Application of Evolved Gas Analysis Technique for Speciation of Minor Minerals in Clays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methodology
3. Results and Discussion
3.1. Study of Emission Profiles
3.1.1. Carbon Dioxide Emissions
3.1.2. Hydrogen Fluoride Emissions
3.1.3. Hydrogen Chloride Emissions
3.1.4. Sulfur Dioxide Emissions
3.1.5. Study of Acid Emissions in a Ball Clay
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EIPPCB. Integrated Pollution Prevention and Control (IPPC). Reference Document on Best Available Techniques (BATs) in the Ceramic Manufacturing Industry; European Commission, Directorate-general JRC, Joint Research Centre Institute for Prospective Technological Studies (Sevilla). Technologies for Sustainable Development; European IPPC Bureau: Sevilla, Spain, 2007. [Google Scholar]
- Norman White, G.; Dixon, J.B.; Weaver, R.M.; Kunkle, A.C. Genesis and morphology of iron sulfides in gray kaolins. Clays Clay Miner. 1991, 39, 70–76. [Google Scholar] [CrossRef]
- Gómez-Tena, M.P.; García-ten, J.; Monfort, E.; Zumaquero, E.; Machi, C. Study of sulphur compounds in clays by the TGA-EGA technique. In Proceedings of the 11th International Conference and Exhibition of the European Ceramic Society, Krakow, Poland, 21–25 June 2009; Volume 2, pp. 914–918. [Google Scholar]
- Monfort, E.; Celades, I.; Gomar, S.; Rueda, F.; Martínez, J. Characterisation of acid pollutant emissions in ceramic tile manufacture. Bol. Soc. Esp. Cerám. Vidr. 2011, 50, 179–184. [Google Scholar] [CrossRef]
- Celades, I.; Gomar, S.; Romero, F.; Chauhan, A.; Delpech, B.; Jouhara, H. Acid emissions monitoring needs in ceramic tile industry: Challenges derived from new policy trends. E3S Web Conf. 2017, 22, 00026. [Google Scholar]
- Chipera, S.J.; Bish, D.L. Thermal evolution of fluorine from smectite and kaolinite. Clays Clay Miner. 2002, 50, 38–46. [Google Scholar] [CrossRef]
- Romo, L.A.; Roy, R. Studies of the Substitution of OH– by F– in Various Hydroxylic Minerals. Am. Mineral. 1957, 42, 165–177. [Google Scholar]
- Fabbri, B. Flúor en las arcillas: Contenidos y mecanismos de emisión. Cerám. Inf. 1992, 33–36. [Google Scholar]
- Wu, W.; Xie, Z.; Xu, J.; Liu, C. Characteristics of Fluoride Emission from Five Clay Minerals as Affected by Temperature, Heating Time and Addition of Calcium Compounds. J. Zhejiang Univ. Sci. 2010, 2, 284. [Google Scholar] [CrossRef]
- Thomas, J.; Glass, H.D.; White, W.A.; Trandel, R.M. Fluoride content of clay minerals and argillaceous earth materials. Clays Clay Miner. 1977, 25, 278–284. [Google Scholar] [CrossRef]
- Palmonari, C.; Timellini, G. Pollutant Emission Factors for the Ceramic Floor and Wall Tile Industry. J. Air Pollut. Control. Assoc. 1982, 32, 1095–1100. [Google Scholar] [CrossRef]
- Paulik, J.; Paulik, F.; Arnold, M. Simultaneous TG, DTG, DTA and EGA technique for the determination of carbonate, sulphate, pyrite and organic material in minerals, soil and rocks. J. Therm. Anal. 1984, 29, 345–351. [Google Scholar]
- González, I.; Galán, E.; Miras, A.; Vázquez, M.A. CO2 emissions derived from raw materials used in brick factories. Applications to Andalusia (Southern Spain). Appl. Clay Sci. 2011, 52, 193–198. [Google Scholar] [CrossRef]
- Frost, R.L.; Vassallo, A.M. The dehydroxylation of the kaolinite clay minerals using infrared emission spectroscopy. Clays Clay Miner. 1996, 44, 635–651. [Google Scholar] [CrossRef]
- Materazzi, S.; Gentili, A.; Curini, R. Applications of evolved gas analysis: Part 2: EGA by mass spectrometry. Talanta 2006, 69, 781–794. [Google Scholar] [CrossRef]
- Materazzi, S.; Gentili, A.; Curini, R. Applications of evolved gas analysis: Part 1: EGA by infrared spectroscopy. Talanta 2006, 68, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.P.; Gazulla, M.F.; Zumaquero, E.; Orduna, M. Use of coupled TG-DSC-QMS-FTIR thermal analysis techniques in characterizating clays and ceramic compositions used in ceramic tile manufacture. Quantification of carbon compounds. Bol. Soc. Esp. Cerám. Vidr. 2007, 46, 259–266. [Google Scholar]
- Gazulla, M.F.; Gómez, M.P.; Orduña, M.; Rodrigo, M. New methodology for sulfur analysis in geological samples by WD-XRF spectrometry. X-Ray Spectrom. 2009, 38, 3–8. [Google Scholar] [CrossRef]
- Gazulla, M.F.; Vicente, S.; Orduña, M.; Ventura, M.J. Chemical analysis of very small-sized samples by wavelength-dispersive X-ray fluorescence. X-Ray Spectrom. 2012, 41, 176–185. [Google Scholar] [CrossRef]
- Monfort, E.; García-Ten, J.; Celades, I.; Gazulla, M.F.; Gomar, S. Evolution of fluorine emissions during the fast firing of ceramic tile. Appl. Clay Sci. 2008, 38, 250–258. [Google Scholar] [CrossRef]
- Gazulla, M.F.; Rodrigo, M.; Orduña, M.; Ventura, M.J. Fluorine determination in glasses and glazes by WD-XRF. In Glass Technology—European Journal of Glass Science and Technology; Society of Glass Technology: Sheffield, UK, 2015; Volume 56, pp. 95–101. [Google Scholar]
- Maritan, L.; Nodari, L.; Mazzoli, C.; Milano, A.; Russo, U. Influence of firing conditions on ceramic products: Experimental study on clay rich in organic matter. Appl. Clay Sci. 2006, 31, 1–15. [Google Scholar] [CrossRef]
- Morgan, D.J. Simultaneous DTA-EGA of minerals and natural mineral mixtures. J. Therm. Anal. 1977, 12, 245–263. [Google Scholar] [CrossRef]
- Parsons, A.J.; Inglethorpe, S.D.J.; Morgan, D.J.; Dunham, A.C. Evolved gas analysis (EGA) of brick clays. J. Therm. Anal. 1997, 48, 49–62. [Google Scholar] [CrossRef]
- Tressaud, A. Fluorine and the Environment: Atmospheric Chemistry, Emissions & Lithosphere; Advances in Fluorine Science; Elsevier Science: Amsterdam, The Netherlands, 2006; ISBN 9780080463759. [Google Scholar]
- Kennedy, B.A.; Kennedy, B.A. Society for Mining, Metallurgy, and Exploration (U.S.). In Surface Mining, 2nd ed.; Society for Mining, Metallurgy, and Exploration: Littleton, CO, USA, 1990; ISBN 9780873351027. [Google Scholar]
- Hatakeyama, T.; Liu, Z. Handbook of Thermal Analysis; Wiley: New York, NY, USA, 1998; ISBN 0471983632. [Google Scholar]
- Prasad, S.; Pandey, B.D. Thermoanalytical studies on copper-iron sulphides. J. Therm. Anal. Calorim. 1999, 58, 625–637. [Google Scholar] [CrossRef]
- Gómez-Tena, M.P.; Gazulla, M.F.; Zumaquero, E.; Orduña, M. Utilización de técnicas acopladas de análisis TG-DSC-FTIR-MS en la caracterización de arcillas. Cuantificación de compuestos de carbono. In XLVI Congreso Anual de la Sociedad Española de Cerámica y Vidrio; Faenza Editrice Iberica: Castellón de la Plana, Spain, 2006; p. 68. ISBN 84-87683-33-9. [Google Scholar]
Compound | Molecular Formula | Reference |
---|---|---|
Pyrite (Iron disulfide) (>98%) | FeS2 | 42633, Alfa-Aesar |
Chalcopyrite (Copper iron sulfide) (>98%) | CuFeS2 | 42533, Alfa-Aesar |
Gypsum (Calcium sulfate dihydrate) (≥99%) | CaSO4·2H2O | C3771, Sigma-Aldrich |
Magnesium sulfate (≥98%) | MgSO4 | 63136, Fluka |
Chalcanthite (Copper (II) sulfate pentahydrate) (99.995%) | CuSO4·5H2O | 469130, Sigma-Aldrich |
Melanterite (Iron (II) sulfate heptahydrate) (≥99%) | FeSO4·7H2O | F7002, Sigma-Aldrich |
Aluminum sulfate (99.99%) | Al2(SO4)3 | 202614, Sigma-Aldrich |
Arcanite (Potassium sulfate) (≥99.9%) | K2SO4 | P0772, Sigma-Aldrich |
Sodium chloride (≥99%) | NaCl | 746398, Sigma-Aldrich |
Calcium chloride (≥99%) | CaCl2 | 793639, Sigma-Aldrich |
Ammonium chloride (≥99.5%) | NH4Cl | 213330, Sigma-Aldrich |
Magnesium fluoride (99.9%) | MgF2 | 142360, Panreac |
Calcium fluoride (Fluorite) (>99%) | CaF2 | 01123, Riedel-de Häen |
Sodium fluoride (>98.5%) | NaF | 141675, Panreac |
Aluminum fluoride (99.8%) | AlF3 | 449628, Sigma-Aldrich |
Calcite (>99.95%) | CaCO3 | 1.02410, Merck |
Dolomite, naturally occur. mineral (>98%) | CaMg(CO3)2 | 42526, Alfa-Aesar |
Muscovite, naturally occur. mineral (>95%) | KAl2(AlSi3O10)(OH)2 | 42470, Alfa-Aesar |
Hydrobiotite, natural mineral | K(Mg,Fe2+)6((Si,Al)8O20)(OH)4·nH2O | Málaga deposit |
Rubellan biotite, natural mineral | K(Mg,Fe++)3[AlSi3O10(OH,F)2] | Málaga deposit |
Clinochlore, natural mineral | (Mg,Fe)5Al(Si3Al)O10(OH)8 | Málaga deposit |
Kaolinite K1512 (>98%) | Al2Si2O5(OH)4 | K1512, Sigma-Aldrich |
Talc | Mg3Si4O10(OH)2 | LR-1T-35AN, Lorda-Roig |
Compound | Supplier | % C | % S |
---|---|---|---|
Calcite | Merck | 12.00 ± 0.01 | <0.01 |
GBW07403 (Soil) | CMSI | 0.51 ± 0.03 1 | 0.0123 ± 0.0014 |
BCS-CRM 348 (Ball Clay) | Bureau of Analysed Samples Ltd | 1.64 | 0.1 |
Chlorine (mg/kg) | Fluorine (mg/kg) | Sulfur (mg/kg) | Organic Carbon (%) | ||||
---|---|---|---|---|---|---|---|
Original | Calcined | Original | Calcined | Original | Calcined | Original | Calcined |
60 | 10 | 620 | 60 | 1000 | <50 | 1.64 | <0.01 |
HCl Emission | HF Emission | SO2 Emission | CO2 Emission | ||||
---|---|---|---|---|---|---|---|
mg/kg | % Emitted | mg/kg | % Emitted | mg/kg | % Emitted | % | % Emitted |
51 | 82 | 590 | 90 | 1900 | 95 | 6 | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zumaquero Silvero, E.; Gilabert Albiol, J.; Díaz-Canales, E.M.; Ventura Vaquer, M.J.; Gómez-Tena, M.P. Application of Evolved Gas Analysis Technique for Speciation of Minor Minerals in Clays. Minerals 2020, 10, 824. https://doi.org/10.3390/min10090824
Zumaquero Silvero E, Gilabert Albiol J, Díaz-Canales EM, Ventura Vaquer MJ, Gómez-Tena MP. Application of Evolved Gas Analysis Technique for Speciation of Minor Minerals in Clays. Minerals. 2020; 10(9):824. https://doi.org/10.3390/min10090824
Chicago/Turabian StyleZumaquero Silvero, Eulalia, Jessica Gilabert Albiol, Eva María Díaz-Canales, María Jesús Ventura Vaquer, and María Pilar Gómez-Tena. 2020. "Application of Evolved Gas Analysis Technique for Speciation of Minor Minerals in Clays" Minerals 10, no. 9: 824. https://doi.org/10.3390/min10090824
APA StyleZumaquero Silvero, E., Gilabert Albiol, J., Díaz-Canales, E. M., Ventura Vaquer, M. J., & Gómez-Tena, M. P. (2020). Application of Evolved Gas Analysis Technique for Speciation of Minor Minerals in Clays. Minerals, 10(9), 824. https://doi.org/10.3390/min10090824