In-Situ LA-ICP-MS Uraninite U–Pb Dating and Genesis of the Datian Migmatite-Hosted Uranium Deposit, South China
Abstract
:1. Introduction
2. Geological Background
3. Analytical Methods
3.1. Electron Microprobe Analysis (EMPA)
3.2. LA-ICP-MS Uraninite U–Pb Ages
4. Results
4.1. Mineral Assemblages of Uraninite
4.2. Compositions of the Uraninite and Coffinite
4.3. Trace Element Contents of the Uraninite and Coffinite
4.4. Rare Earth Element Contents of the Uraninite and Coffinite
4.5. LA-ICP-MS Uraninite U–Pb Ages
5. Discussion
5.1. Significance of the Major Element Compositions of the Uraninite and Coffinite
5.2. Interpretation of the REE Concentrations and Patterns
5.3. Role of Migmatites in the Formation of the Uraninite
6. Conclusions
- The Datian uranium deposit is a high temperature hydrothermal uranium deposit. ∑REE is positively correlated with Y, and is poorly correlated with U and is negatively correlated with Th in the Ur1 uraninite. These relationships demonstrate that the REEs, Y, and Th were originally incorporated into the Ur1 uraninite at the same time.
- There are two phases of uraninite in the Datian migmatite hosted uranium deposit in the Kangdian region. They were formed by high temperature hydrothermal fluids, but their formation temperatures were significantly different. The phase 1 (Ur1) uraninite is characterized by the local development of microfractures and pores, distinct variations in crystal size, and irregular crystal shapes; while the phase 2 (Ur2) uraninite has anhedral crystal shapes with well-developed microfractures and pores. The Ur1 uraninite was formed during the first mineralization stage and is associated with ilmenite, biotite, and REE minerals (monazite and xenotime), whereas the Ur2 uraninite was formed from a secondary S2−-rich hydrothermal fluid, along with pyrite, pyrrhotite, molybdenite, coffinite, zircon, and chlorite, and was accompanied by albitization and chloritization. The ThO2 and ∑REE contents of the Ur2 uraninite are significantly higher than those of the Ur1 uraninite, and Ur2 uraninite is associated with high temperature minerals (molybdenite and pyrrhotite) and high temperature alteration (albitization). These facts indicate that the formation temperature of the Ur2 uraninite was higher than that of the Ur1 uraninite.
- In-situ LA-ICP-MS U–Pb dating of the uraninite from the Datian uranium deposit provided two different ages of 834.5 ± 4.1 Ma and 837.2 ± 4.5 Ma and 841.4 ± 4.0 Ma. These two ages are in excellent agreement with the ages of the migmatite in the Datian uranium deposit. Therefore, the Datian uranium deposit experienced at least two hydrothermal events, which led to the formation of the uraninite, and the uraninite are genetically related to the migmatite. The migmatite in the Zanli Formation provided the ore-forming material for the uranium mineralization.
- The Datian uranium deposit represents a new type of migmatite hosted uranium deposit in the Kangdian region. Further studies of the U enrichment mechanisms of other migmatite hosted uranium deposits in the Kangdian region need to be conducted to evaluate their economic potentials.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballouard, C.; Poujol, M.; Boulvais, P.; Mercadier, J.; Cuney, M. Magmatic and hydrothermal behavior of uranium in syntectonic leucogranites: The uranium mineralization associated with the Hercynian Guérande granite (Armorican Massif, France). Ore Geol. Rev. 2017, 80, 309–331. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Wang, S.Y.; Gu, D.Z.; Cai, Y.Q.; Fan, H.H.; Shi, C.H.; Hu, C.N. Geology and fluid geochemistry of the Na-metasomatism U deposits in the Longshoushan uranium metallogenic belt, NW China: Constraints on the ore-forming process. Ore Geol. Rev. 2020, 116, 103214. [Google Scholar] [CrossRef]
- Martz, P.; Mercadier, J.; Perret, J.; Villeneuve, J.; Deloule, E.; Cathelineau, M.; Quirt, D.; Doney, A.; Ledru, P. Post-crystallization alteration of natural uraninites: Implications for dating, tracing, and nuclear forensics. Geochim. Cosmochim. Acta 2019, 249, 138–159. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.Y.; Wang, F.Y.; White, N.C.; Zhou, T.F. Release of Uranium from Uraninite in Granites Through Alteration: Implications for the Source of Granite-Related Uranium Ores. Econ. Geol. 2021, 116, 1115–1139. [Google Scholar] [CrossRef]
- Jaireth, S.; Roach, I.C.; Bastrakov, E.; Liu, S. Basin-related uranium mineral systems in Australia: A review of critical features. Ore Geol. Rev. 2016, 76, 360–394. [Google Scholar] [CrossRef]
- Cuney, M.; Emetz, A.; Mercadier, J.; Mykchaylov, V.; Shunko, V.; Yuslenko, A. Uranium deposits associated with Na-metasomatism from central Ukraine: A review of some of the major deposits and genetic constraints. Ore Geol. Rev. 2012, 44, 82–106. [Google Scholar] [CrossRef]
- Eglinger, A.; André-Mayer, A.S.; Vanderhaeghe, O.; Mercadier, J.; Cuney, M.; Decrée, S.; Feybesse, J.L.; Milesi, J.P. Geochemical signatures of uranium oxides in the Lufilian belt: From unconformity-related to syn-metamorphic uranium deposits during the Pan-African orogenic cycle. Ore Geol. Rev. 2013, 54, 197–213. [Google Scholar] [CrossRef]
- Eglinger, E.; Ferraina, C.; Tarantola, A.; André-Mayer, A.S.; Vanderhaeghe, O.; Boiron, M.C.; Dubessy, J.; Richard, A.; Brouand, M. Hypersaline fluids generated by highgrade metamorphism of evaporites: Fluid inclusion study of uranium occurrences in the Western Zambian Copperbelt. Contrib. Mineral. Petrol. 2014, 167, 967. [Google Scholar] [CrossRef]
- Eglinger, A.; Tarantola, A.; Durand, C.; Ferraina, C.; Vanderhaeghe, O.; André-Mayer, A.S.; Paquette, J.L.; Deloule, E. Uranium mobilization by fluids associated with Ca-Na metasomatism: A P–T–t record of fluid-rock interactions during Pan-African metamorphism (Western Zambian Copperbelt). Chem. Geol. 2014, 386, 218–237. [Google Scholar] [CrossRef]
- Eglinger, A.; Vanderhaeghe, O.; André-Mayer, A.S.; Goncalves, P.; Zeh, A.; Durand, C.; Deloule, E. Tectono-metamorphic evolution of the internal zone of the Pan-African Lufilian orogenic belt (Zambia): Implications for crustal reworking and syn-orogenic uranium mineralizations. Lithos 2016, 240–243, 167–188. [Google Scholar] [CrossRef]
- Cosi, M.; De Bonis, A.; Gosso, G.; Hunziker, J.; Martinotti, G.; Moratto, S.; Robert, J.P.; Ruhlman, F. Late proterozoic thrust tectonics, high-pressure metamorphism and uranium mineralization in the Domes Area, Lufilian Arc, Northwestern Zambia. Precambrian Res. 1992, 58, 215–240. [Google Scholar] [CrossRef]
- Zhang, C.J.; Chen, Y.L.; Li, J.C.; Xu, Z.Q.; Yao, J. The discovery of coarse-grained uraninite in Kangdian Axis and its geological significance. Geol. Bull. China 2015, 34, 2219–2226, (In Chinese with English Abstract). [Google Scholar]
- Sun, Y.; Yao, J.; Li, J.C.; Sun, Z.X. Mineralization Characteristics and Origin of Extra Rich Uranium Deposits in Miyi-Yuanmou Area, Middle-South Part of Kangdian Axis. Uranium Geol. 2021, 37, 466–475, (In Chinese with English Abstract). [Google Scholar]
- Yao, J. The Origin of the Migmatite Complex in the DaTian Area, Panzhihua City. Master’s Thesis, Chengdu Univerisity of Technology, Chengdu, China, 2014. [Google Scholar]
- Li, W.X. Migmatization and Uranium Mineralization in Haita Area of Miyi in Sichuan Province. Uranium Geol. 2018, 34, 346–352, (In Chinese with English Abstract). [Google Scholar]
- Wang, F.L.; Yao, J. A new consideration on the genesis of uranium mineralization in Mouding, Yunnan: A new mineralization type related to albitite. Geol. Rev. 2020, 66, 739–754, (In Chinese with English Abstract). [Google Scholar]
- Zheng, Y.W.; Chen, Y.L.; Peng, B.Y.; Hu, Y.; Guo, R.; Deng, Z. Geochemical Characteristics and Tectonic Significance of the Neoproterozoic Amphibolites from Datian area, Panzhihua City. Earth Sci. 2021, 46, 59–72, (In Chinese with English Abstract). [Google Scholar]
- Sun, Z.X.; Chen, Y.L.; Yao, J.; Han, W.W.; Wang, F.L.; Zhang, L. Basic characteristics and genesis of the Datian uranium deposit in Panzhihua area, Western Sichuan. Geol. Rev. 2020, 66, 1005–1018, (In Chinese with English Abstract). [Google Scholar]
- Yao, J.; Li, J.C.; Zhou, J.; Chen, G.P.; Yao, H.P. LA–ICP–MS zircon U–Pb dating of migmatite in Datian, Panzhihua City, and its geological significance. Geol. Bull. China 2017, 36, 381–391, (In Chinese with English Abstract). [Google Scholar]
- Xu, Z.Q.; Zhang, C.J.; Ouyang, X.D.; Yao, J.; Sun, K.; Yin, M.H. Chronology Characteristics and Significance of Datian Uranium Deposit in Panzhihua. Uranium Geol. 2018, 33, 280–287, (In Chinese with English Abstract). [Google Scholar]
- Bai, Y.; Xu, Z.Q.; Qin, Q.R.; Zhang, C.J.; Chen, Y.L. Geochronology and Its Geological Significance of Diabase/Granitic Dikes in Datian Area, Panzhihua. Uranium Geol. 2019, 35, 80–87, (In Chinese with English Abstract). [Google Scholar]
- Yin, M.H.; Xu, Z.Q.; Song, H.; Zhang, S.H.; Zhang, C.J.; Li, T. Significant Geological Events Related to Uranium Mineralization in the Datian Area, Xikang-Yunnan Geo-Axis. Geol. Explor. 2021, 25, 124–135, (In Chinese with English Abstract). [Google Scholar]
- Xu, Z.Q.; Ou, Y.X.D.; Zhang, C.J.; Yao, J.; Tang, M. Application of Electron Microprobe Chemical Dating to Datian Uraninite in Panzhihua and Its Significance. Rock Miner. Anal. 2017, 36, 641–648, (In Chinese with English Abstract). [Google Scholar]
- Zhao, G.C. Jiangnan Orogen in South China: Developing from divergent double subduction. Gondwana Res. 2015, 27, 1173–1180. [Google Scholar] [CrossRef]
- Zhao, G.C.; Cawood, P.A. Precambrian geology of China. Precambrian Res. 2012, 222–223, 13–54. [Google Scholar] [CrossRef]
- Wang, Q.F.; Deng, J.; Li, C.S.; Li, G.J.; Yu, L.; Qiao, L. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia: Constraints from detrital and inherited zircons. Gondwana Res. 2014, 26, 438–448. [Google Scholar] [CrossRef]
- Zhao, X.F.; Zhou, M.F.; Li, J.W.; Sun, M.; Gao, J.F.; Sun, W.H.; Yang, J.H. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block. Precambrian Res. 2010, 182, 57–69. [Google Scholar] [CrossRef]
- Shao, T.B.; Cheng, N.F.; Song, M.S. Provenance and tectonic-paleogeographic evolution: Constraints from detrital zircon U–Pb ages of Late Triassic-Early Jurassic deposits in the northern Sichuan basin, central China. J. Asian Earth Sci. 2016, 127, 12–31. [Google Scholar] [CrossRef]
- Chen, W.T.; Sun, W.H.; Zhou, M.F.; Wang, W. Ca. 1050 Ma intra-continental rift-related A-type felsic rocks in the southwestern Yangtze Block, South China. Precambrian Res. 2018, 309, 22–44. [Google Scholar] [CrossRef]
- Shellnutt, J.G. The Emeishan large igneous province: A synthesis. Geosci. Front. 2014, 5, 369–394. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.Y.; Li, X.B.; Ying, J.L.; Li, J.Y.; Xu, Z.Y.; Hou, Y.X. Certified Reference Material for U-Pb Isotopic Dating; Beijing Research Institute of Uranium Geology: Beijing, China, 1996. (In Chinese) [Google Scholar]
- Zong, K.Q.; Cheng, J.Y.; Hu, Z.C.; Liu, Y.S.; Li, M.; Fan, H.H.; Meng, Y.N. In-Situ U-Pb dating of uraninite by fs-LA-ICP-MS. Earth Sci. 2015, 58, 1731–1740. [Google Scholar] [CrossRef]
- Feng, M.Y.; Rong, J.S.; Sun, Z.F.; Xu, Z.Y.; Xie, H.J. Pegmatitic Uranium Deposit in the North Qinling; Atomic Energy Press: Beijing, China, 1996. (In Chinese) [Google Scholar]
- Guo, G.L.; Zhang, Z.S.; Liu, X.D.; Feng, Z.S.; Lai, D.R.; Zhou, W.R. EPMA chemical U-Th-Pb dating of uraninite in guangshigou uranium deposit. J. East China Inst. Technol. 2012, 35, 309–314, (In Chinese with English Abstract). [Google Scholar]
- Wu, Y.; Qin, M.K.; Guo, D.F.; Fan, G.; Liu, Z.Y.; Guo, G.L. The Latest In-Situ uraninite U-Pb age of the Guangshigou uranium deposit, Northern Qinling Orogen, China: Constraint on the Metallogenic Mechanism. Acta Geol. Sin. 2018, 92, 389–391. [Google Scholar] [CrossRef]
- Yuan, F.; Liu, J.J.; Carranza, E.J.M.; Zhai, D.G.; Wang, Y.H.; Zhang, S.; Sha, Y.Z.; Liu, G.; Wu, J. The Guangshigou uranium deposit, northern Qinling Orogen, China: A product of assimilation-fractional crystallization of pegmatitic magma. Ore Geol. Rev. 2018, 99, 17–41. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.F.; Xu, J.; Gao, C.; Chen, H.H. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an internal Standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Duffin, A.M.; Springer, K.W.; Ward, J.D.; Jarman, K.D.; Robinson, J.W.; Endres, M.C.; Hart, G.L. Femtosecond laser ablation multicollector ICPMS analysis of uranium isotopes in NIST glass. J. Anal. At. Spectrom. 2015, 30, 1100–1107. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Chen, L.L.; Chen, Y.; Feng, X.; Li, J.G.; Guo, H.; Miao, P.; Jin, R.; Tang, C.; Zhao, H.; Wang, G.; et al. Uranium occurrence state in the Tarangaole area of the Ordos Basin, China: Implications for enrichment and mineralization. Ore Geol. Rev. 2019, 115, 103034. [Google Scholar] [CrossRef]
- Ozha, M.K.; Pal, D.C.; Mishra, B.; Desapati, T.; Shaji, T.S. Geochemistry and chemical dating of uraninite in the Samarkiya area, central Rajasthan, northwestern India-Implication for geochemical and temporal evolution of uranium mineralization. Ore Geol. Rev. 2017, 88, 23–42. [Google Scholar] [CrossRef]
- Mercadier, J.; Cuney, M.; Lach, P.; Boiron, M.C.; Bonhoure, J.; Richard, A.; Leisen, M.; Kister, P. Origin of uranium deposits revealed by their rare earth element signature. Terra Nova 2011, 23, 264–269. [Google Scholar] [CrossRef]
- Frimmel, H.E.; Schedel, S.; Brätz, H. Uraninite chemistry as forensic tool for provenance analysis. Appl. Geochem. 2014, 48, 104–121. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Finch, R.J.; Ewing, R.C. The corrosion of uraninite under oxidizing conditions. J. Nucl. Mater. 1992, 190, 133–156. [Google Scholar] [CrossRef]
- Janeczek, J.; Ewing, R.C. Structural formula of uraninite. J. Nucl. Mater. 1992, 190, 128–132. [Google Scholar] [CrossRef]
- Evron, R.; Kimmel, G.; Eyal, Y. Thermal recovery and self-radiation damage in uraninite and thorianite. J. Nucl. Mater. 1994, 217, 54–66. [Google Scholar] [CrossRef]
- Fayek, M.; Kyser, T.K. Low temperature oxygen isoope fractionation in the uraninite–UO3–CO2–H2O system. Geochim. Cosmochim. Acta 2000, 64, 2185–2197. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Ewing, R.C. Alteration of UO2+x under oxidizing conditions, Marshall Pass, Colorado, USA. J. Alloy. Compd. 2007, 444–445, 584–589. [Google Scholar] [CrossRef]
- Depiné, M.; Frimmel, H.E.; Emsbo, P.; Koenig, A.E.; Kern, M. Trace element distribution in uraninite from Mesoarchaean Witwatersrand conglomerates (South Africa) supports placer model and magmatogenic source. Miner. Depos. 2013, 48, 423–435. [Google Scholar] [CrossRef]
- Pal, D.C.; Rhede, D. Geochemistry and chemical dating of uraninite in the Jaduguda uranium deposit, Singhbhum Shear Zone, India-implications for uranium mineralization and geochemical evolution of uraninite. Econ. Geol. 2013, 108, 1499–1515. [Google Scholar] [CrossRef]
- Macmillan, E.; Cook, N.J.; Ehrig, K.; Ciobanu, C.L.; Pring, A. Uraninite from the Olympic Dam IOCG-U-Ag deposit: Linking textural and compositional variation to temporal evolution. Am. Mineral. 2016, 101, 1295–1320. [Google Scholar] [CrossRef]
- Mukhopadhyay, J.; Mishra, B.; Chakrabarti, K.; De, S.; Ghosh, G. Uraniferous paleoplacers of the Mesoarchean Mahagiri Quartzite, Singhbhum craton, India: Depositional controls, nature and source of >3.0 Ga detrital uraninites. Ore Geol. Rev. 2016, 72, 1290–1306. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Section A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Alexandre, P.; Kyser, K.; Layton-Matthews, D.; Joy, B. Chemical Compositions of Natural Uraninite. Can. Mineral. 2015, 53, 595–662. [Google Scholar] [CrossRef]
- Förster, H.J. The chemical composition of uraninite in Variscan granites of the Erzgebirge, Germany. Mineral. Mag. 1999, 63, 239–252. [Google Scholar] [CrossRef]
- Cuney, M. Evolution of uranium fractionation processes through time: Driving the secular variation of uranium deposit types. Econ. Geol. 2010, 105, 553–569. [Google Scholar] [CrossRef]
- Grandstaff, D.E. A kinetic study of the dissolution of uraninite. Econ. Geol. 1976, 71, 1493–1506. [Google Scholar] [CrossRef]
- Alexandre, P.; Kyser, K.; Polito, P.; Thomas, D. Alteration mineralogy and stable isotope geochemistry of Paleoproterozoic basement-hosted unconformity-type uranium deposits in the Athabasca Basin, Canada. Econ. Geol. 2005, 100, 1547–1563. [Google Scholar] [CrossRef]
- Mercadier, J.; Annesley, I.R.; McKechnie, C.L.; Bogdan, T.S.; Creighton, S. Magmatic and Metamorphic Uraninite Mineralization in the Western Margin of the Trans-Hudson Orogen (Saskatchewan, Canada): A Uranium Source for Unconformity-Related Uranium Deposits? Econ. Geol. 2013, 108, 1037–1065. [Google Scholar] [CrossRef]
- Fayek, M.; Horita, J.; Ripley, E.M. The oxygen isotopic composition of uranium minerals: A review. Ore Geol. Rev. 2011, 41, 1–21. [Google Scholar] [CrossRef]
- Keegan, E.; Wallenius, M.; Mayer, K.; Varga, Z.; Rasmussen, G. Attribution of uranium ore concentrates using elemental and anionic data. Appl. Geochem. 2012, 27, 1600–1609. [Google Scholar] [CrossRef]
- Lach, P.; Mercadier, J.; Dubessy, J.; Boiron, M.C.; Cuney, M. In Situ quantitative measurement of rare earth elements in uranium oxides by laser ablation-inductively coupled plasmamass spectrometry. Geostand. Geoanalytical Res. 2013, 37, 277–296. [Google Scholar] [CrossRef]
- Uvarova, Y.A.; Kyser, T.K.; Geagea, M.L.; Chipley, D. Variations in the uranium isotopic compositions of uranium ores from different types of uranium deposits. Geochim.Cosmochim. Acta 2014, 146, 1–17. [Google Scholar] [CrossRef]
- Spano, T.L.; Simonetti, A.; Balboni, E.; Dorais, C.; Burns, P.C. Trace element and U isotope analysis of uraninite and ore concentrate: Applications for nuclear forensic investigations. Appl. Geochem. 2017, 84, 277–285. [Google Scholar] [CrossRef]
- Ghiorso, M.S.; Evans, B.W. Thermodynamics of Rhombohedral Oxide Solid Solutions and a Revision of the FE-TI Two-Oxide Geothermometer and Oxygen-Barometer. Am. J. Sci. 2008, 308, 957–1039. [Google Scholar] [CrossRef]
- Zhu, Z.M.; Tan, H.Q.; Liu, Y.D.; Li, C. Multiple episodes of mineralization revealed by Re-Os molybdenite geochronology in the Lala Fe-Cu deposit, SW China. Miner. Depos. 2018, 53, 311–322. [Google Scholar] [CrossRef]
- Song, H.; Chi, G.X.; Zhang, C.J.; Xu, D.R.; Xu, Z.Q.; Fan, G.; Zhang, G.Y. Uranium enrichment in the Lala Cu-Fe deposit, Kangdian region, China: A new case of uranium mineralization associated with an IOCG system. Ore Geol. Rev. 2020, 121, 103463. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 242–265. [Google Scholar] [CrossRef]
Sample/EMPA Spot ID | Phase | UO2 | PbO | ThO2 | Y2O3 | SiO2 | K2O | MgO | Ce2O3 | Na2O | FeO | CaO | La2O3 | Nd2O3 | Pr2O3 | Total | U/Th |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DT803/1 | Ur1 | 84.95 | 9.19 | 1.49 | 1.14 | b.d.l. | 0.15 | 0.02 | b.d.l. | 0.09 | 0.10 | b.d.l. | b.d.l. | 0.37 | b.d.l. | 97.50 | 44.17 |
DT803/2 | Ur1 | 83.36 | 8.70 | 1.16 | 1.22 | 0.24 | 0.15 | 0.03 | 0.14 | 0.11 | 0.14 | 0.16 | b.d.l. | 0.16 | b.d.l. | 95.57 | 55.67 |
DT803/3 | Ur1 | 84.17 | 8.39 | 1.56 | 1.11 | 0.28 | 0.11 | b.d.l. | b.d.l. | 0.10 | 0.16 | 0.34 | b.d.l. | 0.12 | 0.06 | 96.40 | 41.80 |
DT803/4 | Ur1 | 86.45 | 8.85 | 1.52 | 1.51 | 0.20 | 0.15 | b.d.l. | 0.14 | 0.13 | 0.13 | 0.39 | b.d.l. | 0.10 | b.d.l. | 99.57 | 44.06 |
DT803/5 | Ur1 | 82.99 | 8.64 | 1.48 | 1.48 | 0.11 | 0.19 | 0.02 | b.d.l. | 0.13 | 0.11 | 0.07 | b.d.l. | 0.16 | b.d.l. | 95.38 | 43.44 |
DT803/6 | Ur1 | 84.53 | 9.58 | 1.68 | 1.54 | 0.21 | 0.14 | 0.01 | b.d.l. | 0.08 | 0.08 | 0.12 | b.d.l. | 0.31 | 0.04 | 98.32 | 39.00 |
DT803/7 | Ur1 | 83.88 | 9.58 | 1.32 | 1.35 | 0.20 | 0.14 | b.d.l. | 0.23 | 0.10 | 0.08 | 0.32 | b.d.l. | 0.47 | b.d.l. | 97.66 | 49.23 |
DT803/8 | Ur1 | 84.12 | 9.84 | 1.52 | 1.11 | 0.13 | 0.16 | 0.03 | 0.12 | b.d.l. | 0.06 | 0.56 | 0.20 | 0.33 | b.d.l. | 98.18 | 42.88 |
DT803/9 | Ur1 | 83.18 | 9.89 | 1.29 | 1.66 | 0.37 | 0.13 | 0.03 | b.d.l. | 0.03 | 0.25 | 0.63 | b.d.l. | 0.15 | b.d.l. | 97.60 | 49.96 |
DT803/10 | Ur1 | 82.15 | 8.46 | 1.13 | 1.59 | 0.39 | 0.11 | 0.02 | 0.24 | 0.09 | 0.11 | 0.17 | 0.07 | 0.13 | 0.03 | 94.69 | 56.32 |
DT803/11 | Ur1 | 84.04 | 8.66 | 1.08 | 1.17 | 0.16 | 0.18 | b.d.l. | 0.17 | 0.03 | 0.06 | 0.14 | 0.03 | 0.21 | 0.05 | 95.98 | 60.29 |
DT803/12 | Ur1 | 82.84 | 8.84 | 1.49 | 1.21 | 0.13 | 0.19 | 0.01 | 0.15 | 0.13 | 0.07 | 0.10 | b.d.l. | 0.45 | b.d.l. | 95.61 | 43.07 |
DT803/13 | Ur1 | 83.01 | 9.27 | 1.23 | 1.51 | 0.42 | 0.22 | b.d.l. | 0.14 | 0.02 | 0.17 | 0.11 | b.d.l. | 0.34 | b.d.l. | 96.44 | 52.28 |
DT803/14 | Ur1 | 83.98 | 8.54 | 1.31 | 1.33 | 0.49 | 0.16 | b.d.l. | b.d.l. | 0.08 | 0.09 | 0.19 | b.d.l. | 0.33 | 0.06 | 96.56 | 49.67 |
DT803/15 | Ur1 | 81.27 | 8.81 | 1.38 | 1.38 | 0.05 | 0.14 | b.d.l. | 0.15 | 0.10 | 0.13 | 0.18 | b.d.l. | 0.38 | b.d.l. | 93.97 | 45.62 |
DT1802/1 | Ur2 | 82.42 | 8.19 | 3.54 | 0.72 | 0.11 | 0.20 | b.d.l. | 0.54 | 0.06 | 0.05 | 0.49 | b.d.l. | 0.64 | 0.08 | 97.04 | 18.04 |
DT1802/2 | Ur2 | 80.98 | 8.47 | 3.74 | 0.62 | 0.08 | 0.13 | 0.04 | 0.24 | 0.06 | 0.07 | 0.54 | b.d.l. | 0.47 | 0.08 | 95.52 | 16.77 |
DT1802/3 | Ur2 | 81.35 | 7.99 | 3.97 | 0.88 | b.d.l. | 0.18 | b.d.l. | 0.76 | 0.16 | 0.04 | 0.15 | 0.16 | 0.44 | 0.05 | 96.13 | 15.88 |
DT1802/4 | Ur2 | 82.44 | 8.87 | 3.41 | 0.76 | 0.08 | 0.20 | b.d.l. | 0.58 | 0.09 | 0.04 | 0.12 | b.d.l. | 0.31 | 0.06 | 96.96 | 18.73 |
DT1802/5 | Ur2 | 81.80 | 8.86 | 3.54 | 0.55 | b.d.l. | 0.18 | 0.04 | 0.63 | b.d.l. | b.d.l. | 0.12 | b.d.l. | 0.40 | b.d.l. | 96.12 | 17.90 |
DT1802/6 | Ur2 | 82.51 | 9.22 | 3.46 | 0.46 | b.d.l. | 0.14 | b.d.l. | 0.55 | 0.04 | b.d.l. | 0.16 | b.d.l. | 0.47 | 0.03 | 97.04 | 18.47 |
DT1802/7 | Ur2 | 82.11 | 9.55 | 3.65 | 0.57 | b.d.l. | 0.16 | b.d.l. | 0.48 | b.d.l. | b.d.l. | 0.06 | 0.07 | 0.29 | b.d.l. | 96.94 | 17.43 |
DT1802/8 | Ur2 | 81.77 | 8.60 | 3.71 | 0.59 | 0.06 | 0.17 | b.d.l. | 0.38 | 0.08 | 0.06 | 0.14 | b.d.l. | 0.22 | 0.04 | 95.82 | 17.08 |
DT1802/9 | Ur2 | 82.52 | 8.41 | 3.62 | 0.67 | 0.07 | 0.27 | b.d.l. | 0.47 | 0.07 | 0.05 | 0.27 | b.d.l. | 0.37 | 0.05 | 96.84 | 17.66 |
DT1802/10 | Ur2 | 82.69 | 8.76 | 3.84 | 0.65 | b.d.l. | 0.23 | 0.03 | 0.73 | b.d.l. | b.d.l. | 0.27 | b.d.l. | 0.47 | b.d.l. | 97.67 | 16.68 |
DT4102/1 | Ur2 | 80.93 | 8.14 | 4.07 | 0.98 | b.d.l. | 0.18 | 0.03 | 0.51 | 0.10 | 0.04 | 0.37 | b.d.l. | 0.25 | 0.04 | 95.64 | 15.41 |
DT4102/2 | Ur2 | 80.97 | 8.25 | 4.19 | 0.80 | 0.09 | 0.12 | b.d.l. | 0.34 | 0.07 | b.d.l. | 0.39 | 0.10 | 0.27 | b.d.l. | 95.59 | 14.97 |
DT4102/3 | Ur2 | 79.61 | 8.30 | 4.28 | 0.97 | 0.19 | 0.14 | b.d.l. | 0.34 | 0.09 | 0.09 | 0.59 | 0.07 | 0.39 | 0.03 | 95.09 | 14.41 |
DT4102/4 | Ur2 | 80.71 | 8.19 | 4.66 | 0.83 | 0.06 | 0.21 | 0.02 | 0.36 | 0.15 | b.d.l. | 0.47 | 0.16 | 0.21 | b.d.l. | 96.03 | 13.42 |
DT4102/5 | Ur2 | 81.19 | 9.17 | 4.83 | 0.48 | b.d.l. | 0.14 | b.d.l. | 0.51 | 0.06 | b.d.l. | 0.06 | b.d.l. | 0.27 | 0.09 | 96.80 | 13.02 |
DT4102/6 | Ur2 | 80.68 | 7.40 | 4.34 | 0.77 | 0.06 | 0.22 | b.d.l. | 0.30 | b.d.l. | 0.05 | 0.69 | 0.09 | 0.24 | b.d.l. | 94.84 | 14.40 |
DT4102/7 | Ur2 | 80.30 | 8.42 | 4.76 | 0.79 | 0.08 | 0.18 | 0.02 | 0.59 | 0.11 | b.d.l. | 0.52 | b.d.l. | 0.31 | 0.05 | 96.13 | 13.07 |
DT4102/8 | Ur2 | 80.96 | 8.11 | 4.41 | 0.92 | 0.09 | 0.19 | b.d.l. | 0.87 | 0.11 | b.d.l. | 0.59 | 0.13 | 0.45 | 0.05 | 96.88 | 14.22 |
DT4102/9 | Ur2 | 80.54 | 8.44 | 4.25 | 0.61 | 0.06 | 0.19 | 0.04 | 0.37 | 0.14 | b.d.l. | 0.51 | 0.14 | 0.36 | 0.06 | 95.71 | 14.68 |
DT4102/10 | Ur2 | 80.26 | 8.30 | 4.74 | 0.76 | 0.07 | 0.16 | 0.02 | 0.62 | 0.15 | b.d.l. | 0.39 | 0.12 | 0.27 | 0.07 | 95.93 | 13.12 |
DT4102/b1 | Ur2C | 47.24 | 0.12 | 0.74 | 13.77 | 17.46 | 0.16 | 0.02 | 0.62 | b.d.l. | 0.23 | 0.23 | 0.14 | 0.64 | 0.06 | 81.43 | 41.75 |
DT4102/b2 | Ur2C | 58.92 | 0.45 | 2.57 | 0.50 | 18.72 | 0.12 | 0.05 | 0.52 | b.d.l. | 0.46 | 0.90 | 0.09 | 0.16 | 0.05 | 83.51 | 14.99 |
DT4102/b3 | Ur2C | 61.24 | 0.45 | 1.97 | 0.36 | 19.66 | 0.22 | 0.03 | 0.29 | 0.03 | 0.87 | 1.00 | b.d.l. | b.d.l. | 0.05 | 86.17 | 20.33 |
DT4102/b4 | Ur2C | 56.08 | 0.90 | 5.22 | 0.51 | 19.33 | 0.24 | b.d.l. | 1.03 | b.d.l. | 0.31 | 0.75 | 0.15 | 0.51 | 0.03 | 85.06 | 7.03 |
DT4102/b5 | Ur2C | 59.07 | 0.37 | 4.13 | 0.60 | 18.62 | 0.21 | 0.04 | 0.30 | 0.21 | b.d.l. | 3.29 | b.d.l. | 0.21 | b.d.l. | 87.05 | 9.35 |
DT4102/b6 | Ur2C | 68.02 | b.d.l. | b.d.l. | b.d.l. | 14.43 | 0.25 | b.d.l. | b.d.l. | b.d.l. | 0.05 | 6.10 | 0.07 | b.d.l. | 0.03 | 88.95 | 0.00 |
DT4102/b7 | Ur2C | 64.93 | 2.81 | b.d.l. | b.d.l. | 14.08 | 0.22 | 0.03 | 0.13 | b.d.l. | 0.10 | 5.74 | b.d.l. | 0.09 | b.d.l. | 88.13 | 0.00 |
DT4102/b8 | Ur2C | 61.81 | 0.59 | 2.29 | 0.11 | 19.76 | 0.46 | 0.13 | 0.46 | 0.10 | 1.77 | 2.81 | 0.24 | 0.15 | b.d.l. | 90.68 | 17.65 |
DT4102/b9 | Ur2C | 62.70 | 0.25 | 2.13 | 0.70 | 15.70 | 0.27 | 0.04 | 0.42 | 0.23 | 0.34 | 4.29 | b.d.l. | 0.32 | b.d.l. | 87.39 | 19.25 |
DT4102/b10 | Ur2C | 64.60 | 0.80 | 3.21 | 0.46 | 17.88 | 0.34 | 0.06 | 0.27 | 0.16 | 0.54 | 0.85 | 0.12 | 0.21 | 0.02 | 89.52 | 13.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Zhang, C.; Song, H.; Cheng, Q. In-Situ LA-ICP-MS Uraninite U–Pb Dating and Genesis of the Datian Migmatite-Hosted Uranium Deposit, South China. Minerals 2021, 11, 1098. https://doi.org/10.3390/min11101098
Cheng L, Zhang C, Song H, Cheng Q. In-Situ LA-ICP-MS Uraninite U–Pb Dating and Genesis of the Datian Migmatite-Hosted Uranium Deposit, South China. Minerals. 2021; 11(10):1098. https://doi.org/10.3390/min11101098
Chicago/Turabian StyleCheng, Long, Chengjiang Zhang, Hao Song, and Qian Cheng. 2021. "In-Situ LA-ICP-MS Uraninite U–Pb Dating and Genesis of the Datian Migmatite-Hosted Uranium Deposit, South China" Minerals 11, no. 10: 1098. https://doi.org/10.3390/min11101098
APA StyleCheng, L., Zhang, C., Song, H., & Cheng, Q. (2021). In-Situ LA-ICP-MS Uraninite U–Pb Dating and Genesis of the Datian Migmatite-Hosted Uranium Deposit, South China. Minerals, 11(10), 1098. https://doi.org/10.3390/min11101098