Apatite U-Pb Thermochronology: A Review
Abstract
:1. Introduction
1.1. History of U-Pb Thermochronology
1.2. Key Issues in Apatite U-Pb Thermochronology
2. Determining If Apatite U-Pb Dates Are Consistent with Volume Diffusion
2.1. Petrogenesis and Trace Element Systematics of Metasomatic Apatite
2.2. Petrogenesis and Trace Element Systematics of Metamorphic Apatite
2.3. Identifying Apatite Which Has Not Experienced Dissolution-Reprecipitation
3. Pb Diffusion and Correcting for Common Pb
3.1. Pb Diffusion in Apatite
3.2. Correcting for Common Pb—What Approach and What Initial Pb Value to Choose?
4. Inverse Thermal History Modelling
4.1. Different Approaches to Thermal History Modelling
4.2. Parent U Zoning
4.3. Boundary Conditions
5. A Recommended Apatite U-Pb Thermochronology Protocol
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piccoli, P.M.; Candela, P.A. Apatite in igneous systems. In Phosphates—Geochemical, Geobiological and Materials Importance; Kohn, M.L., Rakovan, J., Hughes, J.M., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Chantilly, VA, USA, 2002; Volume 48, pp. 255–292. [Google Scholar]
- Spear, F.S.; Pyle, J.M. Apatite, monazite, and xenotime in metamorphic rocks. In Phosphates—Geochemical, Geobiological and Materials Importance; Kohn, M.L., Rakovan, J., Hughes, J.M., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Chantilly, VA, USA, 2002; Volume 48, pp. 293–335. [Google Scholar]
- O’Sullivan, G.; Chew, D.; Kenny, G.; Henrichs, I.; Mulligan, D. The trace element composition of apatite and its application to detrital provenance studies. Earth-Sci. Rev. 2020, 201, 103044. [Google Scholar] [CrossRef]
- Gallagher, K.; Brown, R.; Johnson, C. Fission track analysis and its applications to geological problems. Annu. Rev. Earth Planet. Sci. 1998, 26, 519–572. [Google Scholar] [CrossRef]
- Farley, K.A. Helium diffusion from apatite: General behavior as illustrated by durango fluorapatite. J. Geophys. Res. 2000, 105, 2903–2914. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, R.; Spikings, R.A.; Chew, D.; Wotzlaw, J.F.; Chiaradia, M.; Tyrrell, S.; Schaltegger, U.; van der Lelij, R. High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochim. Cosmochim. Acta 2014, 127, 39–56. [Google Scholar] [CrossRef]
- Cherniak, D.J. Diffusion in accessory minerals: Zircon, titanite, apatite, monazite and xenotime. In Diffusion in Minerals and Melts; Zhang, Y., Cherniak, D.J., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Chantilly, VA, USA, 2010; Volume 72, pp. 827–869. [Google Scholar]
- Dodson, M.H. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 1973, 40, 259–274. [Google Scholar] [CrossRef]
- Popov, D.V.; Spikings, R.A. Numerical modelling of radiogenic ingrowth and diffusion of Pb in apatite inclusions with variable shape and U-Th zonation. Minerals 2021, 11, 364. [Google Scholar] [CrossRef]
- Oosthuyzen, E.J.; Burger, A.J. The suitability of apatite as an age indicator by the uranium-lead isotope method. Earth Planet. Sci. Lett. 1973, 18, 29–36. [Google Scholar] [CrossRef]
- Williams, I.S. U-Th-Pb geochronology by ion microprobe. In Applications of Microanalytical Techniques to Understanding Mineralizing Processes; McKibben, M.A., Shanks, W.C., III, Ridley, W.I., Eds.; Reviews in Economic Geology; Society of Economic Geologists: Littleton, CO, USA, 1998; Volume 7, pp. 1–35. [Google Scholar]
- Chew, D.M.; Sylvester, P.J.; Tubrett, M.N. U-Pb and Th-Pb dating of apatite by LA-ICPMS. Chem. Geol. 2011, 280, 200–216. [Google Scholar] [CrossRef]
- Thomson, S.N.; Gehrels, G.E.; Ruiz, J.; Buchwaldt, R. Routine low-damage apatite U-Pb dating using laser ablation-multicollector- ICPMS. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef]
- Chew, D.M.; Petrus, J.A.; Kamber, B.S. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol. 2014, 363, 185–199. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Watson, E.B. Pb diffusion in zircon. Chem. Geol. 2001, 172, 5–24. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Watson, E.B.; Grove, M.; Harrison, T.M. Pb diffusion in monazite: A combined RBS/SIMS Study. Geochim. Cosmochim. Acta 2004, 68, 829–840. [Google Scholar] [CrossRef]
- Grove, M.; Harrison, T.M. Monazite Th-Pb age depth profiling. Geology 1999, 27, 487–490. [Google Scholar] [CrossRef]
- Smye, A.J.; Marsh, J.H.; Vermeesch, P.; Garber, J.M.; Stockli, D.F. Applications and limitations of U-Pb thermochronology to middle and lower crustal thermal histories. Chem. Geol. 2018, 494, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bonamici, C.E.; Fanning, C.M.; Kozdon, R.; Fournelle, J.H.; Valley, J.W. Combined oxygen-isotope and U-Pb zoning studies of titanite: New criteria for age preservation. Chem. Geol. 2015, 398, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Kohn, M.J.; Corrie, S.L. Preserved Zr-Temperatures and U-Pb ages in high-grade metamorphic titanite: Evidence for a static hot channel in the himalayan orogen. Earth Planet. Sci. Lett. 2011, 311, 136–143. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Hollis, J.; Danišík, M.; Petersen, J.; Evans, N.J.; McDonald, B.J. Apatite and titanite from the Karrat Group, Greenland; Implications for charting the thermal evolution of crust from the U-Pb geochronology of common Pb bearing phases. Precambrian Res. 2017, 300, 107–120. [Google Scholar] [CrossRef]
- Kohn, M.J. Titanite petrochronology. In Petrochronology: Methods and Applications; Kohn, M.J., Engi, M., Lanari, P., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Chantilly, VA, USA, 2017; Volume 83, pp. 419–441. [Google Scholar]
- Cherniak, D.J.; Lanford, W.A.; Ryerson, F.J. Lead Diffusion in apatite and zircon using ion-implantation and rutherford backscattering techniques. Geochim. Cosmochim. Acta 1991, 55, 1663–1673. [Google Scholar] [CrossRef]
- Cherniak, D.J. Pb diffusion in rutile. Contrib. Mineral. Petrol. 2000, 139, 198–207. [Google Scholar] [CrossRef]
- Blackburn, T.; Bowring, S.A.; Schoene, B.; Mahan, K.; Dudas, F. U-Pb thermochronology: Creating a temporal record of lithosphere thermal evolution. Contrib. Mineral. Petrol. 2011, 162, 479–500. [Google Scholar] [CrossRef]
- Zack, T.; Moraes, R.; Kronz, A. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol. 2004, 148, 471–488. [Google Scholar] [CrossRef]
- Yakymchuk, C.; Clark, C.; White, R.W. Phase relations, reaction sequences and petrochronology. In Petrochronology: Methods and Applications; Kohn, M.J., Engi, M., Lanari, P., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Chantilly, VA, USA, 2017; Volume 83, pp. 13–53. [Google Scholar]
- Harlov, D.E. Apatite: A fingerprint for metasomatic processes. Elements 2015, 11, 171–176. [Google Scholar] [CrossRef]
- Smye, A.J.; Stockli, D.F. Rutile U-Pb age depth profiling: A continuous record of lithospheric thermal evolution. Earth Planet. Sci. Lett. 2014, 408, 171–182. [Google Scholar] [CrossRef]
- Kooijman, E.; Mezger, K.; Berndt, J. Constraints on the U-Pb systematics of metamorphic rutile from in situ LA-ICP-MS analysis. Earth Planet. Sci. Lett. 2010, 293, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Mezger, K.; Hanson, G.N.; Bohlen, S.R. High-precision U-Pb ages of metamorphic rutile: Application to the cooling history of high-grade terranes. Earth Planet. Sci. Lett. 1989, 96, 106–118. [Google Scholar] [CrossRef]
- Schmitz, M.D.; Bowring, S.A. Constraints on the thermal evolution of continental lithosphere from U-Pb accessory mineral thermochronometry of lower crustal xenoliths, Southern Africa. Contrib. Mineral. Petrol. 2003, 144, 592–618. [Google Scholar] [CrossRef]
- Schoene, B.; Bowring, S.A. Determining accurate temperature-time paths from U-Pb thermochronology: An example from the kaapvaal craton, Southern Africa. Geochim. Cosmochim. Acta 2007, 71, 165–185. [Google Scholar] [CrossRef]
- Blackburn, T.J.; Bowring, S.A.; Perron, J.T.; Mahan, K.H.; Dudas, F.O.; Barnhart, K.R. An exhumation history of continents over billion-year time scales. Science 2012, 335, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Vry, J.K.; Baker, J.A. LA-MC-ICPMS Pb-Pb dating of rutile from slowly cooled granulites: Confirmation of the high closure temperature for Pb diffusion in rutile. Geochim. Cosmochim. Acta 2006, 70, 1807–1820. [Google Scholar] [CrossRef]
- Warren, C.J.; Grujic, D.; Cottle, J.M.; Rogers, N.W. Constraining cooling histories: Rutile and titanite chronology and diffusion modelling in NW bhutan. J. Metamorph. Geol. 2012, 30, 113–130. [Google Scholar] [CrossRef]
- Seymour, N.M.; Stockli, D.F.; Beltrando, M.; Smye, A.J. Tracing the Thermal evolution of the corsican lower crust during tethyan rifting. Tectonics 2016, 35, 2439–2466. [Google Scholar] [CrossRef]
- Ketcham, R.A. Forward and inverse modeling of low-temperature thermochronometry data. In Low-Temperature Thermochronology: Techniques, Interpretations, and Applications; Reiners, P.W., Ehlers, T.A., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Chantilly, VA, USA, 2005; Volume 58, pp. 275–314. ISBN 1529-6466. [Google Scholar]
- Paul, A.N.; Spikings, R.A.; Chew, D.; Daly, J.S. The effect of intra-crystal uranium zonation on apatite U-Pb thermochronology: A combined ID-TIMS and LA-MC-ICP-MS study. Geochim. Cosmochim. Acta 2019, 251, 15–35. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Yakymchuk, C.; Szilas, K.; Evans, N.; Hollis, J.; McDonald, B.; Gardiner, N.J. Apatite: A U-Pb thermochronometer or geochronometer? Lithos 2018, 318–319, 143–157. [Google Scholar] [CrossRef]
- Lasaga, A.C. The atomistic basis of kinetics: Defect in minerals. In Kinetics of Geochemical Processes; Lasaga, A.C., Kirkpatrick, J., Eds.; Reviews in Mineralogy; De Gruyter: Berlin, Germany; Boston, MA, USA, 1981; Volume 8, pp. 261–319. ISBN 978-1-5015-0823-3. [Google Scholar]
- Villa, I.M. Isotopic closure. Terra Nova 1998, 10, 42–47. [Google Scholar] [CrossRef]
- Glodny, J.; Austrheim, H.; Molina, J.F.; Rusin, A.I.; Seward, D. Rb/Sr record of fluid-rock interaction in eclogites: The marun-keu complex, polar Urals, Russia. Geochim. Cosmochim. Acta 2003, 67, 4353–4371. [Google Scholar] [CrossRef]
- Vance, D.; Müller, W.; Villa, I.M. Geochronology: Linking the isotopic record with petrology and textures—An introduction. In Geochronology: Linking the Isotopic Record with Petrology and Textures; Special Publication; Geological Society London: London, UK, 2003; Volume 220, pp. 1–24. [Google Scholar]
- Putnis, A. Mineral replacement reactions. In Thermodynamics and Kinetics of Water-Rock Interaction; Oelkers, E.H., Schott, J., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Chantilly, VA, USA, 2009; Volume 70, pp. 87–124. ISBN 978-0-939950-84-3. [Google Scholar]
- Villa, I.M. Disequilibrium textures versus equilibrium modelling: Geochronology at the crossroads. In Advances in Interpretation of Geological Processes: Refinement of Multi-Scale Data and Integration in Numerical Modelling; Spalla, M.I., Marotta, A.M., Gosso, G., Eds.; Special Publication; Geological Society London: London, UK, 2010; Volume 332, pp. 1–15. [Google Scholar]
- Lee, J.K.W. Multipath diffusion in geochronology. Contrib. Mineral. Petrol. 1995, 120, 60–82. [Google Scholar] [CrossRef]
- Harrison, T.M.; Heizler, M.T.; McKeegan, K.D.; Schmitt, A.K. In Situ 40K-40Ca “double-plus” SIMS dating resolves Klokken Feldspar 40K-40Ar paradox. Earth Planet. Sci. Lett. 2010, 299, 426–433. [Google Scholar] [CrossRef]
- Chafe, A.N.; Villa, I.M.; Hanchar, J.M.; Wirth, R. A re-examination of petrogenesis and 40Ar/39Ar systematics in the chain of Ponds K-Feldspar: “Diffusion Domain” archetype versus polyphase hygrochronology. Contrib. Mineral. Petrol. 2014, 167, 1–17. [Google Scholar] [CrossRef]
- McDonald, C.S.; Warren, C.J.; Mark, D.F.; Halton, A.M.; Kelley, S.P.; Sherlock, S.C. Argon redistribution during a metamorphic cycle: Consequences for determining cooling rates. Chem. Geol. 2016, 443, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Bulle, F.; Rubatto, D.; Ruggieri, G.; Luisier, C.; Villa, I.M.; Baumgartner, L. Episodic hydrothermal alteration recorded by microscale oxygen isotope analysis of white mica in the larderello-travale geothermal field, Italy. Chem. Geol. 2020, 532, 119288. [Google Scholar] [CrossRef]
- Popov, D.V.; Spikings, R.A.; Scaillet, S.; O’Sullivan, G.; Chew, D.; Badenszki, E.; Daly, J.S.; Razakamanana, T.; Davies, J.H.F.L. Diffusion and fluid interaction in itrongay pegmatite (Madagascar): Evidence from in situ 40Ar/39Ar dating of gem-quality alkali feldspar and U-Pb dating of protogenetic apatite inclusions. Chem. Geol. 2020, 556, 119841. [Google Scholar] [CrossRef]
- Henrichs, I.A.; O’Sullivan, G.; Chew, D.M.; Mark, C.; Babechuk, M.G.; McKenna, C.; Emo, R. The trace element and U-Pb Systematics of metamorphic apatite. Chem. Geol. 2018, 483, 218–238. [Google Scholar] [CrossRef]
- Harlov, D.E.; Förster, H.J. Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. part II. Fluorapatite. Am. Mineral. 2003, 88, 1209–1229. [Google Scholar] [CrossRef]
- Harlov, D.E.; Wirth, R.; Förster, H.J. An experimental study of dissolution-reprecipitation in fluorapatite: Fluid infiltration and the formation of monazite. Contrib. Mineral. Petrol. 2005, 150, 268–286. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Reguir, E.P.; Zaitsev, A.N.; Couëslan, C.; Xu, C.; Kynický, J.; Mumin, A.H.; Yang, P. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 2017, 274–275, 188–213. [Google Scholar] [CrossRef] [Green Version]
- Harlov, D.E. Formation of Monazite and xenotime inclusions in fluorapatite megacrysts, gloserheia granite pegmatite, froland, bamble sector, Southern Norway. Mineral. Petrol. 2011, 102, 77–86. [Google Scholar] [CrossRef]
- Nutman, A.P. Apatite recrystallisation during prograde metamorphism, Cooma, Southeast Australia: Implications for using an apatite-graphite association as a biotracer in ancient metasedimentary rocks. Aust. J. Earth Sci. 2007, 54, 1023–1032. [Google Scholar] [CrossRef]
- Zeh, A. Crystal size distribution (CSD) and Textural evolution of accessory apatite, titanite and allanite during four stages of metamorphism: An example from the moine supergroup, Scotland. J. Petrol. 2004, 45, 2101–2132. [Google Scholar] [CrossRef]
- Henrichs, I.A.; Chew, D.M.; O’Sullivan, G.J.; Mark, C.; McKenna, C.; Guyett, P. Trace Element (Mn-Sr-Y-Th-REE) and U-Pb isotope systematics of metapelitic apatite during progressive greenschist- to amphibolite-facies barrovian metamorphism. Geochem. Geophys. Geosyst. 2019, 20, 4103–4129. [Google Scholar] [CrossRef]
- Janots, E.; Engi, M.; Berger, A.; Allaz, J.; Schwarz, J.O.; Spandler, C. Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: Implications for allanite-monazite-xenotime phase relations from 250 to 610 °C. J. Metamorph. Geol. 2008, 26, 509–526. [Google Scholar] [CrossRef]
- Bingen, B.; Demaiffe, D.; Hertogen, J. Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern Norway. Geochim. Cosmochim. Acta 1996, 60, 1341–1354. [Google Scholar] [CrossRef]
- Bea, F.; Montero, P. Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the kinzigite formation of ivrea-verbano, NW Italy. Geochim. Cosmochim. Acta 1999, 63, 1133–1153. [Google Scholar] [CrossRef]
- Chu, M.F.; Wang, K.L.; Griffin, W.L.; Chung, S.L.; O’Reilly, S.Y.; Pearson, N.J.; Iizuka, Y. Apatite composition: Tracing petrogenetic processes in transhimalayan granitoids. J. Petrol. 2009, 50, 1829–1855. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M.; Ryerson, F.J. Diffusion of Sm, Sr, and Pb in fluorapatite. Geochim. Cosmochim. Acta 1985, 49, 1813–1823. [Google Scholar] [CrossRef]
- Schneider, S.; Hammerschmidt, K.; Rosenberg, C.L.; Gerdes, A.; Frei, D.; Bertrand, A. U–Pb ages of apatite in the western tauern window (eastern Alps): Tracing the onset of collision-related exhumation in the European plate. Earth Planet. Sci. Lett. 2015, 418, 53–65. [Google Scholar] [CrossRef]
- Donelick, R.A.; O’Sullivan, P.B.; Ketcham, R.A. Apatite fission-track analysis. In Low-Temperature Thermochronology: Techniques, Interpretations, and Applications; Reiners, P.W., Ehlers, T.A., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Chantilly, VA, USA, 2005; Volume 58, pp. 49–94. ISBN 1529-6466. [Google Scholar]
- Frei, R.; Villa, I.M.; Nägler, T.F.; Kramers, J.D.; Przybylowicz, W.J.; Prozesky, V.M.; Hofmann, B.A.; Kamber, B.S. Single mineral dating by the Pb-Pb step-leaching method: Assessing the mechanisms. Geochim. Cosmochim. Acta 1997, 61, 393–414. [Google Scholar] [CrossRef]
- Kramers, J.; Frei, R.; Newville, M.; Kober, B.; Villa, I. On the valency state of radiogenic lead in zircon and its consequences. Chem. Geol. 2009, 261, 3–10. [Google Scholar] [CrossRef]
- Najman, Y.; Mark, C.; Barfod, D.N.; Carter, A.; Parrish, R.; Chew, D.; Gemignani, L. Spatial and temporal trends in exhumation of the eastern himalaya and syntaxis as determined from a multitechnique detrital thermochronological study of the Bengal fan. Bull. Geol. Soc. Am. 2019, 131, 1607–1622. [Google Scholar] [CrossRef]
- Cherniak, D.J. Uranium and manganese diffusion in apatite. Chem. Geol. 2005, 219, 297–308. [Google Scholar] [CrossRef]
- Cherniak, D.J. Diffusion of lead in plagioclase and k-feldspar: An Investigation using rutherford backscattering and resonant nuclear reaction analysis. Contrib. Mineral. Petrol. 1995, 120, 358–371. [Google Scholar] [CrossRef]
- Parsons, I.; Fitz Gerald, J.D.; Lee, J.K.W.; Ivanic, T.; Golla-Schindler, U. Time-Temperature evolution of microtextures and contained fluids in a plutonic alkali feldspar during heating. Contrib. Mineral. Petrol. 2010, 160, 155–180. [Google Scholar] [CrossRef]
- Parsons, I.; Fitz Gerald, J.D.; Heizler, M.T.; Heizler, L.L.; Ivanic, T.; Lee, M.R. Eight-phase alkali feldspars: Low-temperature cryptoperthite, peristerite and multiple replacement reactions in the klokken intrusion. Contrib. Mineral. Petrol. 2013, 165, 931–960. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Ludwig, K.R. On the treatment of concordant uranium-lead ages. Geochim. Cosmochim. Acta 1998, 62, 665–676. [Google Scholar] [CrossRef]
- Paul, A.N.; Spikings, R.A.; Ulianov, A.; Ovtcharova, M. High temperature (>350 °C) thermal histories of the long lived (>500 Ma) active margin of ecuador and colombia: Apatite, titanite and rutile U-Pb thermochronology. Geochim. Cosmochim. Acta 2018, 228, 275–300. [Google Scholar] [CrossRef]
- Van der Lelij, R.; Spikings, R.; Mora, A. Thermochronology and tectonics of the mérida andes and the santander massif, NW South America. Lithos 2016, 248–251, 220–239. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, K. Transdimensional inverse thermal history modeling for quantitative thermochronology. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Vermeesch, P.; Tian, Y. Thermal history modelling: HeFTy vs. QTQt. Earth-Sci. Rev. 2014, 139, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Kylander-Clark, A.R.C.; Hacker, B.R.; Cottle, J.M. Laser-ablation split-stream ICP petrochronology. Chem. Geol. 2013, 345, 99–112. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chew, D.M.; Spikings, R.A. Apatite U-Pb Thermochronology: A Review. Minerals 2021, 11, 1095. https://doi.org/10.3390/min11101095
Chew DM, Spikings RA. Apatite U-Pb Thermochronology: A Review. Minerals. 2021; 11(10):1095. https://doi.org/10.3390/min11101095
Chicago/Turabian StyleChew, David M., and Richard A. Spikings. 2021. "Apatite U-Pb Thermochronology: A Review" Minerals 11, no. 10: 1095. https://doi.org/10.3390/min11101095
APA StyleChew, D. M., & Spikings, R. A. (2021). Apatite U-Pb Thermochronology: A Review. Minerals, 11(10), 1095. https://doi.org/10.3390/min11101095