A Porous Stone Technique to Measure the Initial Water Uptake by Supplementary Cementitious Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Properties of the Particles
2.3. Slump and Bleed Tests
2.4. Initial Water Uptake Test
3. Results and Discussion
3.1. Particle Size, Shape and Initial Water Content
3.2. Mini Slump
3.3. Mini Bleed Test
3.4. Initial Water Uptake
3.5. Using IWU for Estimating Water Demand of SCM–OPC Mortars
3.6. Justification of the IWU Test Parameters
3.7. Other IWU-Related Considerations
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth. Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- Miller, S.A.; John, V.M.; Pacca, S.A.; Horvath, A. Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 2018, 114, 115–124. [Google Scholar] [CrossRef]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Lord, M. Rethinking Cement: Zero Carbon Industry Plan. In Zero Carbon Australia; Beyond Zero Emissions Inc.: Melbourne, Australia, 2017. [Google Scholar]
- Lovecchio, N.; Shaikh, F.; Rosano, M.; Ceravolo, R.; Biswas, W. Environmental assessment of supplementary cementitious materials and engineered nanomaterials concrete. AIMS Environ. Sci. 2020, 7, 13–30. [Google Scholar] [CrossRef]
- Kumar, S.; Varanasi, V.K.; Saha, P. Sustainable Development Using Supplementary Cementitious Materials and Recycled Aggregate. Int. J. Mod. Eng. Res. 2012, 2, 165–171. [Google Scholar]
- Garside, M. Global Supplementary Cementing Material Market Value 2018–2025. 2020. Available online: https://www.statista.com/statistics/1098250/supplementary-cementitious-materials-market-value-global/ (accessed on 22 September 2020).
- Nicoara, A.I.; Stoica, A.E.; Vrabec, M.; Rogan, N..; Sturm, S.; Ow-Yang, C.; Gulgun, M.A.; Bundur, Z.B.; Ciuca, I.; Vasile, B.S. End-of-Life Materials Used as Supplementary Cementitious Materials in the Concrete Industry. Materials 2020, 13, 1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordoba, G.P.; Zito, S.; Tironi, A.; Rahhal, V.F.; Irassar, E.F. Durability of Concrete Containing Calcined Clays: Comparison of Illite and Low-Grade Kaolin. In Calcined Clays for Sustainable Concrete; RILEM Bookseries 25; Bishnoi, S., Ed.; Springer: Singapore, 2020; pp. 631–640. [Google Scholar] [CrossRef]
- Castillo, R.; Antoni, M.; Alujas, A.; Scrivener, K.; Martirena, H.; Jose, F. Study of the addition of calcined clays in the durability of concrete. Rev. Ing. De Constr. 2011, 26, 25–40. [Google Scholar]
- Thomas, M.D.A. Optimizing the Use of Fly Ash in Concrete; Portland Cement Association: Skokie, IL, USA, 2007; pp. 1–24. [Google Scholar]
- Scrivener, K.L.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- Scrivener, K.L. Options for the future of cement. Indian Concr. J. 2014, 88, 11–21. [Google Scholar]
- Nair, N.; Haneefa, K.M.; Santhanam, M.; Gettu, R. A study on fresh properties of limestone calcined clay blended cementitious systems. Constr. Build. Mater. 2020, 254, 119326. [Google Scholar] [CrossRef]
- Shamsaei, E.; Bolt, O.; de Souza, F.B.; Benhelal, E.; Sagoe-Crentsil, K.; Sanjayan, J. Pathways to Commercialisation for Brown Coal Fly Ash-Based Geopolymer Concrete in Australia. Sustainability 2021, 13, 4350. [Google Scholar] [CrossRef]
- Macphee, D.; Black, C.; Taylor, A. Cements incorporating brown coal fly ash from the latrobe valley region of Victoria, Australia. Cem. Concr. Res. 1993, 23, 507–517. [Google Scholar] [CrossRef]
- De Belie, N.; Soutsos, M.; Gruyaer, E. Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials; State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4; Springer: Cham, Switzerland, 2018; ISBN 9783319706061. [Google Scholar]
- Scrivener, K.L.; Favier, A. Calcined Clays for Sustainable Concrete. In Proceedings of the 1st International Conference on Calcined Clays for Sustainable Concrete, Lausanne, Switzerland, 23–25 June 2015. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Khan, M.; Castel, A. Engineering Properties of Limestone Calcined Clay Concrete. J. Adv. Concr. Technol. 2018, 16, 343–357. [Google Scholar] [CrossRef] [Green Version]
- Antoni, M.; Rossen, J.; Martirena, F.; Scrivener, K. Cement substitution by a combination of metakaolin and limestone. Cem. Concr. Res. 2012, 42, 1579–1589. [Google Scholar] [CrossRef]
- Lewis, R.; Sear, L.; Wainwright, P.; Ryle, R. Cementitious Additions. In Advanced Concrete Technology Set 3; Butterworth-Heinemann: Oxford, UK, 2003; pp. 3–66. [Google Scholar] [CrossRef]
- Ideker, J.; Scrivener, K.L.; Fryda, H.; Touzo, B. Calcium Aluminate Cements. In Lea’s Chemistry of Cement and Concrete, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 537–584. [Google Scholar] [CrossRef]
- Mohammadi, I.; South, W. General Purpose Cement with Increased Limestone Content in Australia. ACI Mater. J. 2016, 113, 335–347. [Google Scholar] [CrossRef]
- Binhowimal, S.A.M.; Hanzic, L.; Ho, J.C.M. Filler to improve concurrent flowability and segregation performance of concrete. Aust. J. Struct. Eng. 2017, 18, 73–85. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Tsang, D.C.W. Green remediation by using low-carbon cement-based stabilization/solidification approaches. In Sustainable Remediation of Contaminated Soil and Groundwater; Butterworth-Heinemann: Oxford, UK, 2020; pp. 93–118. [Google Scholar] [CrossRef]
- Ez-zaki, H.; Marangu, J.M.; Bellotto, M.; Dalconi, M.C.; Artioli, G.; Valentini, L. A Fresh View on Limestone Calcined Clay Cement (LC3) Pastes. Materials 2021, 14, 3037. [Google Scholar] [CrossRef] [PubMed]
- Neißer-Deiters, A.; Scherb, S.; Beuntner, N.; Thienel, K.-C. Influence of the calcination temperature on the properties of a mica mineral as a suitability study for the use as SCM. Appl. Clay Sci. 2019, 179, 105168. [Google Scholar] [CrossRef]
- Jaskulski, R.; Jóźwiak-Niedźwiedzka, D.; Yakymechko, Y. Calcined Clay as Supplementary Cementitious Material. Materials 2020, 13, 4734. [Google Scholar] [CrossRef] [PubMed]
- Hurst, V.J.; Kunkle, A.C. Dehydroxylation, Rehydroxylation, and Stability of Kaolinite. Clays Clay Miner. 1985, 33, 1–14. [Google Scholar] [CrossRef]
- Clegg, F.; Breen, C.; Carter, M.A.; Ince, C.; Savage, S.D.; Wilson, M.A. Dehydroxylation and Rehydroxylation Mechanisms in Fired Clay Ceramic: A TG-MS and DRIFTS Investigation. J. Am. Ceram. Soc. 2012, 95, 416–422. [Google Scholar] [CrossRef]
- Navea, J.G.; Richmond, E.; Stortini, T.; Greenspan, J. Water Adsorption Isotherms on Fly Ash from Several Sources. Langmuir 2017, 33, 10161–10171. [Google Scholar]
- Ammari, M.Z.J.; Fowler, R. Experimental study of the effect of limestone grading on some mechanical properties of concrete. MATEC Web Conf. 2017, 120, 02007. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, S.; Xu, Q.; Xu, Y. Modeling Capillary Water Absorption in Concrete with Discrete Crack Network. J. Mater. Civ. Eng. 2018, 30, 04017263. [Google Scholar] [CrossRef]
- Casnedi, L.; Cocco, O.; Meloni, P.; Pia, G. Water Absorption Properties of Cement Pastes: Experimental and Modelling Inspections. Adv. Mater. Sci. Eng. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Gao, D.; Zhang, Y.; Tang, J.; Li, Y. Relationship between sorptivity and capillary coefficient for water absorption of cement-based materials: Theory analysis and experiment. R. Soc. Open Sci. 2019, 6, 190112. [Google Scholar] [CrossRef] [Green Version]
- Tabarsa, T.; Ashori, A. Dimensional Stability and Water Uptake Properties of Cement-Bonded Wood Composites. J. Polym. Environ. 2011, 19, 518–521. [Google Scholar] [CrossRef]
- ASTM C1585. Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- AS 1012.21:1999. Methods of Testing Concrete—Method 21: Determination of Water Absorption and Apparent Volume of Permeable Voids in Hardened Concrete; Standards Australia: Sydney, Australia, 1999. [Google Scholar]
- Scrivener, K.L. Cement Chemistry and Sustainable Cementitious Materials. Online Course, edX. 2018. Available online: https://www.edx.org/course/cement-chemistry-and-sustainable-cementitious-mate?source=aw&wc=6798_1590375041_5d6891d65617f1b609b1c5aca4bdb7c5&utm_source=aw&utm_medium=aiate_partner&utm_content=text-link&utm_term=422873_My+Mooc (accessed on 18 March 2019).
- Fehervari, A.; Gallage, C.; MacLeod, A.; Garcez, E.; Zhang, J.; Antic, A.; Gates, W.; Collins, F. Workability and Fresh Properties of a Low CO2 Footprint Concrete. In Proceedings of the Concrete 2019: The 29th Biennial National Conference of the Concrete Institute of Australia, Sydney, Australia, 8–11 September 2019. [Google Scholar]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Sperinck, S.; Raiteri, P.; Marks, N.; Wright, K. Dehydroxylation of kaolinite to metakaolin—A molecular dynamics study. J. Mater. Chem. 2011, 21, 2118–2125. [Google Scholar] [CrossRef] [Green Version]
- Scrivener, K.L.; Avet, F.; Maraghechi, H.; Zunino, F.; Ston, J.; Hanpongpun, W.; Favier, A. Impacting factors and properties of limestone calcined clay cements (LC3). Green Mater. 2019, 7, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Fehervari, A.; MacLeod, A.J.N.; Garcez, E.O.; Aldridge, L.; Gates, W.P.; Yang, Y.; Collins, F. On the mechanisms for improved strengths of carbon nanofiber-enriched mortars. Cem. Concr. Res. 2020, 136, 106178. [Google Scholar] [CrossRef]
- MacLeod, A.J.; Fehervari, A.; Gates, W.P.; Garcez, E.; Aldridge, L.P.; Collins, F. Enhancing fresh properties and strength of concrete with a pre-dispersed carbon nanotube liquid admixture. Constr. Build. Mater. 2020, 247, 118524. [Google Scholar] [CrossRef]
- Cement Australia. Available online: https://www.cementaustralia.com.au/products/fly-ash (accessed on 16 October 2021).
- Berryman, C.; Zhu, J.; Jensen, W.; Tadros, M. High-percentage replacement of cement with fly ash for reinforced concrete pipe. Cem. Concr. Res. 2005, 35, 1088–1091. [Google Scholar] [CrossRef]
- Roloff, C.; Lukas, E.; van Wachem, B.; Thévenin, D. Particle dynamics investigation by means of shadow imaging inside an air separator. Chem. Eng. Sci. 2019, 195, 312–324. [Google Scholar] [CrossRef]
- Kantro, D.L. Influence of Water-Reducing Admixtures on Properties of Cement Paste—A Miniature Slump Test. Cem. Concr. Aggreg. 1980, 2, 95–102. [Google Scholar]
- Collins, F.; Sanjayan, J.G. Early age strength and workability of slag pastes activated by sodium silicates. Mag. Concr. Res. 2001, 53, 321–326. [Google Scholar] [CrossRef]
- AS 1012.6:2014. Methods of Testing Concrete—Method 6: Determination of Bleeding of Concrete; Standards Australia: Sydney, Australia, 2014. [Google Scholar]
- ASTM C305. Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- DIN 18132. Baugrund. Versuche und Versuchsgerate. Bestimmung des Wasseraufnahmevermogens; Deutsches Institut für Normung: Berlin, Germany, 1995. [Google Scholar]
- Kaufhold, S.; Dohrman, R. Comparison of the traditional Enslin-Neff method and the modified Dieng method for measuring water-uptake capacity. Clays Clay Miner. 2008, 56, 686–692. [Google Scholar] [CrossRef]
- Petkovsek, A.; Macek, M.; Majes, B. A laboratory characterisation of soils and clay-bearing rocks using the Ensline-NEFF Water-adsorption test. Acta Geotech. Slov. 2009, 2, 5–13. [Google Scholar]
- Kaasik, M.; Alliksaar, T.; Ivasik, J.; Loosaar, J. Spherical fly ash particles from oil shale fired power plants in atmospheric precipitations. Possibilities of quantitative tracing. Oil Shale 2005, 22, 547–562. [Google Scholar]
- Krishnaraj, L.; Ravichandran, P. Investigation on grinding impact of fly ash particles and its characterization analysis in cement mortar composites. Ain Shams Eng. J. 2019, 10, 267–274. [Google Scholar] [CrossRef]
- Fehervari, A.; MacLeod, A.J.N.; Garcez, E.O.; Gates, W.P.; Collins, F. Rheological behaviour of concrete enriched with carbon nanofillers. In Proceedings of the Australian Structural Engineering Conference (ASEC), Adelaide, Australia, 25–28 September 2018. [Google Scholar]
- Justice, J.; Kennison, L.; Mohr, B.; Beckwith, S.; McCormick, L.; Wiggins, B.; Zhang, Z.; Kurtis, K.E. Comparison of Two Metakaolins and a Silica Fume Used as Supplementary Cementitious Materials. In Proceedings of the 7th International Symposium on Utilization of High-Strength/High Performance Concrete, Washington, DC, USA, 20–24 June 2005; pp. 213–226. [Google Scholar]
- Chen, Y.; Li, Z.; Chaves Figueiredo, S.; Çopuroğlu, O.; Veer, F.; Schlangen, E. Limestone and Calcined Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing: A Fundamental Study of Extrudability and Early-Age Strength Development. Appl. Sci. 2019, 9, 1809. [Google Scholar] [CrossRef] [Green Version]
- ASTM C191. Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Sabir, B.B.; Wild, S.; Bai, J. Metakaolin and calcined clays as pozzolans for concrete: A review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Badogiannis, E.; Kakali, G.; Dimopoulou, G.; Chaniotakis, E.; Tsivilis, S. Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins. Cem. Concr. Compos. 2005, 27, 197–203. [Google Scholar] [CrossRef]
- Brooks, J.; Johari, M.A.M.; Mazloom, M. Effect of admixtures on the setting times of high-strength concrete. Cem. Concr. Compos. 2000, 22, 293–301. [Google Scholar] [CrossRef]
- Batis, G.; Pantazopoulou, P.; Tsivilis, S.; Badogiannis, E. The effect of metakaolin on the corrosion behavior of cement mortars. Cem. Concr. Compos. 2005, 27, 125–130. [Google Scholar] [CrossRef]
- Alujas, A.; Fernández, R.; Quintana, R.; Scrivener, K.L.; Martirena, F. Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration. Appl. Clay Sci. 2015, 108, 94–101. [Google Scholar] [CrossRef]
- Drits, V.A.; Derkowski, A. Kinetic behavior of partially dehydroxylated kaolinite. Am. Miner. 2015, 100, 883–896. [Google Scholar] [CrossRef]
- Kocak, Y. Effects of metakaolin on the hydration development of Portland–composite cement. J. Build. Eng. 2020, 31, 101419. [Google Scholar] [CrossRef]
- Morris, P.; Dux, P. Analytical solutions for bleeding of concrete due to consolidation. Cem. Concr. Res. 2010, 40, 1531–1540. [Google Scholar] [CrossRef]
- Crittenden, J.C.; Trussell, R.R.; Hand, D.W.; Howe, K.J.; Tchobanoglous, G. Appendix C—Physical Properties of Water. In MWH’s Water Treatment: Principles and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 1861–1862. [Google Scholar]
Blend | Clinker (%) | Calcined Clay (%) | Fly Ash (%) | Limestone (%) | Gypsum (%) |
---|---|---|---|---|---|
5% calcined clay | 86.45 | 5 | 0 | 5.7 | 2.85 |
10% calcined clay | 81.9 | 10 | 0 | 5.4 | 2.7 |
15% calcined clay | 77.35 | 15 | 0 | 5.1 | 2.55 |
20% calcined clay | 72.8 | 20 | 0 | 4.8 | 2.4 |
30% calcined clay | 63.7 | 30 | 0 | 4.2 | 2.1 |
45% calcined clay | 50.05 | 45 | 0 | 3.3 | 1.65 |
60% calcined clay | 36.4 | 60 | 0 | 2.4 | 1.2 |
75% calcined clay | 22.75 | 75 | 0 | 1.5 | 0.75 |
90% calcined clay | 9.1 | 90 | 0 | 0.6 | 0.3 |
15% fly ash | 77.35 | 0 | 15 | 5.1 | 2.55 |
30% fly ash | 63.7 | 0 | 30 | 4.2 | 2.1 |
LC3 | 50 | 30 | 0 | 15 | 5 |
15% limestone | 80 | 0 | 0 | 15 | 5 |
Parameter | Property |
---|---|
x (µm) at Q3 = 10% | Particle diameter at which 10% of the particles are smaller, based on volume. |
X (µm) at Q3 = 50% | Particle diameter at which 50% of the particles are smaller, based on volume. |
X (µm) at Q3 = 90% | Particle diameter at which 90% of the particles are smaller, based on volume. |
SPHT | Sphericity = 4πA/P2; P—measured perimeter of a particle projection; A—measured area covered by a particle projection; for an ideal sphere, SPHT is expected to be 1. Otherwise, it is smaller than 1. |
Mean value SPHT3 | Mean value of sphericity, based on volume. |
Symm | Symmetry = 0.5 × (1 + min (r1/r2)); r1 and r2 are distances from the centre of area to the borders in the measuring direction. For asymmetric particles, Symm is <1. “Symm” is the minimum value of the measured set of symmetry values from different directions. |
Mean value Symm3 | Mean value of symmetry, based on volume. |
b/l | Aspect ratio = Xc min/XFe max, Xc min—the shortest chord out of the measured set of max. chords xc, Xfe max—the longest Feret diameter out of the measured set of Feret diameters. |
Mean value b/l3 | Mean value of aspect ratio, based on volume. |
Q0(x) | Cumulative distribution, based on a number of particles: number of particles smaller than x in proportion to the total number of particles. |
Q0 (x) | Density (frequency) distribution, based on the number of particles: first derivative of Q0(x). |
Q0–SPHT | Proportion of non-spherical particles, whose sphericity is smaller than a given threshold; based on number of particles. |
Parameter | OPC | Calcined Clay | Limestone | Gypsum |
---|---|---|---|---|
x (µm) at Q3 = 10% | 4.9 | 4.4 | 0.6 | 1.4 |
x (µm) at Q3 = 50% | 17.3 | 14.5 | 6.5 | 11.4 |
x (µm) at Q3 = 90% | 36.0 | 33.0 | 28.9 | 31.3 |
Mean value SPHT3 | 0.7967 | 0.8199 | 0.8455 | 0.8452 |
Mean value Symm3 | 0.8998 | 0.9074 | 0.9044 | 0.9110 |
Mean value b/l3 | 0.7729 | 0.7815 | 0.7694 | 0.7743 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fehervari, A.; Gates, W.P.; Gallage, C.; Collins, F. A Porous Stone Technique to Measure the Initial Water Uptake by Supplementary Cementitious Materials. Minerals 2021, 11, 1185. https://doi.org/10.3390/min11111185
Fehervari A, Gates WP, Gallage C, Collins F. A Porous Stone Technique to Measure the Initial Water Uptake by Supplementary Cementitious Materials. Minerals. 2021; 11(11):1185. https://doi.org/10.3390/min11111185
Chicago/Turabian StyleFehervari, Andras, Will P. Gates, Chathuranga Gallage, and Frank Collins. 2021. "A Porous Stone Technique to Measure the Initial Water Uptake by Supplementary Cementitious Materials" Minerals 11, no. 11: 1185. https://doi.org/10.3390/min11111185
APA StyleFehervari, A., Gates, W. P., Gallage, C., & Collins, F. (2021). A Porous Stone Technique to Measure the Initial Water Uptake by Supplementary Cementitious Materials. Minerals, 11(11), 1185. https://doi.org/10.3390/min11111185