Tourmaline Composition of the Kışladağ Porphyry Au Deposit, Western Turkey: Implication of Epithermal Overprint
Abstract
:1. Introduction
2. Geological and Lithological Features
3. Tourmaline Occurrences
4. Materials and Methods
5. Results
5.1. Tourmaline-Breccia Zone (TBZ)
5.2. Intrusion #1 (INT#1)
5.3. Intrusions #2 and #3 (INT#2 and INT#3)
6. Discussions and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dyar, M.D.; Taylor, M.E.; Lutz, T.M.; Francis, C.A.; Guidotti, C.V.; Wise, M. Inclusive chemical characterization of tourmaline: Mössbauer study of Fe valence and site occupancy. Am. Miner. 1998, 83, 848–864. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Henry, D.J. Classification of the minerals of the tourmaline group. Eur. J. Miner. 1999, 11, 201–215. [Google Scholar] [CrossRef]
- Henry, D.J.; Novák, M.; Hawthorne, F.C.; Ertl, A.; Dutrow, B.L.; Uher, P.; Pezzotta, F. Nomenclature of the tourmaline supergroup minerals. Am. Miner. 2011, 96, 895–913. [Google Scholar] [CrossRef]
- Henry, D.J.; Guidotti, C.V. Tourmaline as a petrogenetic indicator mineral—An example from the staurolite grade metapelites of NW Maine. Am. Miner. 1985, 70, 1–15. [Google Scholar]
- Koval, P.V.; Zorina, L.D.; Kitajev, N.A.; Sipiridonov, A.M.; Ariunbileg, S. The use of tourmaline in geochemical prospecting for gold and copper mineralizaIion. J. Geochem. Explor. 1991, 40, 349–360. [Google Scholar] [CrossRef]
- Baksheev, I.; Prokofiev, V.Y.; Zaraisky, G.; Chitalin, A.; Yapaskurt, V.; Nikolaev, Y.; Tikhomirov, P.; Nagornaya, E.; Rogacheva, L.; Gorelikova, N.; et al. Tourmaline as a prospecting guide for the porphyry-style deposits. Eur. J. Miner. 2012, 24, 957–979. [Google Scholar] [CrossRef]
- Yavuz, F.; Iskenderoglu, A.; Jiang, S.Y. Tourmaline compositions from the Salikvan porphyry Cu-Mo deposit and vicinity. Can. Miner. 1999, 37, 1007–1024. [Google Scholar]
- Oyman, T.; Dyar, M.D. Chemical substitutions in oxidized tourmaline in granite-related mineralized hydrothermal systems, Western Turkey. Can. Miner. 2007, 45, 1397–1413. [Google Scholar] [CrossRef]
- Lynch, G.; Ortega, J. Hydrothermal alteration and tourmaline–albite equilibria at the Coxheath porphyry Cu–Mo–Au deposit, Nova Scotia. Can. Miner. 1997, 35, 79–94. [Google Scholar]
- Skewes, M.A.; Holmgren, C.; Stern, C.R. The Donoso copper-rich, tourmaline-bearing breccias pipe in central Chile: Petrologic, fluid inclusion and stable isotope evidence for an origin from magmatic fluid. Miner. Depos. 2003, 38, 2–21. [Google Scholar] [CrossRef]
- Bozkaya, G.; Hanilçi, N.; Baksheev, V.Y.; Banks, D.A. Tourmaline composition of the Kışladağ Au deposit, Uşak, Turkey. Meeting Abstract. Acta Geol. Sin. Engl. 2014, 88, 520–521. [Google Scholar] [CrossRef]
- Baker, T.; Bickford, D.; Juras, S.; Lewis, P.; Oztas, Y.; Ross, K.; Tukac, A.; Rabayrol, F.; Miskovic, A.; Friedman, R.; et al. The Geology of the Kışladağ Porphyry Gold Deposit, Turkey. In Tectonics and Metallogeny of the Tethyan Orogenic Belt; Richards, J.P.R., Ed.; Special Publication Society of Economic Geologists, GeoScienceWorld: Virginia, VA, USA, 2016; Volume 19, pp. 57–83. [Google Scholar]
- Hanilçi, N.; Bozkaya, G.; Banks, D.A.; Bozkaya, Ö.; Prokofiev, V.; Öztaş, Y. Fluid Inclusion Characteristics of the Kışladağ Porphyry Au Deposit, Western Turkey. Minerals 2020, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Karaoğlu, Ö.; Helvacı, C. Growth, destruction and volcanic facies architecture of three volcanic centres in the Miocene Uşak–Güre basins: A contribution to the discussion on the development of east–west and north trending basins in western Turkey. Geol. Mag. 2012, 134, 163–175. [Google Scholar]
- Karaoğlu, Ö.; Helvacı, C.; Ersoy, Y. Petrogenesis and 40Ar/39Ar geochronology of the volcanic rocks of the Uşak-Güre basin, western Türkiye. Lithos 2010, 119, 193–210. [Google Scholar] [CrossRef]
- Juras, S.; Miller, R.; Skayman, P. Technical Report for the Kışladağ Gold Mine. Prep. Eldorado Gold 2010, 150, 43–101. [Google Scholar]
- Bozkaya, Ö.; Bozkaya, G.; Hanilçi, N.; Laçin, D.; Banks, D.A.; Uysal, I.T. Mineralogical and geochemical evidence of late epithermal alteration in the Kisladag porphyry gold deposit, Usak, Western Turkey. In Life with Ore Deposits on Earth, Proceedings of the 15th Biennial SGA Conference, Glasgow, UK, 27–30 August 2019; Society for Geology Applied to Mineral Deposits, University of Glasgow: Scotland, UK, 2019; Volume 3, pp. 1031–1034. [Google Scholar]
- Lowell, J.D.; Guilbert, J.M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ. Geol. 1970, 65, 373–408. [Google Scholar] [CrossRef]
- Sillitoe, R.H. The tops and bottoms of porphyry copper deposits. Econ. Geol. 1973, 68, 799–815. [Google Scholar] [CrossRef]
- Jarozewich, E. Smitsonian microbeam standards. J. Res. Natl. Inst. Stand. Technol. 2002, 107, 681–685. [Google Scholar] [CrossRef]
- Dutrow, B.L.; Henry, D.J. Complexly zoned fibrous tourmaline, Cruzeiro mine, Minas Gerais, Brazil: A record of evolving magmatic and hydrothermal fluids. Can. Miner. 2000, 38, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Henry, D.J.; Dutrow, B.L. Ca substitution in Li-poor aluminous tourmaline. Can. Miner. 1990, 28, 111–124. [Google Scholar]
- Slack, J.F.; Herriman, N.; Barnes, R.G.; Plimer, I.R. Stratiform tourmalinites in metamorphic terranes and their geologic significance. Geology 1984, 12, 713–716. [Google Scholar] [CrossRef]
- Pirajno, F.; Smithies, R.H. The FeO/FeO + MgO ratio of tourmaline: A useful indicator of spatial variations in granite-related hydrothermal mineral deposits. J. Geochem. Expl. 1992, 42, 371–382. [Google Scholar] [CrossRef]
- Slack, J.F. Tourmaline associations with hydrothermal ore deposits. Rev. Miner. 1996, 33, 559–641. [Google Scholar]
- Xavier, R.P.; Wiedenbeck, M.; Trumbull, R.B.; Dreher, A.M.; Monteiro, L.V.S.; Rhede, D.; de Araújo, C.E.G.; Torresi, I. Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide copper-gold deposits, Carajás Mineral Province (Brazil). Geology 2008, 36, 743–746. [Google Scholar] [CrossRef]
- Mlynarczyk, M.S.J.; Williams-Jones, A.E. Zoned tourmaline associated with cassiterite: Implications for fluid evolution and tin mineralization in the San Rafael Sn-Cu deposit, southeastern Peru. Can. Miner. 2006, 44, 347–365. [Google Scholar] [CrossRef]
- Dini, A.; Mazzarini, F.; Musumeci, G.; Rocchi, S. Multiple hydro-fracturing by boron-rich fluids in the Late Miocene contact aureole of eastern Elba Island (Tuscany, Italy). Terra Nova 2008, 20, 318–326. [Google Scholar] [CrossRef]
- Palmer, M.R.; Slack, J.F. Boron isotopic composition of tourmalines from massive sulfide deposits and tourmalinites. Contrib. Miner. Pet. 1989, 103, 434–451. [Google Scholar] [CrossRef]
- Peng, Q.M.; Palmer, M.R. The Paleoproterozoic Mg and Mg-Fe borate deposits of Liaoning and Jilin Provinces, northeast China. Econ. Geol. 2002, 97, 93–108. [Google Scholar] [CrossRef]
- Baksheev, I.A.; Prokofiev, V.Y.; Yapaskurt, V.O.; Vigasina, M.F.; Zorina, L.D.; Soloviev, V.N. Ferric-iron-rich tourmaline from the Darasun gold deposit, Transbaikalia, Russia. Can. Miner. 2011, 49, 263–276. [Google Scholar] [CrossRef]
- Baksheev, I.A.; Chitalin, A.F.; Yapaskurt, V.O.; Vigasina, M.F.; Bryzgalov, I.A.; Ustinov, V.I. Tourmaline in the Vetka porphyry copper-molybdenum deposit of the Chukchi Peninsula of Russia. Mosc. Univ. Geol. Bull. 2010, 65, 27–38. [Google Scholar] [CrossRef]
- Baksheev, I.A.; Plotinskaya, O.Y.; Yapaskurt, V.O.; Vigasina, M.F.; Bryzgalov, I.A.; Groznov, E.O.; Marushchenko, L.I. Tourmaline from deposits of the Birgil’da–Tomino ore cluster, South Urals. Geol. Ore Depos. 2012, 54, 458–473. [Google Scholar] [CrossRef]
- Choo, C.O. Mineralogical studies on complex zoned tourmaline in diaspore nodules from the Milyang clay deposit, Korea. Geosci. J. 2003, 7, 151–156. [Google Scholar] [CrossRef]
- Collins, A.C. Mineralogy and Geochemistry of Tourmaline in Contrasting Hydrothermal Systems: Copiapó Area, Northern Chile. Master’s Thesis, Department of Geosciences, University of Arizona, Tucson, AZ, USA, 2010; p. 225. [Google Scholar]
- Nagornaya, E.V. Mineralogy and Zoning of Porphyry Copper-Molybdenum Field Nakhodka, Chukotka. Ph.D. Thesis, Geological Faculty, Moscow State University, Moscow, Russia, 2014; p. 171. (In Russian). [Google Scholar]
- Kudrayvtseva, O.E.; Baksheev, I.A. Compositional variations in tourmalines from the Berezovskoe gold deposit, Central Urals. Zap. Ross. Miner. O-va 2003, 3, 108–125. (In Russian) [Google Scholar]
- Bačík, P.; Kodéra, P.; Uher, P.; Ozdín, D.; Jánošík, M. Chlorine-enriched tourmalines in hydrothermally altered diorite porphyry from the Biely Vrch porphyry gold deposit (Slovakia). Can. Miner. 2015, 53, 643–691. [Google Scholar] [CrossRef]
- Pieczka, A.; Buniak, A.; Majka, J.; Harryson, H. Si-deficient foitite with Al and B from the ‘Ługi-1′ borehole, southwestern Poland. J. Geosci. 2011, 56, 389–398. [Google Scholar] [CrossRef]
Component, wt % | Radial Aggregates | Crystal | |||
---|---|---|---|---|---|
Tur I (n = 16) | Tur II (n = 14) | Tur III (n = 12) | Tur IV (n = 9) | (n = 7) | |
B2O3 | 10.22 (0.14) * | 10.77 (0.22) | 10.91 (0.17) | 10.85 (0.11) | 10.86 (0.18) |
SiO2 | 34.43 (0.65) | 36.74 (0.95) | 37.38 (0.67) | 35.75 (1.63) | 37.13 (0.66) |
TiO2 | 0.33 (0.32) | 1.52 (1.23) | 1.25 (1.29) | 0.28 (0.52) | 1.14 (0.97) |
Cr2O3 | 0.01 (0.02) | 0.13 (0.20) | 0.02 (0.02) | bdl | bdl |
V2O3 | 0.06 (0.06) | 0.39 (1.00) | 0.09 (0.03) | bdl | bdl |
Al2O3 | 25.53 (2.45) | 30.48 (3.14) | 32.06 (3.05) | 37.21 (2.49) | 32.51 (3.66) |
FeOtot | 15.47 (3.33) | 4.83 (3.49) | 3.12 (3.72) | 1.20 (0.95) | 3.41 (2.75) |
MnO | 0.05 (0.04) | 0.04 (0.05) | 0.04 (0.08) | 0.02 (0.04) | bdl |
MgO | 6.98 (0.92) | 9.82 (1.64) | 10.27 (0.66) | 8.57 (1.08) | 9.76 (0.65) |
CaO | 2.13 (0.31) | 2.12 (0.63) | 1.37 (0.94) | 1.11 (0.47) | 1.29 (0.65) |
K2O | 0.05 (0.02) | 0.03 (0.02) | 0.03 (0.03) | bdl | 0.03 (0.04) |
Na2O | 1.43 (0.16) | 1.49 (0.18) | 1.78 (0.26) | 1.06 (0.43) | 1.74 (0.13) |
F | 0.02 (0.04) | 0.06 (0.09) | 0.14 (0.09) | 0.09 (0.07) | n.a. |
Cl | 0.06 (0.04) | 0.04 (0.06) | bdl | 0.11 (0.10) | bdl |
H2O | 2.97 (0.09) | 3.41 (0.20) | 3.44 (0.24) | 3.42 (0.35) | 3.48 (0.09) |
2F=O | 0.01 (0.01) | 0.03 (0.04) | 0.06 | 0.04 (0.03) | |
2Cl=O | 0.01 (0.01) | 0.01 (0.01) | 0.03 (0.02) | ||
Total | 99.70 (0.63) | 102.30 (1.19) | 101.86 (0.82) | 99.62 (2.18) | 101.32 (0.82) |
Si | 5.854 | 5.927 | 5.955 | 5.727 | 5.944 |
TAl | 0.146 | 0.073 | 0.045 | 0.273 | 0.056 |
Total T | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 |
ZAl | 4.969 | 5.722 | 5.975 | 6.000 | 6.000 |
ZMg | 1.031 | 0.278 | 0.025 | ||
Total Z | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 |
Fe3+ | 1.321 | ||||
Fe2+ | 0.880 | 0.653 | 0.416 | 0.161 | 0.456 |
YAl | 0.755 | 0.078 | |||
YMg | 0.739 | 2.085 | 2.415 | 2.046 | 2.329 |
Ti | 0.042 | 0.191 | 0.149 | 0.034 | 0.137 |
Mn | 0.007 | 0.005 | 0.006 | 0.003 | |
V | 0.008 | 0.050 | 0.011 | ||
Cr | 0.002 | 0.017 | 0.003 | ||
Total Y | 2.999 | 3.001 | 3.000 | 2.999 | |
Na | 0.470 | 0.465 | 0.551 | 0.331 | 0.539 |
Ca | 0.389 | 0.367 | 0.235 | 0.190 | 0.221 |
X-vacancy | 0.131 | 0.161 | 0.208 | 0.479 | 0.234 |
K | 0.010 | 0.006 | 0.007 | 0.006 | |
Total X | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
VOH– | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 |
WO2– | 0.495 | 0.286 | 0.266 | 0.261 | 0.283 |
WOH– | 0.374 | 0.670 | 0.662 | 0.660 | 0.717 |
Cl | 0.017 | 0.012 | 0.030 | ||
F | 0.009 | 0.032 | 0.072 | 0.047 | |
Total W | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Altot | 5.115 | 5.795 | 6.020 | 7.027 | 6.134 |
Fetot | 2.201 | 0.653 | 0.416 | 0.161 | 0.456 |
Mgtot | 1.770 | 2.363 | 2.440 | 2.046 | 2.329 |
Correlation Type | II | III |
---|---|---|
Ca + 2Mg and X-vacancy + Al | −0.42 | −0.49 |
Ca + Mg + WO and X-vacancy + Al + WOH | −0.73 | −0,71 |
Ca + 3Mg + WOH and X-vacancy + 3Al + WO | −0.62 | −0.46 |
Ca + 2Fetot and X-vacancy + 2Al | −0.62 | −0.92 |
Ca + Fetot + WO and X-vacancy + Al + WOH | −0.75 | −0.95 |
Ca + 3Fetot + WOH and X-vacancy + 3Al + WO | −0.60 | −0.89 |
Component, wt % | Radial Aggregate | Crystal | ||
---|---|---|---|---|
Tur I (n = 5) | Tur II (n = 7) | Tur III (n = 8) | (n = 6) | |
B2O3 | 10.34 (0.10) | 10.86 (0.12) | 10.80 (0.16) | 10.93 (0.13) |
SiO2 | 34.76 (0.79) | 37.29 (0.82) | 36.69 (0.91) | 37.08 (0.67) |
TiO2 | 0.41 (0.30) | 0.45 (0.51) | 0.61 (0.46) | 0.31 (0.13) |
Cr2O3 | bdl | bdl | bdl | bdl |
V2O3 | 0.07 (0.08) | 0.09 (0.06) | 0.22 (0.29) | 0.03 (0.04) |
Al2O3 | 26.49 (2.34) | 32.30 (1.64) | 33.08 (2.19) | 34.20 (1.65) |
FeOtot | 14.88 (2.97) | 4.93 (2.46) | 4.02 (1.33) | 3.43 (2.14) |
MnO | 0.27 (0.13) | 0.05 (0.10) | bdl | 0.02 (0.03) |
MgO | 6.83 (0.46) | 9.26 (0.90) | 9.11 (0.41) | 9.26 (0.71) |
CaO | 1.59 (0.37) | 1.00 (0.31) | 1.46 (0.34) | 1.24 (0.62) |
K2O | bdl | bdl | bdl | bdl |
Na2O | 1.79 (0.27) | 2.05 (0.20) | 1.68 (0.31) | 1.72 (0.31) |
F | n.a. | n.a. | n.a. | n.a. |
Cl | bdl | bdl | bdl | 0.01 (0.01) |
H2O | 3.56 (0.04) | 3.43 (0.13) | 3.47 (0.09) | 3.54 (0.13) |
2F=O | ||||
2Cl=O | 0.03 (0.01) | |||
Total | 100.99 (0.41) | 101.66 (0.84) | 100.66 (1.02) | 101.78 (0.85) |
Si | 5.844 | 5.967 | 5.901 | 5.896 |
TAl | 0.156 | 0.033 | 0.099 | 0.104 |
Total T | 6.000 | 6.000 | 6.000 | 6.000 |
ZAl | 5.094 | 6.000 | 6.000 | 6.000 |
ZMg | 0.906 | |||
Total Z | 6.000 | 6.000 | 6.000 | 6.000 |
Fe3+ | 0.790 | |||
Fe2+ | 1.303 | 0.660 | 0.542 | 0.456 |
YAl | 0.059 | 0.172 | 0.305 | |
YMg | 0.806 | 2.209 | 2.184 | 2.195 |
Ti | 0.052 | 0.054 | 0.073 | 0.037 |
Mn | 0.038 | 0.006 | 0.003 | |
V | 0.010 | 0.012 | 0.028 | 0.003 |
Cr | ||||
Total Y | 2.999 | 3.000 | 2.999 | 2.999 |
Na | 0.584 | 0.635 | 0.523 | 0.530 |
Ca | 0.287 | 0.171 | 0.253 | 0.211 |
X-vacancy | 0.129 | 0.194 | 0.224 | 0.259 |
K | ||||
Total X | 1.000 | 1.000 | 1.000 | 1.000 |
VOH– | 3.000 | 3.000 | 3.000 | 3.000 |
WO2– | 0.332 | 0.276 | 0.232 | |
WOH– | 1.000 | 0.668 | 0.724 | 0.760 |
Cl | 0.008 | |||
F | ||||
Total W | 1.000 | 1.000 | 1.000 | 1.000 |
Altot | 5.250 | 6.092 | 6.271 | 6.410 |
Fetot | 2.094 | 0.660 | 0.444 | 0.456 |
Mgtot | 1.712 | 2.209 | 2.184 | 2.195 |
Component, wt % | Fine-Acicular Aggregates | Crystal | |
---|---|---|---|
Tur I (n = 5) | Tur II (n = 17) | (n = 3) | |
B2O3 | 10.88 (0.12) | 10.81 (0.21) | 10.71 (0.23) |
SiO2 | 36.63 (0.91) | 35.56 (1.95) | 36.72 (0.96) |
TiO2 | 0.87 (0.44) | 0.15 (0.17) | 0.82 (0.21) |
Cr2O3 | bdl | bdl | bdl |
V2O3 | 0.07 (0.07) | bdl | 0.11 (0.02) |
Al2O3 | 33.73 (2.74) | 36.30 (1.97) | 30.13 (3.12) |
FeOtot | 4.91 (1.03) | 2.38 (1.51) | 8.88 (4.64) |
MnO | bdl | 0.07 (0.06) | bdl |
MgO | 8.52 (1.24) | 8.58 (0.79) | 8.09 (1.01) |
CaO | 1.81 (0.20) | 0.93 (0.35) | 1.80 (0.47) |
K2O | bdl | bdl | bdl |
Na2O | 1.36 (0.29) | 1.55 (0.36) | 1.63 (0.19) |
F | n.a. | n.a. | n.a. |
Cl | bdl | 0.05 (0.06) | bdl |
H2O | 3.46 (0.07) | 3.57 (0.15) | 3.66 (0.13) |
2F=O | |||
2Cl=O | |||
Total | 102.23 (1.25) | 99.95 (2.35) | 102.54 (0.51) |
Si | 5.851 | 5.717 | 5.960 |
TAl | 0.149 | 0.283 | 0.040 |
Total T | 6.000 | 6.000 | 6.000 |
ZAl | 6.000 | 6.000 | 5.723 |
ZMg | 0.277 | ||
Total Z | 6.000 | 6.000 | 6.000 |
Fe3+ | |||
Fe2+ | 0.656 | 0.321 | 1.206 |
YAl | 0.201 | 0.594 | |
YMg | 2.030 | 2.057 | 1.680 |
Ti | 0.104 | 0.018 | 0.100 |
Mn | 0.010 | ||
V | 0.009 | 0.014 | |
Cr | |||
Total Y | 3.000 | 3.000 | 3.000 |
Na | 0.422 | 0.484 | 0.511 |
Ca | 0.310 | 0.161 | 0.313 |
X-vacancy | 0.268 | 0.355 | 0.174 |
K | |||
Total X | 1.000 | 1.000 | 1.000 |
VOH– | 3.000 | 3.000 | 3.000 |
WO2– | 0.311 | 0.153 | 0.035 |
WOH– | 0.689 | 0.834 | 0.965 |
Cl | 0.013 | ||
F | |||
Total W | 1.000 | 1.000 | 1.000 |
Altot | 6.351 | 6.878 | 5.763 |
Fetot | 0.656 | 0.320 | 1.206 |
Mgtot | 2.030 | 2.057 | 1.957 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozkaya, Ö.; Baksheev, I.A.; Hanilçi, N.; Bozkaya, G.; Prokofiev, V.Y.; Öztaş, Y.; Banks, D.A. Tourmaline Composition of the Kışladağ Porphyry Au Deposit, Western Turkey: Implication of Epithermal Overprint. Minerals 2020, 10, 789. https://doi.org/10.3390/min10090789
Bozkaya Ö, Baksheev IA, Hanilçi N, Bozkaya G, Prokofiev VY, Öztaş Y, Banks DA. Tourmaline Composition of the Kışladağ Porphyry Au Deposit, Western Turkey: Implication of Epithermal Overprint. Minerals. 2020; 10(9):789. https://doi.org/10.3390/min10090789
Chicago/Turabian StyleBozkaya, Ömer, Ivan A. Baksheev, Nurullah Hanilçi, Gülcan Bozkaya, Vsevolod Y. Prokofiev, Yücel Öztaş, and David A. Banks. 2020. "Tourmaline Composition of the Kışladağ Porphyry Au Deposit, Western Turkey: Implication of Epithermal Overprint" Minerals 10, no. 9: 789. https://doi.org/10.3390/min10090789
APA StyleBozkaya, Ö., Baksheev, I. A., Hanilçi, N., Bozkaya, G., Prokofiev, V. Y., Öztaş, Y., & Banks, D. A. (2020). Tourmaline Composition of the Kışladağ Porphyry Au Deposit, Western Turkey: Implication of Epithermal Overprint. Minerals, 10(9), 789. https://doi.org/10.3390/min10090789