Provenance and Sedimentary Context of Clay Mineralogy in an Evolving Forearc Basin, Upper Cretaceous-Paleogene and Eocene Mudstones, San Joaquin Valley, California
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Results
4.1. Bulk-Rock Mineralogy
4.2. Bulk Rock Chemistry
4.3. Mineralogy of the <2 µm Clay Fraction
4.4. Opaline Phases
5. Discussion
5.1. Origin of Smectite
5.2. Opal CT
5.3. Clinoptilolite
5.4. Sedimentology and Diagenesis
5.5. Smectite and Hydrocarbon Generation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vigorito, M.; Hurst, A.; Cartwright, J.A.; Scott, A. Architecture of a sand injectite complex: Implications for origin and timing. J. Geol. Soc. Lond. 2008, 165, 609–612. [Google Scholar] [CrossRef]
- Vigorito, M.; Hurst, A. Regional sand injectite architecture as a record of pore pressure evolution and sand redistribution in the shallow crust: Insights from the Panoche Giant Injection Complex, California. J. Geol. Soc. Lond. 2010, 167, 889–904. [Google Scholar] [CrossRef]
- Zvirtes, G.; Hurst, A.; Philipp, R.P.; Palladino, G.; Grippa, A. The Tumey Giant Injection Complex, Tumey Hill, California (USA). Geol. Soc. Lond. Spec. Publ. 2019, 493. [Google Scholar] [CrossRef]
- Zvirtes, G.; Philipp, R.P.; Hurst, A.; Palladino, G.; De Ros, D.F.; Grippa, A. Petrofacies of Eocene sand injectites of the Tumey Giant Injection Complex, California (USA). Sediment. Geol. 2020, 400. [Google Scholar] [CrossRef]
- Jay, J. Reservoir shale as oil source in California. AAPG Search and Discovery Article #90122©2011. In Proceedings of the AAPG Hedberg Conference, Austin, TX, USA, 5–10 December 2010. [Google Scholar]
- Ramseyer, K.; Boles, J.R. Mixed-layer illite/smectite in Tertiary sandstones and shales, San Joaquin Basin, California. Clay Clay Min. 1986, 34, 115–124. [Google Scholar] [CrossRef]
- Lewan, M.; Dolan, M.; Curtis, J.B. Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale, San Joaquin Basin, California, based on hydrous-pyrolysis experiments. AAPG Bull. 2014, 98, 1091–1109. [Google Scholar] [CrossRef]
- Clauer, N.; Lewan, M.D.; Dolan, M.P.; Chaudhuri, S.; Curtis, J.B. Mineralogical, chemical and K-Ar changes in Kreyenhagen Shale whole rocks and <2 µm clay fractions during natural burial and hydrous-pyrolysis experimental maturation. Geochim. Cosmochim. Acta 2014, 130, 93–112. [Google Scholar]
- Cavalcante, F.; Fiore, S.; Piccarreta, G.; Tateo, F. Geochemical and mineralogical approaches to assessing provenance and deposition of shales: A case study. Clay Miner. 2003, 38, 383–397. [Google Scholar] [CrossRef]
- Perri, F.; Critelli, S.; Cavalcante, F.; Mongelli, G.; Dominici, R.; Sonnino, M.; De Rosa, R. Provenance signatures for the Miocene volcaniclastic succession of the Tufiti di Tusa Formation, southern Apennines, Italy. Geol. Mag. 2012, 149, 423–442. [Google Scholar] [CrossRef]
- Graham, S.A.; Williams, L.A. Tectonic, depositional, and diagenetic history of Monterey Formation (Miocene), central San Joaquin Basin, California. AAPG Bull. Am. Assoc. Petr. Geol. 1985, 69, 385–411. [Google Scholar]
- Namson, J.S.; Davis, T.L. Seismically active fold and thrust belt in the San Joaquin Valley, central California. Geol. Soc. Am. Bull. 1988, 100, 257–273. [Google Scholar] [CrossRef]
- Grippa, A.; Hurst, A.; Palladino, G.; Iacopini, D.; Lecomte, I.; Huuse, M. Seismic imaging of complex geometry: Forward modelling of sandstone intrusions. Earth Planet. Sci. Lett. 2019, 513, 51–63. [Google Scholar] [CrossRef]
- Franzini, M.; Leoni, L.; Saitta, M. Revision di una metodologia analitica per fluorescenza-X, basala sulla correzione complet degli efftti di matrice. Rendiconti della. Soc. It. Min. Petr. 1975, 31, 365–378. [Google Scholar]
- Claisse, F. Accurate X-ray fluorescence analysis without internal standards. Norelco Rep. 1957, 4, 3–17. [Google Scholar]
- Lezzerini, M.; Tamponi, M.; Bertoli, M. Calibration of XRF data on silicate rocks using chemicals ans in-house standards. Atti Soc. Tosc. Sci. Nat. Mem. 2014, 121, 65–70. [Google Scholar]
- Lezzerini, M.; Sartori, F.; Tamponi, M. Effect of amount of material used on sedimentation slides in the control of illite “crystallinity” measurements. Eur. J. Mineral. 1995, 7, 819–823. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 1997; 378p. [Google Scholar]
- Środoń, J.; Drits, V.A.; McCarty, D.K.; Hsieh, J.C.C.; Eberl, D.D. Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparation. Clay Clay Min. 2001, 49, 514–528. [Google Scholar]
- Cavalcante, F.; Fiore, S.; Lettino, A.; Piccaretta, G.; Tateo, F. Illite-smectite mixed layers in sicilide shales and piggy-back deposits of the Gorgoglione Formation (Southern Appenines): Geological inferences. Boll. Soc Geol. It. 2007, 126, 241–254. [Google Scholar]
- Krumm, S. The Erlangen geological and mineralogical software collection. Comput. Geosci. 1999, 25, 489–499. [Google Scholar] [CrossRef]
- Leoni, L.; Saitta, M.; Sartori, F. Analisi mineralogica quantitative di rocce e sedimenti pelitici mediante combinazione di dati diffrattometrici e dati chimici. Rend. Soc. It. Min. Petr. 1989, 43, 743–756. [Google Scholar]
- Cesarano, M.; Bish, D.L.; Cappelletti, P.; Cavalcante, F.; Belviso, C.; Fiore, S. Quantitative mineralogy of clay-rich siliciclastic landslide terrain of the Sorrento Penisula, Italy, using a combined XRPD and XRF approach. Clay Clay Min. 2018, 66, 353–369. [Google Scholar] [CrossRef]
- McLennan, S.M.; Taylor, S.R.; Hemming, S.R. Composition, differentiation, and evolution of continental crust: Constraints from sedimentary rocks and heat flow. In Evolution and Differentiation of the Continental Crust; Brown, M., Rushmer, T., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 92–134. [Google Scholar]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Grim, R.E.; Gȕven, N. Bentonites: Geology, Mineralogy, Properties and Uses. Developments in Sedimentology 24; Elsevier Scientific: Amsterdam, The Netherlands, 1978; 256p. [Google Scholar]
- Nadeau, P.H.; Reynolds, R.C., Jr. Volcanic components in pelitic sediments. Nature 1981, 294, 72–74. [Google Scholar] [CrossRef]
- Chamley, H. Clay Sedimentology; Springer: Berlin, Germany, 1989; 623p. [Google Scholar]
- Deconnick, J.F.; Chamley, H. Diversity of smectite origins in late Cretaceous sediments: Example of chalks from northern France. Clay Min. 1995, 30, 365–379. [Google Scholar] [CrossRef]
- Deepthy, R.; Balakrishnan, S. Climatic control on clay mineral formation: Evidence from weathering profiles developed on either side of the Western Ghats. J. Earth Syst. Sci. 2005, 114, 545–556. [Google Scholar] [CrossRef]
- Fisher, G.B.; Ryan, P.C. The smectite-to-disordered kaolinite transition in a tropical soil chronosequence, Pacific Coast, Costa Rica. Clay Clay Min. 2006, 54, 571–586. [Google Scholar] [CrossRef]
- Guimarães, E.M. Greywacke weathering under tropical climate: Chemical and mineralogical changes (example from central Brazil). In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 24–27. [Google Scholar]
- Barth, A.P.; Walker, J.D.; Wooden, J.L.; Riggs, N.R.; Schweikert, R.A. Birth of the Sierra Nevada magmatic arc: Early Mesozoic plutonism and volcanism in the east-central Sierra Nevada of California. Geosphere 2011, 7, 877–897. [Google Scholar] [CrossRef]
- Ingersoll, R.V. Initiation and evolution of the Great Valley forearc basin of northern and central California, USA. Geol. Soc. Lond. Spec. Publ. 1982, 10, 459–467. [Google Scholar] [CrossRef]
- Cassel, E.J.; Grove, M.; Graham, S.A. Eocene drainage evolution and erosion of the Sierra Nevada batholith across northern California and Nevada. Am. J. Sci. 2012, 312, 117–144. [Google Scholar] [CrossRef]
- McInherney, F.A.; Wing, S. A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 2011, 39, 489–516. [Google Scholar] [CrossRef] [Green Version]
- Peterson, G.L.; Abbott, P.L. Mid-Miocene climatic change, southwestern California and northwestern Baja California. Paleogeogr. Paleoclimatol. Paleoecol. 1979, 26, 73–87. [Google Scholar] [CrossRef]
- Bestland, E.A.; Retallack, G.J.; Swisher, C.C., III. Stepwise climate change recorded in Eocene-Oligocene paleosol sequences from central Oregon. J. Geol. 1997, 105, 153–172. [Google Scholar] [CrossRef]
- Brown, G. Associated Minerals. In X-ray Structures of Clay Minerals and Their X-ray Identification; Brindley, G.W., Brown, G., Eds.; Mineralogical Society of Great Britain and Ireland: London, UK, 1984; pp. 361–410. [Google Scholar]
- Wilson, M.J. The structure of opal-CT revisited. J. Non-Cryst. Solids 2014, 405, 68–75. [Google Scholar] [CrossRef]
- Wilson, M.J.; Russell, J.D.; Tait, J.M. A new interpretation of disordered alpha cristobalite. Contrib. Mineral. Petrol. 1974, 47, 1–6. [Google Scholar] [CrossRef]
- Nathan, Y.; Flexer, A. Clinoptilolite, paragenesis and stratigraphy. Sedimnetology 1977, 24, 845–855. [Google Scholar] [CrossRef]
- Curtis, C.D.; Cornell, W.C. Unusual occurrence of clinoptilolite: Fresno County, California. Geol. Soc. Am. Bull. 1972, 83, 833–838. [Google Scholar] [CrossRef]
- Stonecipher, S.A. Origin, distribution and diagenesis of phillipsite and clinoptilolite in deepsea sediments. Chem. Geol. 1976, 17, 307–318. [Google Scholar] [CrossRef]
- Levy, S.S.; O’Neil, J.R. Moderate-temperature zeolitic alteration in a cooling pyroclastic deposit. Chem. Geol. 1989, 76, 321–326. [Google Scholar] [CrossRef]
- Lander, R.H.; Hay, R.L. Hydrogeologic control on zeolitic diagenesis of the White River sequence. Geol. Soc. Am. Bull. 1993, 105, 361–376. [Google Scholar] [CrossRef]
- Merino, E.; Wang, Y.; Deloule, E. Genesis of agates in flood basalts: Twisting of chalcedony fibres and trace element geochemistry. Am. J. Sci. 1995, 295, 1156–1176. [Google Scholar] [CrossRef]
- Hurst, A.; Morton, A.C.; Scott, A.; Vigorito, M.; Frei, D. Heavy mineral assemblages in sandstone intrusions: Panoche Giant Injection Complex, California. J. Sediment. Res. 2017, 87, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Scheirer, H.A.; Magoon, L.B. Petroleum Systems and Geologic Assessment of Oil and Gas in the San Joaquin Basin Province, California. In USGS Professional Papers; US Geological Survey: Reston, VA, USA, 2007; p. 1713. [Google Scholar]
- Dolan, M.P. The Role of Smectite in Petroleum Formation: Comparing Natural and Experimental Thermal Maturation. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 1998; 217p. [Google Scholar]
- Farmer, V.C. Water on particle surfaces. In The Chemistry of Soil Constitutents; Greenland, D.J., Hayes, M.H.B., Eds.; John Wiley and Sons: Chichester, UK, 1978; pp. 405–448. [Google Scholar]
Formation | Member | Age | Sample | Non Phyllosilicates | Phyllosilicates | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qtz | Op CT | Opale A? | Crist | k-Feld | Pl | Cal | Dol | Clin | Gy | Sm | Ill | Kao | ∑Phy | ||||
Kreyenhagen Foramtion | Upper member | Early Oligocene Middle Eocene | TH-01 | 8.1 | 0.0 | 24.0 | 4.0 | 2.0 | 3.9 | 0.0 | 0.0 | 0.0 | 0.0 | 48.0 | 5.0 | 5.0 | 58.0 |
GKR-06 | 8.8 | 0.0 | 28.0 | 3.5 | 1.7 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 48.0 | 3.0 | 3.0 | 54.0 | |||
GKR-05 | 14.2 | 0.0 | 4.0 | 4.5 | 5.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 58.0 | 2.5 | 4.8 | 65.3 | |||
GKR-04 | 6.0 | 53.4 | 5.0 | 0.0 | 1.5 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 25.6 | 2.5 | 2.5 | 30.6 | |||
GKR-03 | 11.5 | 8.9 | 6.0 | 0.0 | 1.4 | 3.8 | 0.0 | 0.0 | 0.6 | 0.0 | 58.9 | 2.8 | 6.0 | 67.7 | |||
EO4-14 | 11.8 | 5.2 | 0.0 | 2.5 | 1.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 69.0 | 2.0 | 6.0 | 77.0 | |||
EO4-13 | 15.7 | 0.0 | 0.0 | 2.0 | 0.5 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 71.7 | 4.3 | 4.3 | 80.3 | |||
EO4-12 | 10.0 | 7.3 | 8.0 | 2.0 | 2.1 | 2.8 | 0.0 | 0.0 | 0.0 | 0.0 | 60.0 | 2.6 | 5.2 | 67.8 | |||
GKR-02 | 10.0 | 3.9 | 0.0 | 2.7 | 2.5 | 9.0 | 0.0 | 0.0 | 0.0 | 1.0 | 62.9 | 8.0 | 0.0 | 70.9 | |||
EO4-11 | 13.5 | 2.0 | 0.0 | 2.5 | 1.9 | 5.5 | 0.0 | 0.0 | 0.7 | 0.0 | 61.4 | 3.5 | 9.0 | 73.9 | |||
EO4-10 | 13.5 | 0.0 | 0.0 | 0.0 | 3.3 | 3.0 | 0.0 | 0.0 | 2.0 | 0.0 | 69.9 | 3.5 | 4.9 | 78.3 | |||
Min Value | 6.0 | 0.0 | 0.0 | 0.0 | 0.5 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 25.6 | 2.0 | 0.0 | 30.6 | |||
Max Value | 15.7 | 53.4 | 28.0 | 4.5 | 5.0 | 9.0 | 0.0 | 0.0 | 2.0 | 1.0 | 71.7 | 8.0 | 9.0 | 80.3 | |||
Average | 11.2 | 7.3 | 6.8 | 2.2 | 2.1 | 4.2 | 0.0 | 0.0 | 0.3 | 0.1 | 57.6 | 3.6 | 4.6 | 65.8 | |||
St. dev | 2.9 | 15.6 | 9.9 | 1.6 | 1.2 | 2.2 | 0.0 | 0.0 | 0.6 | 0.3 | 13.2 | 1.7 | 2.3 | 14.3 | |||
Lower member | EO4-09 | 11.5 | 0.0 | 0.0 | 1.4 | 4.4 | 4.8 | 0.0 | 0.0 | 2.3 | 0.0 | 64.3 | 3.3 | 8.0 | 75.6 | ||
EO4-08 | 6.2 | 43.8 | 0.0 | 0.0 | 3.5 | 12.5 | 0.0 | 0.0 | 7.5 | 0.0 | 23.6 | 2.9 | 0.0 | 26.5 | |||
GKR-01 | 5.0 | 70.3 | 0.0 | 0.0 | 0.8 | 2.5 | 6.4 | 0.0 | 0.0 | 0.0 | 12.0 | 3.0 | 0.0 | 15.0 | |||
EO4-07 | 9.0 | 0.0 | 0.0 | 4.4 | 5.9 | 13.1 | 0.0 | 0.0 | 1.2 | 0.0 | 63.3 | 3.1 | 0.0 | 66.4 | |||
EO4-06 | 7.5 | 38.6 | 0.0 | 0.0 | 3.0 | 7.0 | 14.0 | 0.0 | 3.2 | 0.0 | 21.7 | 5.0 | 0.0 | 26.7 | |||
EO4-05 | 11.0 | 0.0 | 0.0 | 1.9 | 0.0 | 8.3 | 0.0 | 0.0 | 0.0 | 0.0 | 68.8 | 5.0 | 5.0 | 78.8 | |||
EO4-04 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 0.0 | 72.0 | 0.0 | 0.0 | 24.5 | 0.0 | 0.0 | 24.5 | |||
EO4-03 | 3.3 | 0.0 | 0.0 | 0.0 | 0.0 | 2.8 | 30.5 | 0.0 | 3.2 | 0.0 | 57.1 | 3.2 | 0.0 | 60.3 | |||
EO4-02 | 18.9 | 0.0 | 0.0 | 0.0 | 3.0 | 5.7 | 0.0 | 0.0 | 4.0 | 0.0 | 54.0 | 6.0 | 8.4 | 68.4 | |||
EO4-01 | 8.5 | 0.0 | 0.0 | 0.0 | 2.1 | 7.5 | 12.0 | 0.0 | 4.0 | 0.0 | 55.1 | 8.1 | 2.8 | 66.0 | |||
Min Value | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 15.0 | |||
Max Value | 18.9 | 70.3 | 0.0 | 4.4 | 5.9 | 13.1 | 30.5 | 72.0 | 7.5 | 0.0 | 68.8 | 8.1 | 8.4 | 78.8 | |||
Average | 8.3 | 15.3 | 0.0 | 0.8 | 2.3 | 6.6 | 6.3 | 7.2 | 2.5 | 0.0 | 44.4 | 4.0 | 2.4 | 50.8 | |||
St. dev | 4.8 | 25.9 | 0.0 | 1.5 | 2.1 | 4.0 | 10.1 | 22.8 | 2.4 | 0.0 | 21.4 | 2.2 | 3.5 | 24.5 | |||
Moreno Foramtion | Dos Palos | Lower Paleocene Upper Cretaceous | RAC9 | 18.0 | 0.0 | 0.0 | 2.4 | 9.5 | 10.5 | 0.0 | 0.0 | 0.0 | 0.0 | 50.6 | 2.5 | 6.5 | 59.6 |
RAC8 | 11.5 | 0.0 | 0.0 | 4.5 | 2.9 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 62.2 | 2.3 | 6.6 | 71.1 | |||
RAC7 | 12.5 | 0.0 | 0.0 | 3.0 | 2.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 69.0 | 1.5 | 5.0 | 75.5 | |||
Marca | RAC6 | 12.5 | 15.0 | 0.0 | 5.0 | 1.0 | 5.5 | 0.0 | 0.0 | 0.0 | 0.0 | 59.0 | 2.0 | 0.0 | 61.0 | ||
RAC5 | 13.5 | 12.5 | 0.0 | 4.0 | 2.5 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 56.0 | 3.0 | 3.5 | 62.5 | |||
Tierra Lama | RAC4 | 13.2 | 7.2 | 0.0 | 3.7 | 4.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 61.8 | 1.4 | 1.7 | 64.9 | ||
RAC3 | 7.0 | 58.0 | 0.0 | 0.0 | 1.5 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 28.0 | 2.0 | 0.0 | 30.0 | |||
RAC2 | 12.0 | 3.5 | 0.0 | 3.6 | 3.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 67.9 | 2.0 | 0.0 | 69.9 | |||
RAC1 | 20.0 | 0.0 | 0.0 | 1.5 | 5.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 64.0 | 2.5 | 0.0 | 66.5 | |||
Min Value | 7.0 | 0.0 | 0.0 | 0.0 | 1.0 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 28.0 | 1.4 | 0.0 | 30.0 | |||
Max Value | 20.0 | 58.0 | 0.0 | 5.0 | 9.5 | 10.5 | 0.0 | 0.0 | 0.0 | 0.0 | 69.0 | 3.0 | 6.6 | 75.5 | |||
Average | 13.4 | 10.7 | 0.0 | 3.1 | 3.5 | 7.1 | 0.0 | 0.0 | 0.0 | 0.0 | 57.6 | 2.1 | 2.6 | 62.3 | |||
St. dev | 3.8 | 18.6 | 0.0 | 1.6 | 2.6 | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 12.5 | 0.5 | 2.9 | 13.2 |
Formation | Member | Age | Sample | Na2O | MgO | Al2O3 | SiO2 | P2O3 | K2O | CaO | TiO2 | MnO | Fe2O3 | LOI | CIA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kreyenhagen Foramtion | Upper member | Early Oligocene Middle Eocene | TH-01 | 0.93 | 1.86 | 12.71 | 65.07 | 0.48 | 1.14 | 0.00 | 0.83 | 0.03 | 7.68 | 9.27 | 86.0 |
GKR-06 | 0.97 | 2.63 | 12.08 | 68.99 | 0.30 | 1.57 | 0.00 | 0.73 | 0.03 | 3.75 | 8.95 | 82.6 | |||
GKR-05 | 1.43 | 2.70 | 15.20 | 63.05 | 0.37 | 1.93 | 0.01 | 0.76 | 0.06 | 5.06 | 9.43 | 81.9 | |||
GKR-04 | 0.32 | 0.97 | 7.29 | 77.34 | 0.48 | 0.90 | 0.00 | 0.55 | 0.03 | 4.04 | 8.08 | 85.7 | |||
GKR-03 | 0.84 | 1.87 | 14.70 | 63.47 | 0.59 | 1.36 | 0.00 | 0.95 | 0.03 | 3.10 | 13.09 | 87.0 | |||
EO4-14 | 0.85 | 2.23 | 16.71 | 62.29 | 0.30 | 1.53 | 0.00 | 1.00 | 0.03 | 3.64 | 11.22 | 87.5 | |||
EO4-13 | 0.61 | 1.74 | 17.71 | 62.47 | 0.32 | 1.89 | 0.24 | 0.86 | 0.03 | 3.81 | 10.32 | 86.6 | |||
EO4-12 | 0.67 | 1.43 | 15.42 | 64.84 | 0.36 | 1.58 | 0.00 | 0.97 | 0.03 | 2.64 | 12.06 | 87.3 | |||
GKR-02 | 2.01 | 3.41 | 13.85 | 55.45 | 0.47 | 1.98 | 0.64 | 0.82 | 0.05 | 6.91 | 14.41 | 74.9 | |||
EO4-11 | 1.17 | 1.85 | 16.51 | 56.25 | 0.53 | 1.74 | 0.00 | 0.81 | 0.03 | 3.71 | 17.40 | 85.0 | |||
EO4-10 | 0.92 | 1.31 | 17.26 | 56.28 | 0.24 | 2.11 | 0.48 | 1.04 | 0.03 | 4.33 | 16.00 | 83.1 | |||
Min Value | 0.32 | 0.97 | 7.29 | 55.45 | 0.24 | 0.90 | 0.00 | 0.55 | 0.03 | 2.64 | 8.08 | 74.95 | |||
Max Value | 2.01 | 3.41 | 17.71 | 77.34 | 0.59 | 2.11 | 0.64 | 1.04 | 0.06 | 7.68 | 17.40 | 87.53 | |||
Average | 0.98 | 2.00 | 14.50 | 63.22 | 0.40 | 1.58 | 0.13 | 0.85 | 0.04 | 4.43 | 11.84 | 84.33 | |||
St. dev | 0.45 | 0.70 | 2.99 | 6.30 | 0.11 | 0.37 | 0.23 | 0.14 | 0.01 | 1.56 | 3.07 | 3.67 | |||
Lower member | EO4-09 | 1.02 | 1.49 | 18.54 | 58.87 | 0.26 | 2.50 | 0.52 | 0.91 | 0.03 | 4.47 | 11.39 | 82.1 | ||
EO4-08 | 1.86 | 1.64 | 8.41 | 70.94 | 0.45 | 1.35 | 0.00 | 0.60 | 0.03 | 2.52 | 12.20 | 72.4 | |||
GKR-01 | 0.94 | 1.07 | 3.80 | 81.44 | 0.28 | 0.59 | 3.38 | 0.38 | 0.04 | 1.54 | 6.54 | n.c. | |||
EO4-07 | 2.05 | 2.57 | 15.04 | 56.30 | 0.71 | 2.08 | 0.02 | 0.88 | 0.03 | 4.51 | 15.81 | 78.4 | |||
EO4-06 | 1.13 | 1.78 | 7.60 | 64.55 | 0.21 | 1.48 | 7.80 | 0.49 | 0.04 | 3.46 | 11.46 | n.c. | |||
EO4-05 | 1.84 | 3.29 | 16.42 | 55.95 | 0.24 | 2.42 | 0.45 | 0.93 | 0.05 | 7.84 | 10.57 | 77.7 | |||
EO4-04 | 0.61 | 16.56 | 6.76 | 18.32 | 0.14 | 0.87 | 22.09 | 0.31 | 0.08 | 1.37 | 32.89 | n.c. | |||
EO4-03 | 1.81 | 2.22 | 11.49 | 39.04 | 0.58 | 1.75 | 17.20 | 0.50 | 0.05 | 4.44 | 20.92 | n.c. | |||
EO4-02 | 1.88 | 1.29 | 17.06 | 59.75 | 0.18 | 2.21 | 0.14 | 0.96 | 0.04 | 3.89 | 12.60 | 80.1 | |||
EO4-01 | 2.06 | 2.08 | 14.93 | 47.98 | 0.31 | 2.26 | 6.85 | 0.80 | 0.04 | 5.63 | 17.06 | n.c. | |||
Min Value | 0.61 | 1.07 | 3.80 | 18.32 | 0.14 | 0.59 | 0.00 | 0.31 | 0.03 | 1.37 | 6.54 | 72.38 | |||
Max Value | 2.06 | 16.56 | 18.54 | 81.44 | 0.71 | 2.50 | 22.09 | 0.96 | 0.08 | 7.84 | 32.89 | 82.11 | |||
Average | 1.52 | 3.39 | 12.00 | 55.31 | 0.34 | 1.75 | 5.85 | 0.68 | 0.04 | 3.97 | 15.14 | 78.14 | |||
St. dev | 0.53 | 4.67 | 5.09 | 17.43 | 0.19 | 0.66 | 7.90 | 0.25 | 0.01 | 1.93 | 7.38 | 3.65 | |||
Moreno Foramtion | Dos Palos | Lower Paleocene Upper Cretaceous | RAC9 | 2.05 | 1.77 | 19.59 | 62.71 | 0.03 | 2.62 | 0.25 | 0.80 | 0.03 | 2.52 | 7.63 | 79.9 |
RAC8 | 1.94 | 2.07 | 21.18 | 59.46 | 0.03 | 2.10 | 0.14 | 0.79 | 0.05 | 3.86 | 8.38 | 83.5 | |||
RAC7 | 1.51 | 1.95 | 19.38 | 63.28 | 0.12 | 1.92 | 0.17 | 0.87 | 0.04 | 2.54 | 8.22 | 84.3 | |||
Marca | RAC6 | 1.04 | 2.89 | 13.15 | 66.55 | 0.32 | 1.35 | 0.00 | 0.76 | 0.03 | 3.41 | 10.50 | 84.6 | ||
RAC5 | 1.17 | 1.31 | 15.94 | 69.33 | 0.45 | 1.47 | 0.35 | 0.82 | 0.03 | 2.17 | 6.96 | 84.2 | |||
Tierra Lama | RAC4 | 1.42 | 1.47 | 15.87 | 68.59 | 0.27 | 2.02 | 0.17 | 0.95 | 0.03 | 2.19 | 7.02 | 81.5 | ||
RAC3 | 0.59 | 1.12 | 7.24 | 81.12 | 0.78 | 0.92 | 0.10 | 0.43 | 0.04 | 1.99 | 5.67 | 81.8 | |||
RAC2 | 1.26 | 1.79 | 17.14 | 66.42 | 0.20 | 2.00 | 0.64 | 0.93 | 0.03 | 1.94 | 7.65 | 81.5 | |||
RAC1 | 1.53 | 1.97 | 17.97 | 64.07 | 0.14 | 2.20 | 0.58 | 0.80 | 0.03 | 2.43 | 8.28 | 80.7 | |||
Min Value | 0.59 | 1.12 | 7.24 | 59.46 | 0.03 | 0.92 | 0.00 | 0.43 | 0.03 | 1.94 | 5.67 | 79.93 | |||
Max Value | 2.05 | 2.89 | 21.18 | 81.12 | 0.78 | 2.62 | 0.64 | 0.95 | 0.05 | 3.86 | 10.50 | 84.62 | |||
Average | 1.39 | 1.82 | 16.38 | 66.84 | 0.26 | 1.84 | 0.27 | 0.79 | 0.03 | 2.56 | 7.81 | 82.44 | |||
St. dev | 0.45 | 0.52 | 4.18 | 6.18 | 0.24 | 0.51 | 0.22 | 0.15 | 0.01 | 0.65 | 1.32 | 1.75 |
Formation | Member | Age | Sample | Clay Minerals | ||
---|---|---|---|---|---|---|
Sm | Ill | Kao | ||||
Kreyenhagen Foramtion | Upper member | Early Oligocene Middle Eocene | TH-01 | 91 | 2 | 8 |
GKR-06 | 93 | 4 | 3 | |||
GKR-05 | 92 | 4 | 4 | |||
GKR-04 | 95 | 2 | 2 | |||
GKR-03 | 93 | 1 | 6 | |||
EO4-14 | 87 | 1 | 11 | |||
EO4-13 | 87 | 2 | 11 | |||
EO4-12 | 92 | 2 | 6 | |||
GKR-02 | 92 | 7 | 0 | |||
EO4-11 | 85 | 3 | 12 | |||
EO4-10 | 71 | 5 | 24 | |||
Min Value | 71.4 | 1.3 | 0.4 | |||
Max Value | 95.3 | 7.3 | 23.6 | |||
Average | 89.0 | 3.1 | 8.0 | |||
St. dev | 6.6 | 1.9 | 6.5 | |||
Lower member | EO4-09 | 70 | 8 | 22 | ||
EO4-08 | 93 | 7 | 0 | |||
GKR-01 | 95 | 5 | 0 | |||
EO4-07 | 93 | 5 | 1 | |||
EO4-06 | 93 | 7 | 0 | |||
EO4-05 | 91 | 5 | 4 | |||
EO4-04 | 78 | 11 | 10 | |||
EO4-03 | 93 | 3 | 4 | |||
EO4-02 | 71 | 2 | 27 | |||
EO4-01 | 84 | 5 | 11 | |||
Min Value | 70.0 | 2.0 | 0.0 | |||
Max Value | 94.5 | 11.2 | 27.2 | |||
Average | 86.1 | 5.8 | 8.0 | |||
St. dev | 9.7 | 2.6 | 9.8 | |||
Moreno Foramtion | Dos Palos | Lower Paleocene Upper Cretaceous | RAC9 | 92 | 1 | 8 |
RAC8 | 95 | 1 | 5 | |||
RAC7 | 94 | 1 | 5 | |||
Marca | RAC6 | 98 | 1 | 1 | ||
RAC5 | 95 | 1 | 4 | |||
Tierra Lama | RAC4 | 96 | 1 | 2 | ||
RAC3 | 92 | 8 | 0 | |||
RAC2 | 98 | 2 | 1 | |||
RAC1 | 98 | 1 | 1 | |||
Min Value | 91.8 | 0.6 | 0.0 | |||
Max Value | 98.4 | 7.7 | 7.6 | |||
Average | 95.4 | 1.8 | 2.9 | |||
St. dev | 2.4 | 2.2 | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurst, A.; Wilson, M.J.; Grippa, A.; Wilson, L.; Palladino, G.; Belviso, C.; Cavalcante, F. Provenance and Sedimentary Context of Clay Mineralogy in an Evolving Forearc Basin, Upper Cretaceous-Paleogene and Eocene Mudstones, San Joaquin Valley, California. Minerals 2021, 11, 71. https://doi.org/10.3390/min11010071
Hurst A, Wilson MJ, Grippa A, Wilson L, Palladino G, Belviso C, Cavalcante F. Provenance and Sedimentary Context of Clay Mineralogy in an Evolving Forearc Basin, Upper Cretaceous-Paleogene and Eocene Mudstones, San Joaquin Valley, California. Minerals. 2021; 11(1):71. https://doi.org/10.3390/min11010071
Chicago/Turabian StyleHurst, Andrew, Michael J. Wilson, Antonio Grippa, Lyudmyla Wilson, Giuseppe Palladino, Claudia Belviso, and Francesco Cavalcante. 2021. "Provenance and Sedimentary Context of Clay Mineralogy in an Evolving Forearc Basin, Upper Cretaceous-Paleogene and Eocene Mudstones, San Joaquin Valley, California" Minerals 11, no. 1: 71. https://doi.org/10.3390/min11010071
APA StyleHurst, A., Wilson, M. J., Grippa, A., Wilson, L., Palladino, G., Belviso, C., & Cavalcante, F. (2021). Provenance and Sedimentary Context of Clay Mineralogy in an Evolving Forearc Basin, Upper Cretaceous-Paleogene and Eocene Mudstones, San Joaquin Valley, California. Minerals, 11(1), 71. https://doi.org/10.3390/min11010071