Fluid Infiltration and Mass Transfer along a Lamprophyre Dyke–Marble Contact: An Example from the South-Western Korean Peninsula
Abstract
:1. Introduction
2. Geological Setting and Sampling
3. Petrography
3.1. Lamprophyre
3.2. Metasomatized Intermediate Marble
3.3. Marble
4. Analytical Techniques
4.1. Electron Probe Micro Analyzer (EPMA)
4.2. Bulk Chemistry
5. Results
5.1. Mineral Chemistry
5.1.1. Lamprophyre Dyke
5.1.2. Metasomatized Intermediate Marble
5.1.3. Marble
5.2. Bulk Chemistry
5.3. Phase Equilibria Modelling
5.4. Isocon Method
6. Discussion
7. Conclusions
- (1)
- The intrusion of the hot lamprophyre dyke into the dolomitic marble generated the metasomatized marble zone containing an olivine, serpentine, biotite, spinel, dolomite, calcite. and hematite assemblage.
- (2)
- Fluid infiltration is the main cause of metasomatic alteration in the dolomitic marble at ~750 °C/130 MPa.
- (3)
- The fluid composition was mainly CO2, with minor H2O, Cl, and F during the initial stage. As the dyke cooled and crystallized, water released from the dyke serpentinized the assemblages that were formed during the initial stage.
- (4)
- If the dolomite was dissolved by the infiltration of silica saturated fluid, diopside should have formed first instead of olivine. Our log activity (K2O)-temperature pseudosection shows that K activity in the infiltrating fluid caused the absence of diopside in the metasomatized marble at a log activity (aK2O) ~−40.
- (5)
- Si, Fe, K, Y, Sr, Nb, U, Th, and REEs are highly mobile in the infiltrating H2O-CO2 fluid.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zharikov, V.A.; Pertsev, N.N.; Rusinov, V.L.; Callegari, E.; Fettes, D.J. Metasomatism and metasomatic rocks. In A Classification of Metamorphic Rocks and Glossary of Terms; Recommendations of the International Union of Geological Sciences Subcommission on the Systaematics of Metamorphic Rocks; IUGS: Paris, France, 2007. [Google Scholar]
- Plumper, O.; Botan, A.; Los, C.; Liu, Y.; Malthe-Sørenssen, A.; Jamtveit, B. Fluid-driven metamorphism of the continental crust governed by nanoscale fluid flow. Nat. Geosci. 2017, 10, 685–690. [Google Scholar] [CrossRef] [Green Version]
- Beinlich, A.; John, T.; Vrijmoed, J.C.; Tominaga, M.; Magna, T.; Podladchikov, Y.Y. Instantaneous rock transformations in the deep crust driven by reactive fluid flow. Nat. Geosci. 2020, 13, 307–311. [Google Scholar] [CrossRef]
- O’Reilly, S.; Griffin, W. Mantle metasomatism. In Metasomatism and the Chemical Transformation of Rock: Rock-Mineral-Fluid Interaction in Terrestrial and Extraterrestrial Environments; Harlov, D.E., Austrheim, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Yardley, B.W.D. The role of water in crustal evolution. J. Geol. Soc. Lond. 2009, 166, 585–600. [Google Scholar] [CrossRef]
- Touret, J.L.R.; Santosh, M.; Huizenga, J.M. High-temperature granulites and supercontinents. Geosci. Front. 2016, 7, 101–113. [Google Scholar] [CrossRef]
- Yardley, B.W.D. Metal concentrations in crustal fluids and their relationship to ore formation. Econ. Geol. 2005, 100, 613–632. [Google Scholar] [CrossRef]
- Jamtveit, B.; Austrheim, H.; Putnis, A. Disequilibrium metamorphism of stressed lithosphere. Earth Sci. Rev. 2016, 154, 1–13. [Google Scholar] [CrossRef]
- Korzhinskii, D.S. Physicochemical Basis of the Analysis of the Paragenesis of Minerals; Consultants Bureau: New York, NY, USA, 1958. [Google Scholar]
- Korzhinskii, D.S. Theory of Metasomatic Zoning; Oxford University Press: Oxford, UK, 1970. [Google Scholar]
- Manning, C.E. Fluids of the lower crust: Deep is different. Annu. Rev. Earth Planet. Sci. 2018, 46, 67–97. [Google Scholar] [CrossRef] [Green Version]
- Yardley, B.W.D. The Chemical Composition of Metasomatic Fluids in the Crust. In Metasomatism and the Chemical Transformation of Rock: Rock-Mineral-Fluid Interaction in Terrestrial and Extraterrestrial Environments; Harlov, D.E., Austrheim, H., Eds.; Springer: Berlin, Germany, 2012. [Google Scholar]
- Ferry, J.M.; Ushikubo, T.; Valley, J.W. Formation of Forsterite by Silicification of Dolomite during Contact Metamorphism. J. Petrol. 2011, 52, 1619–1640. [Google Scholar] [CrossRef] [Green Version]
- Bucher-Nurminen, K. The formation of the metasomatic reaction veins in dolomitic marble roof pendants in the Bergell intrusion (Province Sondrio, northern Italy). Am. J. Sci. 1981, 281, 1197–1222. [Google Scholar] [CrossRef]
- Thompson, A.B. Calc-silicate diffusion zones between marble and pelitic schist. J. Petrol. 1975, 16, 314–346. [Google Scholar]
- Fukuyama, M.; Nishiyama, T.; Urata, K.; Mori, Y. Steady-diffusion modelling of a reaction zone between a metamorphosed basic dyke and a marble from Hirao-dai, Fukuoka, Japan. J. Metamorph. Geol. 2006, 24, 153–168. [Google Scholar] [CrossRef]
- Zucchi, M. Faults controlling geothermal fluid flow in low permeability rock volumes: An example from the exhumed geothermal system of eastern Elba Island (northern Tyrrhenian Sea, Italy). Geothermics 2020, 85, 101765. [Google Scholar] [CrossRef]
- Bucher-Nurminen, K. On the mechanism of contact metamorphic aureole formation in dolomitic country rock by the Adamello intrusion (northern Italy). Am. Mineral. 1982, 67, 1101–1117. [Google Scholar]
- Bucher, K. Growth mechanisms of metasomatic reaction veins in dolomite marbles from the Bergell Alps. Mineral. Petrol. 1998, 63, 151–171. [Google Scholar] [CrossRef]
- Holness, M.B. Fluid flow paths and mechanisms of fluid infiltration in carbonates during contact metamorphism: The Beinn an Dubhaich aureole, Skye. J. Metamorph. Geol. 1997, 15, 59–70. [Google Scholar] [CrossRef]
- Bowen, N.L. Progressive metamorphism of siliceous limestone and dolomite. J. Geol. 1940, 48, 225–274. [Google Scholar] [CrossRef]
- Skippen, G.B. An experimental model for low pressure metamorphism of siliceous dolomite marble. Am. J. Sci. 1974, 274, 487–509. [Google Scholar] [CrossRef]
- Moore, J.N.; Kerrick, D.M. Equilibria in siliceous dolomites of the Alta aureole. Utah. Am. J. Sci. 1976, 276, 502–524. [Google Scholar] [CrossRef]
- Ferry, J.M. Role of fluid flow in the contact metamorphism of siliceous dolomitic limestones. Am. Mineral. 1994, 79, 719–736. [Google Scholar]
- Roselle, G.T. Integrated Petrologic, Stable Isotopic, and Statistical Study of Fluid-Flow in Carbonates of the Ubehebe Peak Contact Aureole, Death Valley National Park, California. Ph.D. Thesis, University of Wisconsin, Madison, WI, USA, 1997. [Google Scholar]
- Cook, S.J.; Bowman, J.R. Mineralogical evidence for fluid-rock interaction accompanying prograde contact metamorphism of siliceous dolomites: Alta aureole, Utah, USA. J. Petrol. 2000, 41, 739–757. [Google Scholar] [CrossRef]
- Muller, T.; Baumgartner, L.P.; Foster, C.T., Jr.; Vennemann, T.W. Metastable prograde mineral reactions in contact aureoles. Geology 2004, 32, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Ferry, J.M. Calcite inclusions in forsterite. Am. Mineral. 2001, 86, 773–779. [Google Scholar] [CrossRef]
- Cho, M.; Lee, Y.; Kim, T.; Cheong, W.; Kim, Y.; Lee, S.R. Tectonic evolution of Precambrian basement massifs and an adjoining fold-and-thrust belt (Gyeonggi Marginal Belt), Korea: An overview. Geosci. J. 2017, 21, 845–865. [Google Scholar] [CrossRef]
- Kim, S.W.; Kwon, S.; Santosh, M.; Cho, D.L.; Kee, W.S.; Lee, S.B.; Jeong, Y.J. Detrital zircon U-Pb and Hf isotope characteristics of the Early Neoproterozoic successions in the central-western Korean Peninsula: Implication for the Precambrian tectonic history of East Asia. Precambrian Res. 2019, 322, 24–41. [Google Scholar] [CrossRef]
- Kwon, S.; Sajeev, K.; Mitra, G.; Park, Y.; Kim, S.W.; Ryu, I.-C. Evidence for Permo-Triassic collision on Far East Asia: The Korean collisional orogen. Earth Planet. Sci. Lett. 2009, 279, 340–349. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, S.W.; Santosh, M. Multiple generations of mafic–ultramafic rocks from the Hongseong suture zone,western South Korea: Implications for the geodynamic evolution of NE Asia. Lithos 2013, 161, 68–83. [Google Scholar] [CrossRef]
- Sajeev, K.; Jeong, J.; Kwon, S.; Kee, W.-S.; Kim, S.W.; Komiya, T.; Itaya, T.; Jung, H.-S.; Park, Y. High P-T granulite relicts from the Imjingang Belt, South Korea: Tectonic significance. Gondwana Res. 2010, 17, 75–86. [Google Scholar] [CrossRef]
- Kim, S.W.; Kwon, S.; Park, S.-I.; Yi, K.; Santosh, M. Early to Middle Paleozoic tectonometamorphic evolution of the Hongseong area, central western Korean Peninsula: Tectonic implications. Gondwana Res. 2017, 47, 308–322. [Google Scholar] [CrossRef]
- Kim, S.W.; Park, S.-I.; Jang, Y.; Kwon, S.; Kim, S.J.; Santosh, M. Tracking Paleozoic evolution of the South Korean Peninsula from detrital zircon records: Implications for the tectonic history of east Asia. Gondwana Res. 2017, 50, 195–215. [Google Scholar] [CrossRef]
- Park, S.-I.; Kim, S.W.; Kwon, S.; Santosh, M.; Ko, K.; Kee, W.-S. Nature of Late Mesoproterozoic to Middle Neoproterozoic magmatism in the western Gyeonggi massif, Korean Peninsula and its tectonic significance. Gondwana Res. 2017, 47, 291–307. [Google Scholar] [CrossRef]
- Kim, S.W.; Cho, D.-L.; Lee, S.-B.; Kwon, S.; Park, S.-I.; Santosh, M.; Kee, W.-S. Mesoproterozoic magmatic suites from the central-western Korean Peninsula: Imprints of Columbia disruption in East Asia. Precambrian Res. 2018, 306, 155–173. [Google Scholar] [CrossRef]
- Jang, Y.; Kwon, S.; Song, Y.; Kim, S.W.; Kwon, Y.K.; Yi, K. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies. J. Asian Earth Sci. 2018, 157, 198–217. [Google Scholar] [CrossRef]
- Park, S.-I.; Kwon, S.; Kim, S.W.; Hong, P.S.; Santosh, M. A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence. J. Asian Earth Sci. 2018, 157, 166–188. [Google Scholar] [CrossRef]
- Kim, H.S.; Kwon, S.; Kim, S.W.; Santosh, M. Permo-Triassic high-pressure metamorphism in the central western Korean Peninsula, and its link to Paleo-Tethyan Ocean closure: Key issues revisited. Geosci. Front. 2018, 9, 1325–1335. [Google Scholar] [CrossRef]
- Santosh, M.; Hu, C.N.; Kim, S.W.; Tang, L.; Kee, W.S. Late Paleoproterozoic ultrahigh-temperature metamorphism in the Korean Peninsula. Precambrian Res. 2018, 308, 111–125. [Google Scholar] [CrossRef]
- Park, S.-I.; Noh, J.; Cheong, H.J.; Kwon, S.; Song, Y.; Kim, S.W.; Santosh, M. Inversion of two-phase extensional basin systems during subduction of the Paleo-Pacific Plate in the SW Korean Peninsula: Implication for the Mesozoic “Laramide-style” orogeny along East Asian continental margin. Geosci. Front. 2019, 10, 909–925. [Google Scholar] [CrossRef]
- Choi, S.-J.; Kim, B.; Gihm, Y.S.; Kwon, S. Coastal landscape evolution tracked from late Holocene wave-cut benches in the Sinan Archipelago, Southwest Korea. Geosci. Front. 2020, 11, 293–301. [Google Scholar] [CrossRef]
- Heo, C.H.; Yun, S.T.; So, C.S.; Choi, S.G. Geochemistry of the Granitoids hosting the Seolhwa Au mine, Asan district, Chungcheongnamdo province, Korea: Genetic implication on the mesothermal gold mineralization. Geosyst. Eng. 2002, 5, 54–66. [Google Scholar] [CrossRef]
- Scarrow, J.H.; Molina, J.F.; Bea, F.; Montero, P.; Vaughan, A.P.M. Lamprophyre dikes as tectonic markers of late orogenic transtension timing and kinematics: A case study from the Central Iberian Zone. Tectonics 2011, 30, TC4007. [Google Scholar] [CrossRef]
- Holness, M.B. Geochemical self-organization of olivine- grade contact-metamorphosed chert nodules in dolomite marble, Kilchrist, Skye. J. Metamorph. Geol. 1997, 15, 765–776. [Google Scholar] [CrossRef]
- Pyle, J.M.; Spear, F.S.; Wark, D.A. Electron Microprobe Analysis of REE in Apatite, Monazite and Xenotime: Protocols and Pitfalls. Rev. Mineral. Geochem. 2002, 48, 337–362. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.; Ringwood, A.E.; Jagoutz, E.; Hofmann, A.W. K, Rb, and Cs in the earth and moon and the evolution of the earth’s mantle. Geochim. Cosmochim. Acta 1992, 56, 1001–1012. [Google Scholar] [CrossRef]
- Connolly, J.A.D. Multivariable phase diagrams—An algorithm based on generalized thermodynamics. Am. J. Sci. 1990, 290, 666–718. [Google Scholar] [CrossRef]
- Connolly, J.A.D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 2005, 236, 524–541. [Google Scholar] [CrossRef]
- Connolly, J.A.D. The geodynamic equation of state: What and how. Geochem. Geophys. Geosyst. 2009, 10, Q10014. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An internally-consistent thermodynamic dataset for phases of petrological interest. J. Metamorph. Geol. 1998, 16, 309–344. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. A compensated-Redlich-Kwong(CORK) equation for volumes and fugacities of CO2 and H2O in the range 1 bar to 50 kbar and 100–1600 °C. Contrib. Mineral Petrol. 1991, 109, 265–273. [Google Scholar] [CrossRef]
- Anovitz, L.; Essene, E.J. Phase equilibria in the system CaCO3-MgCO3-FeCO3. J. Petrol. 1987, 28, 389–414. [Google Scholar] [CrossRef]
- Tajcmanova, L.; Connolly, J.A.D.; Cesare, B. A thermodynamic model for titanium and ferric iron solution in biotite. J. Metamorph. Geol. 2009, 27, 153–164. [Google Scholar] [CrossRef]
- Frost, B.R. Introduction to oxygen fugacity and its petrologic importance. In Oxide Minerals: Petrologic and Magnetic Significance; Lindsley, D.H., Ed.; Reviews in Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 1991; Volume 25, pp. 1–9. [Google Scholar]
- Safonov, O.G.; Aranovich, L.Y. Alkali control of high-grade metamorphism and granitization. Geosci. Front. 2014, 5, 711–727. [Google Scholar] [CrossRef] [Green Version]
- Safonov, O.G.; Kosova, S.A.; Van Reenen, D.D. Interaction of biotite–amphibole gneiss with H2O–CO2– (K,Na)Cl fluids at 550 MPa and 750 and 800 °C : Experimental study and applications to dehydration and partial melting in the middle crust. J. Petrol. 2014, 12, 2419–2456. [Google Scholar] [CrossRef]
- Grant, J.A. The isocon diagram-A simple solution to Gresens equation for metasomatic alteration. Econ. Geol. 1986, 81, 1976–1982. [Google Scholar] [CrossRef]
- Gresens, R.L. Composition-volume relationships of metasomatism. Chem. Geol. 1967, 2, 47–55. [Google Scholar] [CrossRef]
- Ducoux, M.; Branquet, Y.; Jolivet, L.; Arbaret, L.; Grasemann, B.; Rabillard, A.; Gumiaux, C.; Drufin, S. Syn-kinematic skarns and fluid drainage along detachments: The West Cycladic Detachment System on Serifos Island (Cyclades, Greece) and its related mineralization. Tectonophysics 2017, 695, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Zucchi, M.; Brogi, A.; Liotta, D.; Rimondi, V.; Ruggieri, G.; Montegrossi, G.; Caggianelli, A.; Dini, A. Permeability and hydraulic conductivity of faulted micaschist in the eastern Elba Island exhumed geothermal system (Tyrrhenian sea, Italy): Insights from Cala Stagnone. Geothermics 2017, 70, 125–145. [Google Scholar] [CrossRef]
- Liotta, D.; Brogi, A.; Ruggieri, G.; Rimondi, V.; Zucchi, M.; Helgadóttir, H.M.; Montegrossi, G.; Friðleifsson, G.O. Fracture analysis, hydrothermal mineralization and fluid pathways in the Neogene Geitafell central volcano: Insights for the Krafla active geothermal system, Iceland. J. Volcanol. Geotherm. Res. 2018, 391, 106502. [Google Scholar] [CrossRef]
- Einaudi, M.T.; Meinert, L.D.; Newberry, R.J. Skarn deposits. Econ. Geol. 1981, 100, 317–391. [Google Scholar]
- Meinert, L.D. Skarn and skarn deposits. Geosci. Can. 1992, 19, 145–162. [Google Scholar]
- Meinert, L.D.; Dipple, G.M.; Nicolescu, S. World Skarn Deposits; Economic Geology 100th Anniversary Volume; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2005; pp. 299–336. [Google Scholar]
- Beinlich, A.; Barker, S.L.L.; Dipple, G.M.; Hansen, L.D.; Megaw, P.K.M. Large-Scale Stable Isotope Alteration Around the Hydrothermal Carbonate-Replacement Cinco de Mayo Zn-Ag Deposit, Mexico. Econ. Geol. 2019, 114, 375–396. [Google Scholar] [CrossRef] [Green Version]
- Putnis, A. Mineral replacement reactions. Rev. Mineral. Geochem. 2009, 70, 87–124. [Google Scholar] [CrossRef]
- Meinert, L.D.; Hefton, K.K.; Mayes, D.; Tasiran, I. Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya. Econ. Geol. 1997, 92, 509–526. [Google Scholar] [CrossRef]
- Brooker, R.A.; Blank, J.G. Experimental Studies of Carbon Dioxide in Silicate Melts: Solubility, Speciation, and Stable Carbon Isotope Behavior. In Volatiles in Magmas; Carroll, M.R., Holloway, S.R., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 1994; pp. 157–186. [Google Scholar]
- Holloway, J.R.; Blank, J.G. Application of experimental results to C-O-H species in natural melts. Rev. Mineral. Geochem. 1994, 30, 187–230. [Google Scholar]
- Brey., G.P. Origin of olivine melilitites—Chemical and experimental constraints. J. Volcanol. Geotherm. Res. 1978, 3, 61–88. [Google Scholar] [CrossRef]
- Fogel, R.A.; Rutherford, M.J. The solubility of carbon dioxide in rhyolitic melts; A quantitative FTIR study. Am. Mineral. 1990, 75, 1311–1326. [Google Scholar]
- Bailey, D.K.; Macdonald, R. Dry Peralkaline Felsic Liquids and Carbon Dioxide Flux through the Kenya Rift Zone. In Magmatic Processes: Physiochemical Principles; Special Publication No. 1; Mysen, B.O., Ed.; Geochemical Society: Washington, DC, USA, 1987; pp. 91–105. [Google Scholar]
- Haggerty, S.E. A diamond trilogy; superplumes, supercontinents, and supernovae. Science 1999, 285, 851–860. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, J.; Kim, C.; Samuel, V.O.; Jang, Y.; Park, S.-I.; Kwon, S. Fluid Infiltration and Mass Transfer along a Lamprophyre Dyke–Marble Contact: An Example from the South-Western Korean Peninsula. Minerals 2020, 10, 828. https://doi.org/10.3390/min10090828
Noh J, Kim C, Samuel VO, Jang Y, Park S-I, Kwon S. Fluid Infiltration and Mass Transfer along a Lamprophyre Dyke–Marble Contact: An Example from the South-Western Korean Peninsula. Minerals. 2020; 10(9):828. https://doi.org/10.3390/min10090828
Chicago/Turabian StyleNoh, Jungrae, Changyeob Kim, Vinod O. Samuel, Yirang Jang, Seung-Ik Park, and Sanghoon Kwon. 2020. "Fluid Infiltration and Mass Transfer along a Lamprophyre Dyke–Marble Contact: An Example from the South-Western Korean Peninsula" Minerals 10, no. 9: 828. https://doi.org/10.3390/min10090828
APA StyleNoh, J., Kim, C., Samuel, V. O., Jang, Y., Park, S. -I., & Kwon, S. (2020). Fluid Infiltration and Mass Transfer along a Lamprophyre Dyke–Marble Contact: An Example from the South-Western Korean Peninsula. Minerals, 10(9), 828. https://doi.org/10.3390/min10090828