Eds.; Yantarny Skaz: Kaliningrad, Russia, 1999; pp. 36–54. (In Russian) [Google Scholar]
- Litvin, V. Natural Landscapes of the Kaliningrad District; Kaliningradskaya Oblast: Prirodnye Resursy, Kaliningrad, Russia, 1999; pp. 141–151. (In Russian) [Google Scholar]
- Kublitsky, Y.; Subetto, D. The Reconstruction of the Formation of Lakes and Wetlands and the Related Sedimentation Processes in the Russian Segment of the Vištytis Upland. In Baltic Region—The Region of Cooperation; Fedorov, G., Druzhinin, A., Golubeva, E., Subetto, D., Palmowski, T., Eds.; Springer Science and Business Media LLC: Cham, Switzerland, 2019; pp. 127–135. [Google Scholar] [CrossRef]
- Strakhov, N. Comparative Limnological Study of Bottom Sediments. In Formation of Sediments in Modern Reservoirs; Publishing House of the USSR Academy of Sciences: Moscow, Russia, 1954; pp. 12–32. [Google Scholar]
- Ramsey, C.B.; Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 2013, 55, 720–730. [Google Scholar] [CrossRef]
- Dean, W.E. Determination of Carbonate and Organic Matter in Calcareous Sediments and Sedimentary Rocks by Loss on Ignition: Comparison with Other Methods. J. Sediment. Res. 1974, 44, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- XRF Spectrometers and Analyzers “Spectron”. International Union of Pure and Applied Chemistry Home Page. Available online: https://spectronxray.ru/en/techniques/ecology/151/ (accessed on 15 July 2020).
- Jenne, E.A. Controls on Mn, Fe, Co, Ni, Cu, and Zn Concentrations in Soils and Water: The Significant Role of Hydrous Mn and Fe Oxides. Adv. Chem. 1968, 73, 337–387. [Google Scholar] [CrossRef]
- Keller, U.D. Principles of Chemical Weathering. In Geochemistry of Lithogenesis; Inostr. Lit: Moscow, Russia, 1963; pp. 85–197. (In Russian) [Google Scholar]
- Kulkova, M.A. Geochemical Indication of Landscape and Climate Changes in the Holocene. Ph.D. Thesis, Saint-Petersburg University, Saint-Petersburg, Russia, 2005. (In Russian). [Google Scholar]
- Minyuk, P.S.; Borkhodoev, V.Y.; Wennrich, V. Inorganic geochemistry data from Lake El’gygytgyn sediments: Marine isotope stages 6–11. Clim. Past 2014, 10, 467–485. [Google Scholar] [CrossRef] [Green Version]
- Stancikaite, M.; Šinkūnas, P.; Šeirienė, V.; Kisielienė, D. Patterns and chronology of the Lateglacial environmental development at Pamerkiai and Kašučiai, Lithuania. Quat. Sci. Rev. 2008, 27, 127–147. [Google Scholar] [CrossRef]
- Gałka, M.; Tobolski, K.; Zawisza, E.; Goslar, T. Postglacial history of vegetation, human activity and lake-level changes at Jezioro Linówek in northeast Poland, based on multi-proxy data. Veg. Hist. Archaeobot. 2013, 23, 123–152. [Google Scholar] [CrossRef] [Green Version]
- Pędziszewska, A.; Tylmann, W.; Witak, M.; Piotrowska, N.; Maciejewska, E.; Latałowa, M. Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). Rev. Palaeobot. Palynol. 2015, 216, 55–75. [Google Scholar] [CrossRef]
- Subetto, D.A.; Wohlfarth, B.; Davydova, N.N.; Sapelko, T.V.; Björkman, L.; Solovieva, N.; Wastegård, S.; Possnert, G.; Khomutov, V.I. Climate and environment on the Karelian Isthmus, northwestern Russia, 13000–19000 cal. yrs BP. Boreas 2002, 31, 1–19. [Google Scholar] [CrossRef]
- Enters, D.; Kirilova, E.; Lotter, A.F.; Lücke, A.; Parplies, J.; Jahns, S.; Kuhn, G.; Zolitschka, B. Climate change and human impact at Sacrower See (NE Germany) during the past 13,000 years: A geochemical record. J. Paleolimnol. 2009, 43, 719–737. [Google Scholar] [CrossRef]
- Kaiser, K.; Rother, H.; Lorenz, S.; Gärtner, P.; Papenroth, R. Geomorphic evolution of small river–lake-systems in northeast Germany during the Late Quaternary. Earth Surf. Process. Landf. 2007, 32, 1516–1532. [Google Scholar] [CrossRef]
- Margielewski, W.; Krąpiec, M.; Jankowski, L.; Urban, J.; Zernitskaya, V. Impact of aeolian processes on peat accumulation: Late Glacial–Holocene history of the Hamernia peat bog (Roztocze region, south-eastern Poland). Quat. Int. 2015, 386, 212–225. [Google Scholar] [CrossRef]
- Lauterbach, S.; Brauer, A.; Andersen, N.; Danielopol, D.L.; Dulski, P.; Hüls, M.; Milecka, K.; Namiotko, T.; Plessen, B.; Von Grafenstein, U.; et al. Multi-proxy evidence for early to mid-Holocene environmental and climatic changes in northeastern Poland. Boreas 2011, 40, 57–72. [Google Scholar] [CrossRef]
- Mirosław-Grabowska, J.; Zawisza, E.; Jaskółka, A.; Obremska, M. Natural transformation of the Romoty paleolake (NE Poland) during the Late Glacial and Holocene based on isotopic, pollen, cladoceran and geochemical data. Quat. Int. 2015, 386, 171–185. [Google Scholar] [CrossRef]
- Apolinarska, K.; Woszczyk, M.; Obremska, M. Late Weichselian and Holocene palaeoenvironmental changes in northern Poland based on the Lake Skrzynka record. Boreas 2011, 41, 292–307. [Google Scholar] [CrossRef]
- Gedminienė, L.; Šiliauskas, L.; Skuratovič, Ž.; Taraškevičius, R.; Zinkutė, R.; Kazbaris, M.; Ežerinskis, Ž.; Šapolaitė, J.; Gastevičienė, N.; Šeirienė, V.; et al. The Lateglacial-Early Holocene dynamics of the sedimentation environment based on the multi-proxy abiotic study of Lieporiai palaeolake, Northern Lithuania. Baltica 2019, 32, 91–106. [Google Scholar]
- Stančikaitė, M.; Gedminienė, L.; Edvardsson, J.; Stoffel, M.; Corona, C.; Gryguc, G.; Uogintas, D.; Zinkutė, R.; Skuratovič, Ž.; Taraškevičius, R. Holocene vegetation and hydroclimatic dynamics in SE Lithuania—Implications from a multi-proxy study of the Čepkeliai bog. Quat. Int. 2019, 501, 219–239. [Google Scholar] [CrossRef]
- Kabailienė, M. Late Glacial and Holocene stratigraphy of Lithuania based on pollen and diatom data. Geologija 2006, 54, 42–48. [Google Scholar]
- Novik, A.A. Space-time correlation development of the lake levels change during the late glacial and holocene of the Baltic Lake Districts. J. Belarus. State Univ. Geogr. Geol. 2017, 1, 26–35. (In Russian) [Google Scholar]
- Zernitskaya, V.P.; Vlasov, B.P.; Matveev, A.V.; Novik, A.A.; Subetto, D.A.; Kublitsky, Y.A.; Orlov, A.V. Correlation of environmental dynamics of the South-Eastern periphery of the poozersky (Valdai) glaciation. J. Belarus. State Univ. Geogr. Geol. 2020, 1, 45–59. (In Russian) [Google Scholar]
- Zawiska, I.; Apolinarska, K.; Woszczyk, M. Holocene climate vs. catchment forcing on a shallow, eutrophic lake in eastern Poland. Boreas 2018, 48, 166–178. [Google Scholar] [CrossRef] [Green Version]
- Anderson, N.J.; Renberg, I.; Segerstrom, U. Diatom and lake productivity responses to agricultural development in a Northern Swedish, boreal forest catchment. J. Ecol. 1995, 83, 809–822. [Google Scholar] [CrossRef]
- Yuspina, L. Palaeogeography of the Baltic Sea. Ph.D. Thesis, Shirshov Institute of Oceanology, Russian Academy of Sciences, Kaliningrad, Russia, 2001. (In Russian). [Google Scholar]
- Zalcman, E. Pribrezhnoe—A new archaeological Primorskaya culture site in the South Eastern Baltics. Kulturny Sloy 2000, 1, 36–45. (In Russian) [Google Scholar]
- Kołaczek, P.; Mirosław-Grabowska, J.; Karpinska-Kołaczek, M.; Stachowicz-Rybka, R.; Szal, M.; Winter, H.; Danel, W.; Pochocka-Szwarc, K. The Late Glacial and Holocene development of vegetation in the area of a fossil lake in the Skaliska Basin (north-eastern Poland) inferred from pollen analysis and radiocarbon dating. Acta Palaeobot. 2013, 53, 23–52. [Google Scholar]
- Kylander, M.E.; Ampel, L.; Wohlfarth, B.; Veres, D. High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: New insights from chemical proxies. J. Quat. Sci. 2011, 26, 109–117. [Google Scholar] [CrossRef]
- Kublitsky, Y. The Dynamic of Nature Condition of SE Part of Baltic Region during Late Neopleistocene and Holocene. Ph.D. Thesis, Herzen State Pedagogical University of Russia, Saint-Petersburg, Russia, 2016. (In Russian). [Google Scholar]
- O’Connell, D.W.; Jensen, M.M.; Jakobsen, R.; Thamdrup, B.; Andersen, T.J.; Kovács, A.; Hansen, H.C.B. Vivianite formation and its role in phosphorus retention in Lake Ørn, Denmark. Chem. Geol. 2015, 409, 42–53. [Google Scholar] [CrossRef]
- Gauthier, E.; Bichet, V.; Massa, C.; Petit, C.; Vannière, B.; Richard, H. Pollen and non-pollen palynomorph evidence of medieval farming activities in southwestern Greenland. Veg. Hist. Archaeobot. 2010, 19, 427–438. [Google Scholar] [CrossRef]
- Vaikutienė, G.; Stančikaitė, M.; Druzhinina, O.; Kublitsky, J.; Arslanov, K.H.; Subetto, D.; Uogintas, D. Palaeoenvironment of the SE Baltic region in Late Pleistocene and Holocene: Results of the paleolimnological study of Kamyshovoe Lake, Kaliningrad Region. In Proceedings of the INQUA Peribaltic Working Group Meeting and Excursion, from Past to Present—Late Pleistocene, Last Deglaciation and Modern Glaciers in the Centre of Northern Fennoscandia, Rovaniemi, Finland, 20–25 August 2017; pp. 165–166. [Google Scholar]
- Druzhinina, O. Emergence of Agriculture on the Territory of Kaliningrad Region. Materials on the Archaeology of Belarus; Institute of History of the National Academy of Sciences of Belarus: Minsk, Belarus, 2003; Volume 7, pp. 7155–7158. (In Russian) [Google Scholar]
Geochemical Elements | Standard Error | Geochemical Elements | Standard Error |
---|---|---|---|
TiO2 | 0.05% | MnO | 50 ppm |
MgO | 0.1% | Fe2O3 | 0.5% |
Al2O3 | 1.5% | Co | 5 ppm |
SiO2 | 10% | Ni | 5 ppm |
P2O5 | 0.02% | Cu | 10 ppm |
K2O | 0.4% | Zn | 10–80 ppm |
CaO | 0.07% | As | 10 ppm |
V | 5 ppm | Sr | 25 ppm |
Cr | 40 ppm | Pb | 12 ppm |
Lithostratigraphic Units | Depth from the Water Surface, cm | Sediment Description |
---|---|---|
11 | 230–247 | Gray gyttja |
10 | 247–270 | Light brown gyttja |
9 | 270–730 | Dark brown gyttja |
8 | 730–770 | Light brown gyttja |
7 | 770–850 | Greenish-brown gyttja |
6 | 850–932 | Greyish-brown clay gyttja |
5 | 932–950 | Gray clay gyttja |
4 | 950–1061 | Greenish-grey clay gyttja |
3 | 1061–1067 | Greenish-brown gyttja |
2 | 1067–1089 | Dark grey silty clay |
1 | 1089–1199 | Grey silty clay |
Sample ID | Dating Material | Depth from the Water Surface, cm | Lithostratigraphical Units, No. | 14C y BP | Age Ranges (cal y BP) 68.2% conf. Intervals |
---|---|---|---|---|---|
14C data | |||||
LU-6924 | Bulk gyttja | 240–250 | 11 | 650 ± 100 | 675–549 |
LU-6925 | Bulk gyttja | 260–270 | 10 | 1490 ± 100 | 1520–1303 |
LU-6926 | Bulk gyttja | 300–310 | 9 | 1520 ± 90 | 1522–1342 |
LU-6927 * | Bulk gyttja | 320–330 | 9 | 1480 ± 120 | 1522–1295 |
LU-6928 | Bulk gyttja | 360–370 | 9 | 2530 ± 90 | 2748–2490 |
LU-6929 | Bulk gyttja | 400–410 | 9 | 2850 ± 90 | 2996–2926 |
LU-6930 | Bulk gyttja | 440–450 | 9 | 3100 ± 40 | 3369–3250 |
LU-6931 * | Bulk gyttja | 480–490 | 9 | 3700 ± 40 | 4090–3980 |
LU-6932 | Bulk gyttja | 520–530 | 9 | 3510 ± 80 | 3889–3650 |
LU-6933 | Bulk gyttja | 560–570 | 9 | 3850 ± 100 | 4415–4102 |
LU-6934 | Bulk gyttja | 600–610 | 9 | 4560 ± 120 | 5450–5040 |
LU-6935 | Bulk gyttja | 640–650 | 9 | 5100 ± 90 | 5932–5735 |
LU-6936 | Bulk gyttja | 670–680 | 9 | 5390 ± 90 | 6287–6021 |
LU-6937 | Bulk gyttja | 690–700 | 9 | 5590 ± 110 | 6493–6285 |
LU-6938 | Bulk gyttja | 700–710 | 9 | 5790 ± 120 | 6730–6453 |
LU-6939 | Bulk gyttja | 720–730 | 9 | 6010 ± 90 | 6967–6739 |
LU-6940 | Bulk gyttja | 750–760 | 8 | 7010 ± 90 | 7937–7757 |
LU-6941 | Bulk gyttja | 760–770 | 8 | 7220 ± 80 | 8157–7965 |
LU-6942 | Bulk gyttja | 780–790 | 7 | 7830 ± 90 | 8773–8463 |
LU-6943 | Bulk gyttja | 790–800 | 7 | 8220 ± 100 | 9300–9030 |
LU-6977 | Bulk gyttja | 800–810 | 7 | 8630 ± 130 | 9885–9486 |
LU-6980 | Bulk gyttja | 830–840 | 7 | 8740 ± 160 | 10,117–9545 |
POZ-60941 * | Plant remain | 962–964 | 4 | 10,310 ± 50 | 12,375–11,992 |
POZ-60943 * | Plant remain | 1011–1012 | 4 | 11,810 ± 60 | 13,720–13,577 |
POZ-60940 * | Bulk gyttja | 1062–1063 | 3 | 11,600 ± 60 | 13,483–13,351 |
Biostratigraphic Data [6] | |||||
Event | Depth from the Water Surface, cm | Lithostratigraphical Units, No. | Age, cal y BP | ||
Immigration of Corylus (IC) | 924 | 6 | 10,400 | ||
Establishment of Ulmus (EU) | 962 | 4 | 11,050 | ||
Closing of Vegetation (CV) | 1012 | 4 | 11,550 | ||
Maximum of Pinus (PI) | 1059 | 4 | 12,750 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kublitskiy, Y.; Kulkova, M.; Druzhinina, O.; Subetto, D.; Stančikaitė, M.; Gedminienė, L.; Arslanov, K. Geochemical Approach to the Reconstruction of Sedimentation Processes in Kamyshovoye Lake (SE Baltic, Russia) during the Late Glacial and Holocene. Minerals 2020, 10, 764. https://doi.org/10.3390/min10090764
Kublitskiy Y, Kulkova M, Druzhinina O, Subetto D, Stančikaitė M, Gedminienė L, Arslanov K. Geochemical Approach to the Reconstruction of Sedimentation Processes in Kamyshovoye Lake (SE Baltic, Russia) during the Late Glacial and Holocene. Minerals. 2020; 10(9):764. https://doi.org/10.3390/min10090764
Chicago/Turabian StyleKublitskiy, Yuriy, Marianna Kulkova, Olga Druzhinina, Dmitry Subetto, Miglė Stančikaitė, Laura Gedminienė, and Khikmatulla Arslanov. 2020. "Geochemical Approach to the Reconstruction of Sedimentation Processes in Kamyshovoye Lake (SE Baltic, Russia) during the Late Glacial and Holocene" Minerals 10, no. 9: 764. https://doi.org/10.3390/min10090764
APA StyleKublitskiy, Y., Kulkova, M., Druzhinina, O., Subetto, D., Stančikaitė, M., Gedminienė, L., & Arslanov, K. (2020). Geochemical Approach to the Reconstruction of Sedimentation Processes in Kamyshovoye Lake (SE Baltic, Russia) during the Late Glacial and Holocene. Minerals, 10(9), 764. https://doi.org/10.3390/min10090764