Geochemical Variation of Miocene Basalts within Shikoku Basin: Magma Source Compositions and Geodynamic Implications
Abstract
:1. Introduction
2. Geological Setting
3. Analytical Methods
4. Petrographic and Mineralogical Characteristics
5. Major and Trace Element Bulk Rock Geochemistry
6. Nd, Sr, and Pb Isotope Variations
7. Discussion
7.1. Effect of Post-Magmatic Alteration
7.2. Fractional Crystallization and Clinopyroxene Crystallization Temperature and Pressure
7.3. Constraints on the Partial Melting Processes
7.4. Nature of the Mantle Source
7.5. Origin of the Enriched Components
7.6. Formation Process of Shikoku Basin, Parece Vela Basin, and Japan Sea
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tatsumi, Y. High-Mg andesites in the Setouchi volcanic belt, southwestern Japan: Analogy to Archean magmatism and continental crust formation? Ann. Rev. Earth Planet. Sci. 2006, 34, 467–499. [Google Scholar] [CrossRef]
- Ishizuka, O.; Yuasa, M.; Taylor, R.N.; Sakamoto, I. Two contrasting magmatic types coexist after the cessation of back-arc spreading. Chem. Geol. 2009, 266, 274–296. [Google Scholar] [CrossRef]
- Mahony, S.H.; Wallace, L.M.; Miyoshi, M.; Villamor, P.; Sparks, R.S.J.; Hasenaka, T. Volcano-tectonic interactions during rapid plate-boundary evolution in the Kyushu region, SW Japan. Geol. Soc. Am. Bullet. 2011, 123, 2201–2223. [Google Scholar] [CrossRef]
- Pickering, K.T.; Underwood, M.B.; Saito, S.; Naruse, H.; Kutterolf, S.; Scudder, R.; Park, J.O.; Moore, G.F.; Slagle, A. Depositional architecture, provenance, and tectonic/eustatic modulation of Miocene submarine fans in the Shikoku Basin: Results from Nankai Trough Seismogenic Zone Experiment. Geochem. Geophys. Geosyst. 2013, 14, 1722–1739. [Google Scholar] [CrossRef] [Green Version]
- Watts, A.B.; Weissel, J.K. Tectonic history of the Shikoku marginal basin. Earth Planet. Sci. Lett. 1975, 25, 239–250. [Google Scholar] [CrossRef]
- Kobayashi, K.; Nakada, M. Magnetic anomalies and tectonic evolution of the Shikoku inter-arc basin. J. Phys. Earth 1978, 26, S391–S402. [Google Scholar] [CrossRef]
- Taylor, B.; Fujioka, K. Rifting and the volcanic-tectonic evolution of the Izu-Bonin-Mariana Arc. Proc. Ocean Drill. Prog. Sci. Results 1992, 126, 627–651. [Google Scholar]
- Kobayashi, K.; Kasuga, S.; Okino, K. Shikoku Basin and Its Margins. In Backarc Basins: Tectonics and Magmatism; Taylor, B., Ed.; Plenum Press: New York, NY, USA, 1995; pp. 381–405. [Google Scholar]
- Okino, K.; Shimakawa, Y.; Nagaoka, S. Evolution of the Shikoku basin. J. Geom. Geoelectr. 1994, 46, 463–479. [Google Scholar] [CrossRef]
- Okino, K.; Kasuga, S.; Ohara, Y. A new scenario of the Parece Vela Basin genesis. Marine Geophys. Res. 1998, 20, 21–40. [Google Scholar] [CrossRef]
- Okino, K.; Ohara, Y.; Kasuga, S.; Kato, Y. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins. Geophys. Res. Lett. 1999, 26, 2287–2290. [Google Scholar] [CrossRef]
- Sdrolias, M.; Roest, W.R.; Müller, R.D. An expression of Philippine Sea plate rotation: The Parece Vela and Shikoku basins. Tectonophysics 2004, 394, 69–86. [Google Scholar] [CrossRef]
- Tamaki, K.; Suyehiro, K.; Allan, J.; Ingle, J.C.; Pisciotto, K. Tectonic synthesis and implications of Japan Sea ODP drilling. Proc. Ocean Drill. Prog. Sci. Results 1992, 127–128, 1333–1350. [Google Scholar]
- Tamaki, K. Opening tectonics of the Japan Sea. In Backarc Basins: Tectonics and Magmatism; Taylor, B., Ed.; Plenum: New York, NY, USA, 1995; pp. 407–420. [Google Scholar]
- Roest, W.R.; Sdrolias, M.; Mueller, R.D. Detailed analysis of the spreading history of the Parece Vela and Shikoku Basins: Implications for Philippine Plate Rotation. AGUFM 2003, 2003, T32A–0902. [Google Scholar]
- Tamura, Y.; Ishizuka, O.; Aoike, K.; Kawate, S.; Kawabata, H.; Chang, Q.; Saito, S.; Tatsumi, Y.; Arima, M.; Takahashi, M.; et al. Missing Oligocene crust of the Izu-Bonin arc: Consumed or rejuvenated during collision? J. Petrol. 2010, 51, 823–846. [Google Scholar] [CrossRef] [Green Version]
- Tani, K.; Dunkley, D.J.; Kimura, J.I.; Wysoczanski, R.J.; Yamada, K.; Tatsumi, Y. Syncollisional rapid granitic magma formation in an arc-arc collision zone: Evidence from the Tanzawa plutonic complex, Japan. Geology 2010, 38, 215–218. [Google Scholar] [CrossRef]
- Yamazaki, T.; Takahashi, M.; Iryu, Y.; Sato, T.; Oda, M.; Takayanagi, H.; Chiyonobu, S.; Nishimura, A.; Nakazawa, T.; Ooka, T. Philippine Sea Plate motion since the Eocene estimated from paleomagnetism of seafloor drill cores and gravity cores. Earth Planets Space 2010, 62, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 2002, 20, 353–431. [Google Scholar] [CrossRef]
- Hall, R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 2012, 570, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Kutterolf, S.; Schindlbeck, J.C.; Scudder, R.P.; Murray, R.W.; Pickering, K.T.; Freundt, A.; Labanieh, S.; Heydolph, K.; Saito, S.; Naruse, H.; et al. Large volume submarine ignimbrites in the Shikoku Basin: An example for explosive volcanism in the Western Pacific during the Late Miocene. Geochem. Geophys. Geosyst. 2014, 15, 1837–1851. [Google Scholar] [CrossRef] [Green Version]
- Shih, T.C. Marine magnetic anomalies from the western Philippine Sea: Implications for the evolution of marginal basins. Geophys. Monogr. Ser. 1980, 23, 49–75. [Google Scholar]
- Dixon, T.H.; Stern, R.J. Petrology, chemistry, and isotopic composition of submarine volcanoes in the southern Mariana arc. Geol. Soc. Am. Bullet. 1983, 94, 1159–1172. [Google Scholar] [CrossRef]
- Oda, H.; Senna, N. Regional variation of surface wave group velocities in the Philippine Sea. Tectonophysics 1994, 233, 265–277. [Google Scholar] [CrossRef]
- Senna, N.; Oda, H.; Seya, K. Regional variation of Rayleigh wave group velocities in the Philippine Sea Area. Zisin 1990, 43, 91–100, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Nakamura, Y.; Shibutani, T. Three-dimensional shear wave velocity structure in the upper mantle beneath the Philippine Sea region. Earth Planets Space 1998, 50, 939–952. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.S.; Liu, J.Q.; Chen, S.S.; Guo, Z.F.; Sun, C.Q. Variations in the geochemical structure of the mantle wedge beneath the northeast Asian marginal region from pre-to post-opening of the Japan Sea. Lithos 2015, 224, 324–341. [Google Scholar] [CrossRef]
- Mattey, D.P. The geochemistry, mineralogy, and petrology of basalts from the West Philippine and Parece Vela basins and from the Palau-Kyushu and West Mariana ridges, Deep Sea Drilling Project Leg 59. Init. Rep. Deep Sea Drill. Prog. Leg 1980, 59, 753–800. [Google Scholar]
- Hilst, R.; Seno, T. Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs. Earth Planet. Sci. Lett. 1993, 120, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Seno, T.; Stein, S.; Gripp, A.E. A model for the motion of the Philippine Sea Plate consistent with NUVEL-l and geological data. J. Geophys. Res. Solid Earth 1993, 98, 941–948. [Google Scholar] [CrossRef]
- Underwood, M.B.; Saito, S.; Kubo, Y.S. IODP Expedition 322 Drills Two Sites to Document Inputs to The Nankai Trough Subduction Zone. Sci. Drill. 2010, 10, 14–25. [Google Scholar] [CrossRef]
- Henry, P.; Kanamatsu, T.; Moe, K.T. NanTroSEIZE Stage 2: Subduction inputs 2 and heat flow. IODP Sci. Prosp. 2010, 333. [Google Scholar] [CrossRef]
- Saito, S.; Underwood, M.B.; Kubo, Y. NanTroSEIZE Stage 2: Subduction inputs. IODP Sci. Prosp. 2009, 322. [Google Scholar] [CrossRef]
- Ike, T.; Moore, G.F.; Kuramoto, S.; Park, J.O.; Kaneda, Y.; Taira, A. Tectonics and sedimentation around Kashinosaki Knoll: A subducting basement high in the eastern Nankai Trough. Island Arc 2008, 17, 358–375. [Google Scholar] [CrossRef]
- Ike, T.; Moore, G.F.; Kuramoto, S.; Park, J.O.; Kaneda, Y.; Taira, A. Variations in sediment thickness and type along the northern Philippine Sea plate at the Nankai Trough. Island Arc 2008, 17, 342–357. [Google Scholar] [CrossRef]
- Henry, P.; Kanamatsu, T.; Thu, M.K.; Alves, T.; Bauersachs, T.; Daigle, H.; Ekinci, K.; Gao, S.; Garcon, M.; Kawamura, K. NanTroSEIZE Stage 2: Subduction inputs 2 and heat flow. Integ. Ocean Drill. Program Exp. Prelim. Rep. 2011. [CrossRef]
- Mikada, H. Deformation and fluid flow processes in the Nankai Trough accretionary prism: Logging while drilling and advanced CORKs. Proc. Ocean Drill. Prog. Sci. Results 2002, 196, 1–8. [Google Scholar]
- Mikada, H.; Becker, K.; Moore, J.C.; Klaus, A. ODP Leg 196: Logging-while-drilling and advanced CORKS at the Nankai trough accretionary prism. JOIDES J. 2002, 28, 8–12. [Google Scholar]
- Mrozowski, C.L.; Hayes, D.E. The evolution of the Parece Vela basin, eastern Philippine Sea. Earth Planet. Sci. Lett. 1979, 46, 49–67. [Google Scholar] [CrossRef]
- Murauchi, S.; Den, N.; Asano, S.; Hotta, H.; Yoshii, T.; Asanuma, T.; Hagiwara, K.; Ichikawa, K.; Sato, T.; Ludwig, W.J.; et al. Crustal structure of the Philippine Sea. J. Geophys. Res. 1968, 73, 3143–3171. [Google Scholar] [CrossRef]
- Ohara, Y.; Yoshida, T.; Kato, Y.; Kasuga, S. Giant megamullion in the Parece Vela backarc basin. Marine Geophys. Res. 2001, 22, 47–61. [Google Scholar] [CrossRef]
- Karig, D.E. Origin and development of marginal basins in the western Pacific. J. Geophys. Res. Solid Earth 1971, 76, 2542–2561. [Google Scholar] [CrossRef]
- Karig, D.E. Basin genesis in the Philippine Sea. Initial Rep. DSDP 1975, 31, 857–879. [Google Scholar]
- Kroenke, L.; Scott, R.B. Initial Reports of the Deep-Sea Drilling Project; U.S. Government Printing Office: Washington, DC, USA, 1980; Volume 59.
- Kasuga, S.; Ohara, Y. A new model of back-arc spreading in the Parece Vela Basin, northwest Pacific margin. Island Arc 1997, 6, 316–326. [Google Scholar] [CrossRef]
- Tamaki, K.; Pisciotto, K.; Allan, J. Background, objectives, and principal results, ODP Leg 127, Japan Sea. Proc. Ocean Drill. Prog. Sci. Results 1990, 127, 5–33. [Google Scholar] [CrossRef]
- Shimazu, M.; Yoon, M.; Tateishi, M. Tectonics and volcanism in the Sado-Pohang Belt from 20 to 14 Ma and opening of the Yamato Basin of the Japan Sea. Tectonophysics 1990, 181, 321–330. [Google Scholar] [CrossRef]
- Li, C.F.; Chu, Z.Y.; Guo, J.H.; Li, Y.L.; Yang, Y.H.; Li, X.H. A rapid single column separation scheme for highprecision Sr-Nd-Pb isotopic analysis in geological samples using thermal ionization mass spectrometry. Anal. Methods 2015, 7, 4793–4802. [Google Scholar] [CrossRef]
- Smith, J.V.; Brown, W.L. Feldspar minerals; Springer: Amsterdam, The Netherlands, 1988; p. 828. [Google Scholar]
- Morimoto, N. Nomenclature of pyroxenes. Mineral. Petrol. 1988, 39, 55–76. [Google Scholar] [CrossRef]
- Ohara, Y.; Fujioka, K.; Ishii, T.; Yurimoto, H. Peridotites and gabbros from the Parece Vela backarc basin: Unique tectonic window in an extinct back-arc spreading ridge. Geochem. Geophys. Geosyst. 2003, 4. [Google Scholar] [CrossRef]
- Klein, G.D.; Kobayashi, K.; Chamley, H.; Curtis, D.M.; Dick, H.J.B.; Echols, D.J.; Fountain, D.M.; Kinoshita, H.; Marsh, N.G.; Mizuno, A.; et al. Off-ridge volcanism and seafloor spreading in the Shikoku Basin. Nature 1978, 273, 746. [Google Scholar] [CrossRef]
- Marsh, N.G.; Dick, H.J.B. Geochemistry of basalts from the Shikoku and Daito basins, Deep Sea drilling project Leg 58. Ini. Rep. Deep Sea Drill. Proj. 1980, 58, 805–842. [Google Scholar]
- Nisterenko, G.V. Petrochemistry and geochemistry of basalts in the Shikoku Basin and Daito Basin, Philippine Sea. Initial Rep. DSDP 1980, 58, 791–804. [Google Scholar]
- Dick, H.J.; Marsh, N.G.; Bullen, T.D. Deep Sea Drilling Project Leg 58 abyssal basalts from the Shikoku Basin: Their petrology and major-element geochemistry. Ini. Rep. DSDP. 1980, 58, 843–872. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. London Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Sun, C.H.; Stern, R.J. Genesis of Mariana shoshonites: Contribution of the subduction component. J. Geophys. Res. Solid Earth 2001, 106, 589–608. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S.R. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Hofmann, A.W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Machida, S.; Kanayama, S.; Taniguchi, H.; Ishii, T. Geochemical and isotopic characteristics of the Kinan Seamount Chain in the Shikoku Basin. Geochem. J. 2002, 36, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Hickey-Vargas, R. Isotope characteristics of submarine lavas from the Philippine Sea: Implications for the origin of arc and basin magmas of the Philippine tectonic plate. Earth Planet. Sci. Lett. 1991, 107, 290–304. [Google Scholar] [CrossRef]
- Straub, S.M.; Layne, G.D.; Schmidt, A.; Langmuir, C.H. Volcanic glasses at the Izu arc volcanic front: New perspectives on fluid and sediment melt recycling in subduction zones. Geochem. Geophys. Geosyst. 2004, 5. [Google Scholar] [CrossRef] [Green Version]
- Hart, S.R. A large-scale isotope anomaly in the Southern Hemisphere. Nature 1984, 309, 753–756. [Google Scholar] [CrossRef]
- Mackenzie, D.; Craw, D.; Begbie, M. Mineralogy, geochemistry, and structural controls of a disseminated gold-bearing alteration halo around the schist-hosted Bullendale orogenic gold deposit, New Zealand. J. Geochem. Explor. 2007, 93, 160–176. [Google Scholar] [CrossRef]
- Hernández-Uribe, D.; Palin, R.M.; Cone, K.A.; Cao, W.T. Petrological implications of seafloor hydrothermal alteration of subducted mid-ocean ridge basalt. J. Petrol. 2020. [Google Scholar] [CrossRef]
- Grant, J.A. Isocon analysis: A brief review of the method and applications. Phys. Chem. Earth Parts ABC 2005, 30, 997–1004. [Google Scholar] [CrossRef]
- Tschegg, C.; Grasemann, B. Deformation and alteration of a granodiorite during low-angle normal faulting (serifos, greece). Lithosphere 2009, 1, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Escuder-Viruete, J.; Pérez-Estaún, A.; Gabites, J.; Suárez-Rodríguez, Á. Structural development of a high-pressure collisional accretionary wedge: The Samaná complex, northern Hispaniola. J. Struct. Geol. 2011, 33, 928–950. [Google Scholar] [CrossRef]
- Hastie, A.R.; Kerr, A.C.; Pearce, J.A.; Mitchell, S.F. Classifification of altered volcanic is land arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. J. Petrol. 2007, 48, 2341–2357. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.F.; Gorton, M.P. Geochemistry of igneous rocks from Legs 127 and 128, Sea of Japan. Proc. Ocean Drill. Prog. Sci. Results 1992, 127/128, 905–929. [Google Scholar] [CrossRef]
- Hoernle, K. Geochemistry of jurassic oceanic crust beneath Gran Canaria (Canary Islands): Implications for crustal recycling and assimilation. J. Petrol. 1998, 5, 859–880. [Google Scholar] [CrossRef]
- Chaffey, D.J.; Cliff, R.A.; Wilson, B.M. Characterization of the St Helena magma source. Geol. Soc. London Spec. Publ. 1989, 42, 257–276. [Google Scholar] [CrossRef]
- Irving, A.J.; Frey, F.A. Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and megacryst genesis. Geochim. Cosmochim. Acta 1984, 48, 1201–1221. [Google Scholar] [CrossRef]
- Putirka, K.; Johnson, M.; Kinzler, R.; Longhi, J.; Walker, D. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0~30 kbar. Contrib. Mineral. Petrol. 1996, 123, 92–108. [Google Scholar] [CrossRef]
- Putirka, K.D.; Mikaelian, H.; Ryerson, F.; Shaw, H. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am. Mineral. 2003, 88, 1542–1554. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Thompson, R.N. Some high-pressure pyroxenes. Mineral. Mag. J. Mineral. Soc. 1974, 39, 768–787. [Google Scholar] [CrossRef] [Green Version]
- Nimis, P.; Ulmer, P. Clinopyroxene geobarometry of magmatic rocks Part 1: An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib. Mineral. Petrol. 1998, 133, 122–135. [Google Scholar] [CrossRef]
- Yuan, C.; Sun, M.; Wilde, S.; Xiao, W.J.; Xu, Y.G.; Long, X.P.; Zhao, G.C. Post-collisional plutons in the Balikun area, East Chinese Tianshan: Evolving magmatism in response to extension and slab break-off. Lithos 2010, 119, 269–288. [Google Scholar] [CrossRef]
- Su, Y.; Zheng, J.; Griffin, W.L.; Zhao, J.; Tang, H.; Ma, Q.; Lin, X. Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: Implication for a tectonic transition. Gondw. Res. 2012, 22, 1009–1029. [Google Scholar] [CrossRef]
- Hanyu, T.; Tatsumi, Y.; Nakai, S.L.; Chang, Q.; Miyazaki, T.; Sato, K.; Tani, K.; Shibata, T.; Yoshida, T. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: Constraints from geochemistry. Geochem. Geophys. Geosyst. 2006, 7. [Google Scholar] [CrossRef]
- Tatsumi, Y.; Hamilton, D.; Nesbitt, R.W. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. J. Volcanol. Geother. Res. 1986, 29, 293–309. [Google Scholar] [CrossRef]
- Keppler, H. Constraints from partitioning experiments on the composition of subduction zone fluids. Nature 1996, 380, 237–240. [Google Scholar] [CrossRef]
- Elburg, M.A.; Bergen, M.A.; Hoogewerff, J.; Foden, J.; Vroon, P.; Zulkarnain, I.; Nasution, A. Geochemical trends across an arc-continent collision zone: Magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochim. Cosmochim. Acta 2002, 66, 2771–2789. [Google Scholar] [CrossRef]
- Guo, Z.; Wilson, M.; Liu, J.; Mao, Q. Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan plateau: Constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. J. Petrol. 2006, 47, 1177–1220. [Google Scholar] [CrossRef]
- Guo, Z.; Wilson, M.; Zhang, M.; Cheng, Z.; Zhang, L. Post-collisional, K-rich mafic magmatism in south Tibet: Constraints on Indian slab-to-wedge transport processes and plateau uplift. Contrib. Mineral. Petrol. 2013, 165, 1311–1340. [Google Scholar] [CrossRef]
- Weaver, B.L. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth Planet. Sci. Lett. 1991, 104, 381–397. [Google Scholar] [CrossRef]
- Hawkesworth, C.; Turner, S.; Peate, D.; McDermott, F.; van Calsteren, P. Elemental U and Th variations in island arc rocks: Implications for U-series isotopes. Chem. Geol. 1997, 139, 207–221. [Google Scholar] [CrossRef]
- Johnson, M.C.; Plank, T. Dehydration and melting experiments constrain the fate of subducted sediments. Geochem. Geophys. Geosys. 1999, 1, 1007. [Google Scholar] [CrossRef]
- Shinjo, R.; Kato, Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos 2000, 54, 117–137. [Google Scholar] [CrossRef]
- Cousens, B.L.; Allan, J.F. A Pb, Sr, and Nd isotopic study of basaltic rocks from the Sea of Japan, Legs 127/128. Proc. Ocean Drill. Prog. Sci. Results 1992, 127/128, 805–817. [Google Scholar] [CrossRef]
- Cousens, B.L.; Allan, J.F.; Gorton, M.P. Subduction-modified pelagic sediments as the enriched component in back-arc basalts from the Japan Sea: Ocean Drilling Program Sites 797 and 794. Contrib. Mineral. Petrol. 1994, 117, 421–434. [Google Scholar] [CrossRef]
C0012-3X -08 | C0012-1R -01X | C0012-1R -01 | C0012-2R -01X | C0012-2R -01 | C0012-14R -01 | C0012-14R -03 | |
Porphyritic Basalt | Aphyric basalt | Aphyric basalt | Porphyritic Basalt | Aphyric Basalt | Basalt | Basalt | |
SiO2 | 49.29 | 49.09 | 48.63 | 48.75 | 49.28 | 47.98 | 48.06 |
TiO2 | 1.21 | 1.28 | 1.16 | 1.21 | 1.21 | 1.49 | 1.56 |
Al2O3 | 14.98 | 14.69 | 14.51 | 14.21 | 14.36 | 14.14 | 12.39 |
FeOT | 9.83 | 10.22 | 10.89 | 10.26 | 10.24 | 12.79 | 14.39 |
MnO | 0.26 | 0.46 | 0.51 | 0.29 | 0.27 | 0.25 | 0.25 |
MgO | 7.15 | 7.00 | 6.80 | 7.59 | 7.14 | 6.16 | 6.32 |
CaO | 9.48 | 9.17 | 10.08 | 9.22 | 9.28 | 8.70 | 8.17 |
Na2O | 3.34 | 3.27 | 2.68 | 3.19 | 3.32 | 3.68 | 3.02 |
K2O | 0.53 | 0.71 | 1.03 | 0.66 | 0.91 | 1.02 | 1.99 |
P2O5 | 0.15 | 0.15 | 0.12 | 0.15 | 0.14 | 0.16 | 0.16 |
LOI | 3.78 | 3.94 | 3.54 | 4.42 | 3.84 | 3.58 | 3.64 |
Total | 99.99 | 99.98 | 99.95 | 99.95 | 99.98 | 99.95 | 99.95 |
C0012-13R -01 | C0012-12R -01X | C0012-12R -01 | C0012-12R -02 | C0012-10R -02X | C0012-10R -02 | C0012-9R -01 | |
Porphyritic Basalt | Porphyritic Basalt | Porphyritic Basalt | Porphyritic Basalt | Porphyritic Basalt | Porphyritic Basalt | Porphyritic Basalt | |
SiO2 | 49.15 | 49.10 | 50.35 | 50.82 | 48.32 | 44.61 | 47.09 |
TiO2 | 1.41 | 1.51 | 1.50 | 1.51 | 1.63 | 1.27 | 1.29 |
Al2O3 | 13.07 | 15.26 | 13.96 | 13.54 | 14.05 | 15.59 | 14.16 |
FeOT | 10.99 | 10.39 | 11.22 | 11.66 | 12.52 | 12.81 | 11.48 |
MnO | 0.23 | 0.24 | 0.25 | 0.23 | 0.29 | 0.22 | 0.21 |
MgO | 6.94 | 5.61 | 6.22 | 6.17 | 6.45 | 4.98 | 6.38 |
CaO | 7.59 | 9.23 | 8.92 | 8.02 | 8.36 | 9.52 | 7.69 |
Na2O | 2.33 | 3.18 | 2.92 | 2.81 | 2.71 | 3.53 | 3.55 |
K2O | 3.56 | 1.97 | 2.19 | 2.88 | 2.32 | 1.12 | 2.05 |
P2O5 | 0.17 | 0.13 | 0.14 | 0.15 | 0.17 | 0.12 | 0.14 |
LOI | 4.54 | 3.36 | 2.28 | 2.15 | 3.12 | 6.19 | 5.94 |
Total | 99.97 | 99.99 | 99.94 | 99.94 | 99.94 | 99.95 | 99.99 |
C0012-8R -01 | C0012-5R -01 | 1173-3R -01X | 1173-2R -01X | ||||
Porphyritic Basalt | Aphyric Basalt | Tholeiitic Basalt | Tholeiitic Basalt | ||||
SiO2 | 50.14 | 50.39 | 49.03 | 48.65 | |||
TiO2 | 1.49 | 1.56 | 1.53 | 1.59 | |||
Al2O3 | 12.63 | 13.45 | 17.36 | 16.67 | |||
FeOT | 10.93 | 11.14 | 8.68 | 9.25 | |||
MnO | 0.18 | 0.20 | 0.21 | 0.18 | |||
MgO | 6.74 | 6.78 | 5.45 | 6.17 | |||
CaO | 7.77 | 6.53 | 12.16 | 11.62 | |||
Na2O | 5.57 | 3.48 | 3.02 | 3.10 | |||
K2O | 0.42 | 2.72 | 0.09 | 0.14 | |||
P2O5 | 0.15 | 0.19 | 0.17 | 0.18 | |||
LOI | 3.92 | 3.53 | 2.30 | 2.41 | |||
Total | 99.94 | 99.98 | 100.00 | 99.95 |
C0012-3X -08 | C0012-1R -01X | C0012-1R -01 | C0012-2R -01X | C0012-2R -01 | C0012-14R -01 | C0012-14R -03 | |
Porphyritic Basalt | Aphyric Basalt | Aphyric Basalt | Porphyritic Basalt | Aphyric Basalt | Basalt | Basalt | |
Sb | 0.09 | 0.09 | 0.08 | 0.11 | 0.06 | 0.09 | 0.22 |
Ni | 54.8 | 58.0 | 49.3 | 52.4 | 52.7 | 39.6 | 43.5 |
Cr | 112 | 99 | 138 | 124 | 150 | 65.7 | 72.9 |
V | 324 | 331 | 356 | 309 | 318 | 370 | 398 |
Rb | 6.03 | 12.7 | 26.9 | 8.73 | 14.9 | 11.8 | 27.0 |
Sr | 139 | 134 | 140 | 128 | 126 | 290 | 300 |
Ba | 77.4 | 43.8 | 45.6 | 164 | 302 | 42.7 | 40.0 |
Zr | 76.4 | 79.9 | 76.7 | 76.3 | 74.5 | 99.2 | 101 |
Nb | 1.51 | 1.69 | 1.64 | 1.53 | 1.55 | 1.95 | 1.90 |
Y | 26.5 | 30.5 | 29.6 | 27.0 | 26.0 | 38.5 | 35.7 |
La | 3.10 | 4.11 | 3.38 | 3.16 | 3.17 | 4.60 | 4.51 |
Ce | 8.78 | 10.3 | 8.88 | 8.55 | 8.47 | 12.1 | 12.2 |
Nd | 8.98 | 10.2 | 9.13 | 8.70 | 8.60 | 11.7 | 11.8 |
Pr | 1.64 | 1.88 | 1.62 | 1.59 | 1.54 | 2.10 | 2.20 |
Sm | 2.92 | 3.17 | 3.11 | 2.96 | 2.95 | 3.91 | 4.13 |
Eu | 1.12 | 1.13 | 1.18 | 1.05 | 1.06 | 1.38 | 1.41 |
Gd | 3.29 | 3.74 | 3.42 | 3.26 | 3.26 | 4.38 | 4.52 |
Tb | 0.75 | 0.83 | 0.78 | 0.77 | 0.75 | 0.99 | 1.00 |
Dy | 4.43 | 4.92 | 4.52 | 4.57 | 4.34 | 6.05 | 6.04 |
Ho | 0.98 | 1.08 | 1.02 | 0.97 | 0.96 | 1.31 | 1.33 |
Er | 2.78 | 2.98 | 3.10 | 2.86 | 2.68 | 3.57 | 3.60 |
Tm | 0.45 | 0.52 | 0.51 | 0.51 | 0.47 | 0.62 | 0.62 |
Yb | 2.93 | 2.90 | 3.24 | 2.84 | 2.73 | 3.64 | 3.93 |
Lu | 0.43 | 0.45 | 0.47 | 0.42 | 0.42 | 0.56 | 0.58 |
Hf | 2.61 | 2.49 | 2.54 | 2.38 | 2.43 | 3.02 | 3.42 |
Ta | 0.12 | 0.13 | 0.13 | 0.11 | 0.14 | 0.15 | 0.15 |
Th | 0.22 | 0.19 | 0.18 | 0.15 | 0.18 | 0.20 | 0.21 |
U | 0.05 | 0.08 | 0.05 | 0.05 | 0.05 | 0.10 | 0.10 |
C0012-13R -01 | C0012-12R -01X | C0012-12R -01 | C0012-12R -02 | C0012-10R -02X | C0012-10R -02 | C0012-9R -01 | |
Porphyritic Basalt | Porphyritic Basalt | Porphyritic Basalt | Porphyritic Basalt | Porphyritic Basalt | Porphyritic Basalt | Porphyritic Basalt | |
Sb | 0.08 | 0.06 | 0.05 | 0.07 | 0.05 | 0.20 | 0.12 |
Ni | 47.4 | 62.7 | 111 | 41.6 | 45.6 | 42.3 | 36.9 |
Cr | 62.4 | 52.9 | 214 | 70.5 | 41.9 | 57.1 | 68.3 |
V | 346 | 394 | 350 | 342 | 362 | 308 | 306 |
Rb | 29.0 | 21.1 | 31.8 | 37.4 | 27.4 | 24.9 | 25.5 |
Sr | 437 | 501 | 308 | 346 | 434 | 469 | 384 |
Ba | 1009 | 33.0 | 50.7 | 414 | 142 | 18.2 | 172 |
Zr | 91.0 | 89.7 | 92.6 | 97.6 | 110 | 82.2 | 72.6 |
Nb | 1.74 | 1.66 | 1.73 | 1.85 | 2.01 | 1.53 | 1.55 |
Y | 33.7 | 30.0 | 29.9 | 31.8 | 36.8 | 29.1 | 33.8 |
La | 3.50 | 3.39 | 3.50 | 3.84 | 3.68 | 3.48 | 3.70 |
Ce | 9.84 | 9.44 | 10.6 | 11.1 | 11.5 | 9.17 | 9.82 |
Nd | 10.2 | 10.0 | 10.8 | 11.2 | 11.6 | 9.31 | 9.95 |
Pr | 1.83 | 1.85 | 1.87 | 2.03 | 2.05 | 1.61 | 1.82 |
Sm | 3.47 | 3.36 | 3.48 | 3.67 | 3.80 | 2.82 | 3.37 |
Eu | 1.29 | 1.19 | 1.31 | 1.28 | 1.44 | 1.18 | 1.12 |
Gd | 3.95 | 3.91 | 3.86 | 4.18 | 4.65 | 3.44 | 3.81 |
Tb | 0.93 | 0.88 | 0.89 | 0.91 | 1.00 | 0.78 | 0.85 |
Dy | 5.39 | 5.10 | 5.28 | 5.60 | 6.16 | 4.70 | 5.18 |
Ho | 1.24 | 1.10 | 1.14 | 1.18 | 1.30 | 1.05 | 1.19 |
Er | 3.41 | 3.06 | 3.08 | 3.35 | 3.61 | 3.12 | 3.35 |
Tm | 0.57 | 0.51 | 0.53 | 0.56 | 0.62 | 0.50 | 0.55 |
Yb | 3.41 | 3.38 | 3.29 | 3.42 | 3.95 | 3.29 | 3.28 |
Lu | 0.51 | 0.44 | 0.48 | 0.50 | 0.58 | 0.47 | 0.48 |
Hf | 2.79 | 2.87 | 2.74 | 3.13 | 3.28 | 2.44 | 2.34 |
Ta | 0.16 | 0.13 | 0.13 | 0.15 | 0.16 | 0.12 | 0.13 |
Th | 0.19 | 0.18 | 0.18 | 0.20 | 0.20 | 0.18 | 0.19 |
U | 0.12 | 0.18 | 0.30 | 0.38 | 0.09 | 0.13 | 0.08 |
C0012-8R -01 | C0012-5R -01 | 1173-3R -01X | 1173-2R -01X | GBW07104 | GBW07312 | ||
Porphyritic Basalt | Aphyric Basalt | Tholeiitic Basalt | Tholeiitic Basalt | ||||
Sb | 0.09 | 0.16 | 0.05 | 0.05 | |||
Ni | 49.4 | 42.4 | 85.8 | 78.1 | 18.0 | 12.1 | |
Cr | 82.3 | 70.7 | 226 | 200 | 32.6 | 33.7 | |
V | 371 | 373 | 262 | 280 | 99.6 | 45.0 | |
Rb | 8.62 | 28.1 | 0.42 | 0.50 | 38.4 | 267 | |
Sr | 101 | 286 | 226 | 220 | 805 | 23.6 | |
Ba | 47.0 | 558 | 17.8 | 19.5 | 1044 | 203 | |
Zr | 96.1 | 106 | 130 | 143 | 102 | 228 | |
Nb | 1.82 | 2.09 | 3.78 | 3.98 | 6.27 | 16.5 | |
Y | 31.7 | 35.6 | 30.8 | 33.0 | 9.39 | 29.4 | |
La | 3.42 | 4.24 | 5.18 | 5.98 | 22.1 | 32.1 | |
Ce | 10.3 | 12.3 | 15.8 | 16.7 | 40.1 | 59.5 | |
Nd | 10.4 | 12.6 | 13.3 | 14.2 | 19.3 | 25.3 | |
Pr | 1.91 | 2.20 | 2.40 | 2.65 | 5.00 | 6.83 | |
Sm | 3.44 | 4.02 | 3.49 | 3.93 | 3.44 | 4.87 | |
Eu | 1.26 | 1.44 | 1.31 | 1.43 | 1.04 | 0.59 | |
Gd | 4.03 | 4.58 | 4.28 | 4.56 | 2.68 | 4.36 | |
Tb | 0.93 | 1.01 | 0.86 | 0.94 | 0.40 | 0.82 | |
Dy | 5.49 | 6.03 | 5.55 | 5.74 | 1.84 | 4.63 | |
Ho | 1.24 | 1.29 | 1.14 | 1.19 | 0.34 | 0.96 | |
Er | 3.38 | 3.65 | 3.12 | 3.40 | 0.85 | 3.00 | |
Tm | 0.59 | 0.62 | 0.54 | 0.56 | 0.15 | 0.56 | |
Yb | 3.59 | 3.88 | 3.36 | 3.48 | 0.77 | 3.85 | |
Lu | 0.50 | 0.57 | 0.48 | 0.53 | 0.12 | 0.58 | |
Hf | 2.86 | 3.15 | 3.18 | 3.42 | 2.83 | 8.45 | |
Ta | 0.15 | 0.17 | 0.28 | 0.30 | 0.39 | 3.29 | |
Th | 0.18 | 0.19 | 0.25 | 0.26 | 2.63 | 21.0 | |
U | 0.12 | 0.08 | 0.09 | 0.10 | 0.97 | 7.65 |
C0012-1R -01 | C0012-2R -01 | C0012-3X -08 | C0012-5R -01 | C0012-8R -01 | C0012-9R -01 | C0012-10R -02 | C0012-12R -01 | |
Aphyric Basalt | Aphyric Basalt | Porphyritic Basalt | Aphyric Basalt | Porphyritic Basalt | Porphyritic Basalt | Porphyritic Basalt | Porphyritic Basalt | |
87Sr/86Sr | 0.703283 | 0.703369 | 0.703221 | 0.703615 | 0.704432 | 0.703679 | 0.703735 | 0.703342 |
2σ (10-6) | 15 | 12 | 12 | 13 | 12 | 12 | 13 | 13 |
143Nd/144Nd | 0.513113 | 0.513102 | 0.513102 | 0.513111 | 0.51312 | 0.513109 | 0.513113 | 0.513127 |
2σ (10-6) | 9 | 9 | 10 | 11 | 11 | 8 | 9 | 7 |
206Pb/204Pb | 18.081 | 17.963 | 17.962 | 17.931 | 18.099 | 18.110 | 17.947 | 17.941 |
2σ(%) | 0.013 | 0.008 | 0.012 | 0.010 | 0.011 | 0.012 | 0.009 | 0.008 |
207Pb/204Pb | 15.496 | 15.464 | 15.471 | 15.469 | 15.530 | 15.511 | 15.458 | 15.455 |
2σ(%) | 0.013 | 0.008 | 0.012 | 0.010 | 0.012 | 0.012 | 0.010 | 0.008 |
208Pb/204Pb | 37.937 | 37.780 | 37.823 | 37.783 | 38.031 | 37.976 | 37.748 | 37.704 |
2σ(%) | 0.013 | 0.008 | 0.013 | 0.009 | 0.016 | 0.013 | 0.009 | 0.008 |
C0012-13R -01 | C0012-14R -03 | 1173-2R -01X | 1173-3R -01X | BCR-2 | NBS987 | JNdi-1 | ||
Porphyritic Basalt | Basalt | Tholeiitic Basalt | Tholeiitic Basalt | |||||
87Sr/86Sr | 0.703646 | 0.703463 | 0.702840 | 0.702860 | 0.705037 | 0.710265 | ||
2σ (10−6) | 14 | 14 | 14 | 14 | 13 | 13 | ||
143Nd/144Nd | 0.513124 | 0.513131 | 0.513103 | 0.513095 | 0.512630 | 0.512115 | ||
2σ (10−6) | 9 | 12 | 11 | 10 | 14 | 8 | ||
206Pb/204Pb | 17.992 | 17.829 | 17.884 | 17.823 | 18.743 | |||
2σ (%) | 0.016 | 0.008 | 0.013 | 0.010 | 0.010 | |||
207Pb/204Pb | 15.470 | 15.430 | 15.438 | 15.427 | 15.617 | |||
2σ (%) | 0.017 | 0.006 | 0.012 | 0.011 | 0.010 | |||
208Pb/204Pb | 37.805 | 37.588 | 37.682 | 37.580 | 38.716 | |||
2σ (%) | 0.016 | 0.007 | 0.013 | 0.010 | 0.011 |
Sample | Depth of Locality | Rock Type | Phenocrysts | Matrix Characters | K-Ar Age | Reference (Age) |
---|---|---|---|---|---|---|
C0012-1R-01 | 542mbsf in SiteC0012 | Aphyric basalt | 20% Cpx + 30% Pl | 50% cryptocrystalline matrix with dark minerals | >18.9 Ma | [32,36] |
C0012-1R-01X | 544mbsf in SiteC0012 | Aphyric basalt | 20% Cpx + 30% Pl | 50% cryptocrystalline matrix with dark minerals | >18.9 Ma | [32,36] |
C0012-2R-01 | 546mbsf in SiteC0012 | Aphyric basalt | 20% Cpx + 15% Pl | 65% cryptocrystalline matrix | >18.9 Ma | [32,36] |
C0012-2R-01X | 546mbsf in SiteC0012 | Porphyritic basalt | 70% Cpx + 15% Pl | 60% cryptocrystalline matrix | >18.9 Ma | [32,36] |
C0012-3X-08 | 550mbsf in SiteC0012 | Porphyritic basalt | 40Cpx + 15% Pl | 45% cryptocrystalline matrix | >18.9 Ma | [32,36] |
C0012-5R-01 | 552mbsf in SiteC0012 | Aphyric basalt | 10% Cpx + 10% Pl | 80% cryptocrystalline matrix with fine-grained plagioclase, basaltic glass and accessory magnetite and ilmenite | >18.9 Ma | [32,36] |
C0012-8R-01 | 554mbsf in SiteC0012 | Porphyritic basalt | 50% Cpx + 20% Pl | 30% cryptocrystalline matrix with minor plagioclase | >18.9 Ma | [32,36] |
C0012-9R-01 | 556mbsf in SiteC0012 | Porphyritic basalt | 30% Cpx + 10%Kfs + 10%Pl | 50% cryptocrystalline matrix | >18.9 Ma | [32,36] |
C0012-10R-02 | 559mbsf in SiteC0012 | Porphyritic basalt | 40% Cpx + 10% Kfs +1 0% Pl | 40% cryptocrystalline matrix | >18.9 Ma | [32,36] |
C0012-10R-02X | 559mbsf in SiteC0012 | Porphyritic basalt | 40% Cpx + 10% Kfs + 10% Pl | 40% cryptocrystalline matrix | >18.9 Ma | [32,36] |
C0012-12R-01 | 563mbsf in SiteC0012 | Porphyritic basalt | 30% Cpx + 20% Pl | 50% cryptocrystalline matrix with minor plagioclase | >18.9 Ma | [32,36] |
C0012-12R-01X | 563mbsf in SiteC0012 | Porphyritic basalt | 35% Cpx + 15% Pl | 50% cryptocrystalline matrix with minor plagioclase | >18.9 Ma | [32,36] |
C0012-12R-02 | 566mbsf in SiteC0012 | Porphyritic basalt | 30% Cpx + 20% Pl | 50% cryptocrystalline matrix with minor plagioclase | >18.9 Ma | [32,36] |
C0012-13R-01 | 568mbsf in SiteC0012 | Porphyritic basalt | 20% Cpx + 15% Pl | 65% cryptocrystalline matrix | >18.9 Ma | [32,36] |
C0012-14R-01 | 570mbsf in SiteC0012 | Basalt | 20% Cpx + 10% Kfs + 10% Pl | 60% cryptocrystalline matrix with dark minerals | >18.9 Ma | [32,36] |
C0012-14R-03 | 573mbsf in SiteC0012 | Basalt | 20% Cpx + 10% Kfs + 10% Pl | 60% cryptocrystalline matrix with dark minerals | >18.9 Ma | [32,36] |
1173-3R-01X | 740mbsf in Site1173 | tholeiitic basalt | 65% Pl + 5% Cpx | 30% cryptocrystalline matrix | 13–15 Ma | [37,38] |
1173-2R-01X | 751mbsf in Site1173 | tholeiitic basalt | 60% Pl + 5% Cpx | 35% cryptocrystalline matrix | 13–15 Ma | [37,38] |
1173-1R-02 | 755mbsf in Site1173 | tholeiitic basalt | 60% Pl + 5% Cpx | 35% cryptocrystalline matrix | 13–15 Ma | [37,38] |
Location | Tectonic Setting | Age | Composition Features | Spreading Axes | Three-Dimensional Shear Wave Velocity Structure | Volcanic Activities | Subduction Angle |
---|---|---|---|---|---|---|---|
Shikoku Basin | Back-arc basin behind the IBM arc | 30–12 Ma | EM1, EM2; With the involvement of subduction-related fluid | The axial seamount chain | A low-velocity layer indicating high-temperature or partially molten asthenosphere widely developed beneath Shikoku Basin | Eruption continued until 12 Ma after the cessation of the back-arc spreading | The low angle of the subducting slab beneath the Izu-Bonin Trench |
Parece Vela Basin | Back-arc basin behind the IBM arc | 30–18 Ma | MORB; Almost not affected by the subducted fluid | A rift valley | A 30–40-km thick high-velocity layer indicating cold lithosphere was found beneath the Parece Vela Basin | In the magmatically starved condition at the terminal phase of the evolution | The steep angle of the subducting slab beneath the Marianas Trench |
Japan Sea | Back-arc basin behind the Japan arc | 23–15 Ma | EM1, EM2; With the involvement of subduction-related fluid and sediments | Rift valley and seamount | early to mid-Miocene; 23–15 Ma | The medium angle of the subducting slab beneath the Japan Trench |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-S.; Hou, T.; Liu, J.-Q.; Zhang, Z.-C. Geochemical Variation of Miocene Basalts within Shikoku Basin: Magma Source Compositions and Geodynamic Implications. Minerals 2021, 11, 25. https://doi.org/10.3390/min11010025
Chen S-S, Hou T, Liu J-Q, Zhang Z-C. Geochemical Variation of Miocene Basalts within Shikoku Basin: Magma Source Compositions and Geodynamic Implications. Minerals. 2021; 11(1):25. https://doi.org/10.3390/min11010025
Chicago/Turabian StyleChen, Shuang-Shuang, Tong Hou, Jia-Qi Liu, and Zhao-Chong Zhang. 2021. "Geochemical Variation of Miocene Basalts within Shikoku Basin: Magma Source Compositions and Geodynamic Implications" Minerals 11, no. 1: 25. https://doi.org/10.3390/min11010025
APA StyleChen, S. -S., Hou, T., Liu, J. -Q., & Zhang, Z. -C. (2021). Geochemical Variation of Miocene Basalts within Shikoku Basin: Magma Source Compositions and Geodynamic Implications. Minerals, 11(1), 25. https://doi.org/10.3390/min11010025