A Review on Chemical versus Microbial Leaching of Electronic Wastes with Emphasis on Base Metals Dissolution
Abstract
:1. Introduction
2. Hydro-Metallurgical Applications in Metal Recovery
2.1. Chemical Leaching
2.1.1. Metal Leaching from Waste Printed Circuit Boards (WPCBs)
E-Waste | Chemical Concentration | Pulp Density | Temp | Stirring Rate | Leach Time | Metal Recovery | References |
---|---|---|---|---|---|---|---|
PCBs | 0.5 mol/dm3 HCl and 0.074 mol/dm3 FeCl3 | 1/10 S/L (w/v) | Room temp. | 600 rpm | 24 h | 96% Cu, 81% Sb | [31] |
4 g CS(NH2)2 + 2.6 g Fe2(SO4)3 + 3.6 N H2SO4 | 1/100 S/L (w/v) | 20 °C | 150 rpm | 7 h | 100% Cu, 100% Au, 100% Ag | [48] | |
1.17 M NaBr + 0.77 M Br2 + 2M HCl | 50 g/L | 23.5 °C | 400 rpm | 10 h | 95.21% Ni, 97.88% Cu, 92.50% Zn, 97.61% Pb, 96.79% Sn, 96.52% Ag, 95.59% Au | [32] | |
100 mM Fe2(SO4)3 | 10 g/L | 20 °C | 300 rpm | 4 h | 98% Cu | [44] | |
20 g/L Fe2(SO4)3 | 1% | 25 °C | 200 rpm | 48 h | 84.3% Cu, 98.4% Ni, 100% Zn, 100% Al | [49] | |
1 mol/L glycine + 10% H2O2 | 1/100 S/L ratio | 30 °C | 400 rpm | 8 h | 94.08% Cu | [36] | |
0.074 mol/L FeCl3 + 0.5 mol/L HCl | 1/10 S/L ratio | Room temp. | 600 rpm | 24 h | 96% Cu, 81% Sb | [31] | |
3.6 mol/L H2SO4 + 6% v/v H2O2 | 75 g/L | 20 °C | - | 186 min | 96% Cu | [33] | |
0.5 M glycine | 2% | 23 °C | 100 rpm | 72 h | 96.5% Cu, 92.5% Zn, 46.8% Pb | [50] | |
PCBs Sludge | 0.84 M H2SO4 | L/S ratio of 100:1 | 60 °C | 200 rpm | 80 min | 96% Cu | [51] |
0.2 M H2SO4 | 4% | 25 °C | 250 rpm | 1 h | 95% Cu | [52] | |
PCB dust | 2 M NH4OH + 17.5 M H2O2 | 1% | 40 °C | 400 rpm | 3 h | 92% Cu, 50% Zn | [39] |
LCD | 2 M H2SO4 | 0.1 kg/L | 80 °C | - | 10 min | 85–90% In | [53] |
6 M HCl | 1.9 to 33.3 L/kg | - | - | 2 h | 968.5 mg/kg In | [54] | |
1 M citrate + 0.2 M N2H4 | 20 g/L | 25 °C | 450 rpm | 16.6 h | 98.9% In | [27] | |
5 M HCl | 500 g/L | 75 °C | 400 rpm | 2 h | 10.24 × 10−3 g/L Sn, | [55] | |
76.16 × 10−3 g/L In | |||||||
1 mol/L H2SO4 | 1/8 S/L ratio | 70 °C | 320 rpm | 1 h | 97.07% Sn, 9.25% In | [56] | |
0.4 N H2SO4 | 50% | 70 °C | 250 rpm | 30 min | 99.5% In | [57] | |
0.5 M H2SO4 | 0.1 g/mL | 90 °C | 360 rpm | 2 h | 98% In | [58] | |
3M H2SO4 | 6/1 L/S ratio | 85 °C | 600 rpm | 10 min | 76.1% Sn, 86.3% In | [59] | |
LIBs | 2.75 mol/L H3PO4 | 6 mL/g L/S ratio | 40 °C | 450 rpm | 10 min | 96.3% Mn, 99.1% Li | [60] |
1.5 mol/L malonic acid + 0.5% H2O2 | 20 g/LS/L ratio | 70 °C | 300 rpm | 20 min | 98.27% Ni, 98.6% Co, 98.54% Mn, 95.74% Li | [61] | |
Alkaline batteries | 2 mol/L H2SO4 | 5 mL/g L/S ratio | 60 °C | - | 2 h | 98% Ni, 90% Mn, 97% Co | [38] |
H2SO4 | 10/1 L/S ratio | 60 °C | 300 rpm | 2 h | 99.2% Zn, 37.6% Mn | [62] | |
1.2 M glycine | 10% | 25 °C | 210 rpm | 150 min | 86% Cd | [63] | |
5M HNO3 | 1/35 S/L ratio | 70 °C | - | 180 min | 96.5% Cd | [64] | |
3M NaOH | L/S ratio = 50 | 70 °C | - | 3 h | 99.9% Al | [65] | |
6M H2SO4 | 1/10 S/L ratio | 93.2 °C | - | 148 min | 95.2% In | [66] |
2.1.2. Metal Leaching from Liquid Crystal Display (LCD) Panels
2.1.3. Metal Leaching from Spent Batteries and Solar Cells
2.1.4. Metal Leaching from By-Product of E-Waste Sources
2.2. Bioleaching
2.2.1. Bioleaching Mechanisms for Valuable Metals Recovery
Bacterial Mechanisms
E-Waste | Microorganisms | Growing Conditions | Optimum Bioleaching Conditions | Metal Recovery | References | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cell Con. | pH | Temp. | Stirring Rate | Cell Con. | pH | Pulp Density | Temp. | Stirring Rate | Time | ||||
PCBs | Acidithiobacillus ferrooxidans | 10% | NA | 30 °C | 170 rpm | 5% | 3 | 20 g/L | 30 °C | 170 rpm | 20 days | 100% Cu and Ni | [97] |
Acidithiobacillus ferrooxidans | 10% | NA | 30 °C | 170 rpm | 5% | 1 | 8.5 g/L | 30 °C | 170 rpm | 17 days | 100% of Cu and Ni | [98] | |
Acidithiobacillus ferrooxidans | NA | 1.75 | 35 °C | 150 rpm | 10% | 1.75 | 10 g/L | 30 °C | 150 rpm | 6 days | 94% Cu | [99] | |
Acidithiobacillus ferrivorans and Acidithiobacillus thiooxidans | 5% (v/v) | 2.5 | 30 °C | 150 rpm | 1.2 ± 0.4 × 108 CFU/mL | 1.0–1.6 | 10 g/L | 23 ± 2 °C | 150 rpm | 7 days | 98.4% Cu | [100] | |
Acidithiobacillus ferrooxidans | 5% (v/v) | 1.5 | 30 °C | 180 rpm | 5% | 1.5 | 18 g/L | 30 °C | 180 rpm | 64 h | 94.1% Cu | [101] | |
Acidithiobacillus ferrooxidans | 10% | 2 | 30 °C | 165 rpm | 10% | 2.25 | 2 g/L | 30 °C | 160 rpm | 78 h | 92.57% Cu | [82] | |
Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans | NA | 1.5–2.0 | 30 °C | 150 rpm | NA | 1.5 | 10 g/L | 30 °C | 150 rpm | 7 days | 95% Cu | [102] | |
Acidiphilium acidophilum | NA | 3.5 | 30 °C | 150 rpm | NA | 2.5 | 1 g/L | 30 °C | 170 rpm | 60 days | 79% Cu, 29% Zn, 10% Pb, 39% Ni | [89] | |
Acidithiobacillus ferrooxidans | 1 × 109 cells/mL | 2.5 | 30 °C | 170 rpm | NA | 2.5 | 7.5 g/L | 30 °C | 170 rpm | 18 days | 94% Cu, 92% Zn, 64% Pb, 81% Ni | [103] | |
Bacteria consortium dominated by Leptospirillum ferriphilum | 10% | 1.7–1.9 | 30 °C | 150 rpm | NA | 1.8 | 10 g/L | 30 ± 2 °C | 150 rpm | 2–4 days | >99% Cu, 29% Zn, 58% Ni | [104] | |
Leptospirillum feriphillum | 10% | 2.0 | 30 ± 2 °C | 150 rpm | 10% | 2 | 10 g/L | 30 ± 2 °C | 150 rpm | <4 days | >95% Cu, Zn, Ni | [105] | |
Acidithiobacillus ferrooxidans | 10% | NA | 30 °C | 130 rpm | 10% | 2 | 15 g/L | 30 °C | 130 rpm | 11–14 days | 99% Cu (11d), 98% Ni (14d) | [106] | |
Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans | 10% | 1.8 | 30 °C | 150 rpm | 10% | 1.8 | 10% | 30 °C | 150 rpm | 8 days | 98.1% Cu, 55.9% Al, 66.9% Zn, 79.5% Ni | [107] | |
Acidithiobacillus ferrooxidans | 10% | 1.2 | 35 °C | 250 rpm | NA | 0.6–1.2 | 1% | 25 °C | 200 rpm | 2 days | 86.17% Cu, 100% Al, 100% Ni, 100% Zn | [49] | |
Leptospirillum ferriphilum and Sulfobacillus benefaciens | 10% v/v | 1.3 | 35 °C | NA | NA | 1.5 | 1% (w/v) | 36 °C | 600 rpm | 2 days | 96% Cu, 73% Ni, 85% Zn, 93% Co | [108] | |
LCD | Acidothiobacillus ferrooxidans and Acidothiobacillus thiooxidans | NA | NA | 30 °C | NA | 10% | 1.9 | 2.5% (w/v) | 30 °C | NA | 14 days | 90.2% Sn | [109] |
Acidithiobacillus thiooxidans | 10% | 2 | 30 °C | 170 rpm | 10% | 2.6 | 1.6% (w/v) | 30 °C | 170 rpm | 15 days | 100% In, 10% Sr | [110] | |
Zn-Mn Batteries | Acidithiobacillus ferrooxidans | 5% | 2 | 30 °C | 140 rpm | NA | 2 | 10 g/L | 30 °C | 140 rpm | 21 days | 99% Zn, 53% Mn | [111] |
LIBs | Acidothiobacillus thiooxidans | 10% v/v | 4.5 | 30 °C | 200 rpm | NA | 2.4 | 0.25% | 30 °C | 200 rpm | 40 days | 22.6% Co, 66% Li | [112] |
Acidithiobacillus ferrooxidans, | 10% | 2 | 30 °C | 160 rpm | 10% | 1.93 | 100 g/L | 30 °C | 160 rpm | 3 days | 90% Ni, 92% Mn, 82% Co, 89% Li | [113] |
E-Waste | Microorganisms | Growing Conditions | Optimum Bioleaching Conditions | Metal Recovery | References | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inoc. | pH | Temp. | Stirring Rate | Cell Con. | pH | Pulp Density | Temp. | Stirring Rate | Time | ||||
E-Scrap | Sulfobacillus thermosulfdooxidans and Thermoplasma acidophilum | 10% | NA | 45 °C | 180 rpm | 10% w/v | 2 | 10% w/v | 45 °C | 180 rpm | 12 days | 90% Cu, 80% Al, 82% Ni, 85% Zn | [114] |
PCBs | Sulfobacillus thermosulfdooxidans | NA | 1.75 | 50 °C | 150 rpm | 10% | 1.75 | 10 g/L | 50 °C | 150 rpm | 6 days | 99% Cu | [99] |
Leptospirillum ferriphilum and Sulfobacillusthermosulfdooxidans | 10% | 0.9 | 42 °C | 200 rpm | 10% | 0.9 | 100 g/L | 32 °C | 180 rpm | 9 days | 93.4% Cu | [115] | |
LIBs | Leptospirillum ferriphilum sp. and Sulfobacillus thermosulfidooxidans spp. | 10% | 1.2 | 42 °C | 180 rpm | 10% | 1.2 | 15 g/L | 42 °C | 180 rpm | 3 days | 100.0% Li, 99.3% Co, | [116] |
Leptospirillum ferriphilum and Sulfobacillus thermosulfidooxidans | 10% | 1.25 | 42 °C | 180 r/min | NA | 1.25 | 5 g/L | 42 °C | 180 r/min | 1.5 days | 98.1% Li, 96.3% Co | [117] |
E-Waste | Microorganism | Growth Media | Energy Source | Optimum Bioleaching Conditions | Metal Recovery | References | ||||
---|---|---|---|---|---|---|---|---|---|---|
pH | Pulp Density | Temp | Stirring Rate | Time | ||||||
PCBs | Chromobacterium violaceum | LB medium | 0.5 g glycine | 7.2 | 1% w/v | 30 °C | 150 rpm | 7 days | 79% Cu, 46% Zn, 9% Fe, 69% Au, 7% Ag | [118] |
Chromobacterium violaceum and Pseudomonas aeruginosa | LB medium | 0.5 g glycine | 7.2. | 1% w/v | 30 °C | 150 rpm | 7 days | 83% Cu, 49% Zn, 13% Fe, 73% Au, 8% Ag | ||
Bacillus subtilis and Bacillus cereus | NA | NA | 6–8 | 10 g/ 150 mL | 37 °C | 120 rpm | 25 days | 48% Zn, 93% Cd | [119] | |
Bacillus megaterium | Nutrient broth medium | 0.5 g/L glycine | 10 | 2 g/L | 30 °C | 170 rpm | 10 days | 13.26% Cu, 36.81% Au | [120] | |
Aspergillus niger | PDA | 50 g/L glucose | 4.4 | NA | 28 °C | 280 rpm | 14 days | 29% Cu, 87% Au | [121] | |
Aspergillus niger | PDA | 100 g L−1 sucrose | NA | 0.5–20.00 g L−1 | Ambient temp | 120 rpm | 21 days | 100% Zn, 80.39% Ni, 85.88% Cu | [122] | |
Aspergillus niger | PDA | 20 g Dextrose | 5.0 | 2 g L−1 | 17–24 °C | NA | 35 days | 2.8% Cu, 0.53% Au | [123] | |
Streptomyces albidofavus | ISP 2 broth medium | NA | NA | 1.5% | 28 °C | 120 rpm | 5 days | 66% Al, 74% Ca, 68% Cu, 65% Cd, 42% Fe, 81% Ni, 82% Zn, 46% Pb | [124] | |
LIBs | Aspergillus niger MM1 | Sucrose medium | 100 g/L sucrose | 6. | 0.25% | 30 °C | 200 rpm | 40 days | 82% Co, 100% Li | [112] |
Ni-Cd Batteries | Aspergillus niger | RB medium | NA | NA | 0.3 g/80 mL | 28 °C | 150 rpm | 21 days | 81.41% Ni, 92.31% Cd | [125] |
LCD | Aspergillus niger | PDA | 100 g/L Sucrose | 4.0 | 1% (w/v) | 70 °C | 125 rpm | 90 min | 100% In | [126] |
AMOLED Displays | Bacillus foraminis | TSA and TSB | 15% glycerol | 7.7 | 7% | 40 °C | 160 rpm | 12 days | 56.8% Mo, 41.4% Cu, 100% Ag | [127] |
Solar Cells | Penicillium chrysogenum | Sucrose medium | 100 g/L sucrose | NA | 1% (w/v) | 20 °C | 200 rpm | 3 days | 100% Te, 98% Al | [128] |
Fungal Mechanism
2.2.2. Bioleaching of Metals from Waste Printed Circuit Boards (PCBs)
2.2.3. Bioleaching of Metals from Spent Batteries
2.2.4. Bioleaching of Metals from LCD/LED Panels
2.2.5. Bioleaching of Spent Solar Panels and Some By-Products of E-Waste Resources
3. Integrated/Hybrid Approaches
4. Challenges, Future Prospects and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panda, S.; Pradhan, N.; Mohapatra, U.; Panda, S.K.; Rath, S.S.; Rao, D.S.; Nayak, B.D.; Sukla, L.B.; Mishra, B.K. Bioleaching of copper from pre and post thermally activated low grade chalcopyrite contained ball mill spillage. Front. Environ. Sci. Eng. 2013, 7, 281–293. [Google Scholar] [CrossRef]
- Sukla, L.B.; Pradhan, N.; Panda, S.; Mishra, B.K. Environmental Microbial Biotechnology. In Soil Biology; Sukla, L.B., Pradhan, N., Sandeep Panda, B.K.M., Eds.; Springer: Cham, Switzerland, 2015; ISBN 978-3-319-19017-4. [Google Scholar]
- Erust, C.; Akcil, A.; Tuncuk, A.; Deveci, H.; Yazici, E.Y.; Panda, S. A novel approach based on solvent displacement crystallisation for iron removal and copper recovery from solutions of semi-pilot scale bioleaching of WPCBs. J. Clean. Prod. 2021, 294, 126346. [Google Scholar] [CrossRef]
- Zeng, X.; Mathews, J.A.; Li, J. Urban Mining of E-Waste is Becoming More Cost-Effective Than Virgin Mining. Environ. Sci. Technol. 2018, 52, 4835–4841. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, F.; Lindberg, D.; Hamuyuni, J.; Taskinen, P.; Hupa, L. Improving urban mining practices for optimal recovery of resources from e-waste. Miner. Eng. 2017, 111, 209–221. [Google Scholar] [CrossRef]
- Panda, S.; Akcil, A. Securing supplies of technology critical metals: Resource recycling and waste management. Waste Manag. 2021, 123, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Holuszko, M.; Espinosa, D.C.R. E-waste: An overview on generation, collection, legislation and recycling practices. Resour. Conserv. Recycl. 2017, 122, 32–42. [Google Scholar] [CrossRef]
- Ahirwar, R.; Tripathi, A.K. E-waste management: A review of recycling process, environmental and occupational health hazards, and potential solutions. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100409. [Google Scholar] [CrossRef]
- Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows, and the Circular Economy Potential; International Telecommunication Union, United Nations Institute for Training and Research, United Nations University: Bonn, Germany; Geneva, Switzerland; International Solid Waste Association: Rotterdam, The Netherlands, 2020; ISBN 9789280891140. [Google Scholar]
- Charles, R.G.; Douglas, P.; Dowling, M.; Liversage, G.; Davies, M.L. Towards increased recovery of Critical Raw Materials from WEEE—Evaluation of CRMs at a component level and pre-processing methods for interface optimization with recovery processes. Resour. Conserv. Recycl. 2020, 104923. [Google Scholar] [CrossRef]
- Kaya, M. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manag. 2016, 57, 64–90. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Lenny Koh, S.C.; Rosa, P. Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renew. Sustain. Energy Rev. 2015, 51, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Işıldar, A.; van Hullebusch, E.D.; Lenz, M.; Du Laing, G.; Marra, A.; Cesaro, A.; Panda, S.; Akcil, A.; Kucuker, M.A.; Kuchta, K. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)—A review. J. Hazard. Mater. 2019, 362, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Ilankoon, I.M.S.K.; Ghorbani, Y.; Chong, M.N.; Herath, G.; Moyo, T.; Petersen, J. E-waste in the international context—A review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Manag. 2018, 82, 258–275. [Google Scholar] [CrossRef] [PubMed]
- Baldé, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. The Global E-Waste Monitor—2017: Quantities, Flows, and Resources; United Nations University (UNU): Bonn, Germany; Geneva, Switzerland; Vienna, Austria, 2017. [Google Scholar]
- Baldé, C.P.; Wang, F.; Kuehr, R.; Huisman, J. The Global E-Waste Monitor—2014: Quantities, Flows and Resources; United Nations University (UNU): Tokyo, Japan; Bonn, Germany, 2015. [Google Scholar]
- Akcil, A.; Sun, Z.; Panda, S. COVID-19 disruptions to tech-metals supply are a wake-up call. Nature 2020, 587, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Wang, Z.; Cao, H.; Son, Y.; Zhang, Y.; Sun, Z. A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6, 1504–1521. [Google Scholar] [CrossRef]
- Abdelbasir, S.M.; El-Sheltawy, C.T.; Abdo, D.M. Green Processes for Electronic Waste Recycling: A Review. J. Sustain. Metall. 2018, 4, 295–311. [Google Scholar] [CrossRef]
- Zang, L.; Xu, Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. J. Clean. Prod. 2016, 127, 19–36. [Google Scholar] [CrossRef]
- Tansel, B. From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges. Environ. Int. 2017, 98, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Akcil, A.; Ibrahim, Y.A.; Meshram, P.; Panda, S.; Abhilash. Hydrometallurgical recycling strategies for recovery of rare earth elements from consumer electronic scraps: A review. J. Chem. Technol. Biotechnol. 2021, 96, 1785–1797. [Google Scholar] [CrossRef]
- Panda, S.; Costa, R.B.; Shah, S.S.; Mishra, S.; Bevilaqua, D.; Akcil, A. Biotechnological trends and market impact on the recovery of rare earth elements from bauxite residue (red mud)—A review. Resour. Conserv. Recycl. 2021, 171, 105645. [Google Scholar] [CrossRef]
- OHSA Guidance for the Identification and Control of Safety and Health Hazards in Metal Scrap Recycling. Available online: https://www.osha.gov/sites/default/files/publications/OSHA3348-metal-scrap-recycling.pdf (accessed on 1 October 2021).
- Farjana, S.H.; Huda, N.; Mahmud, M.A.P. Life cycle analysis of copper-gold-lead-silver-zinc beneficiation process. Sci. Total Environ. 2019, 659, 41–52. [Google Scholar] [CrossRef]
- Innocenzi, V.; De Michelis, I.; Kopacek, B.; Vegliò, F. Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes. Waste Manag. 2014, 34, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- López-Yáñez, A.; Alonso, A.; Vengoechea-Pimienta, A.; Ramírez-Muñoz, J. Indium and tin recovery from waste LCD panels using citrate as a complexing agent. Waste Manag. 2019, 96, 181–189. [Google Scholar] [CrossRef]
- Pavón, S.; Lorenz, T.; Fortuny, A.; Sastre, A.M.; Bertau, M. Rare earth elements recovery from secondary wastes by solid-state chlorination and selective organic leaching. Waste Manag. 2021, 122, 55–63. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Xu, Q.; Li, W.; Dong, Q.; Sun, W. One-step separation and recovery of rare earth and iron from NdFeB slurry via phosphoric acid leaching. J. Rare Earths 2021. [Google Scholar] [CrossRef]
- Lee, H.; Mishra, B. Selective recovery and separation of copper and iron from fine materials of electronic waste processing. Miner. Eng. 2018, 123, 1–7. [Google Scholar] [CrossRef]
- Barragan, J.A.; Ponce De León, C.; Alemán Castro, J.R.; Peregrina-Lucano, A.; Gómez-Zamudio, F.; Larios-Durán, E.R. Copper and Antimony Recovery from Electronic Waste by Hydrometallurgical and Electrochemical Techniques. ACS Omega 2020, 5, 12355–12363. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Anderson, C. Hydrometallurgical Treatment of Waste Printed Circuit Boards: Bromine Leaching. Metals 2020, 10, 462. [Google Scholar] [CrossRef] [Green Version]
- Rajahalme, J.; Perämäki, S.; Budhathoki, R.; Väisänen, A. Effective Recovery Process of Copper from Waste Printed Circuit Boards Utilizing Recycling of Leachate. JOM 2021, 73, 980–987. [Google Scholar] [CrossRef]
- Petter, P.M.H.; Veit, H.M.; Bernardes, A.M. Evaluation of gold and silver leaching from printed circuit board of cellphones. Waste Manag. 2014, 34, 475–482. [Google Scholar] [CrossRef]
- Xiu, F.R.; Qi, Y.; Zhang, F.S. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment. Waste Manag. 2015, 41, 134–141. [Google Scholar] [CrossRef]
- Han, Y.; Yi, X.; Wang, R.; Huang, J.; Chen, M.; Sun, Z.; Sun, S.; Shu, J. Copper extraction from waste printed circuit boards by glycine. Sep. Purif. Technol. 2020, 253, 117463. [Google Scholar] [CrossRef]
- Elbashier, E.; Mussa, A.; Hafiz, M.A.; Hawari, A.H. Recovery of rare earth elements from waste streams using membrane processes: An overview. Hydrometallurgy 2021, 204, 105706. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, P.; Chang, D.; Jie, Y.; Yang, S.; Wu, G.; Chen, H.; Zhu, J.; Hu, F.; Wilson, B.P.; et al. Selective extraction of valuable metals from spent EV power batteries using sulfation roasting and two stage leaching process. Sep. Purif. Technol. 2021, 258, 118078. [Google Scholar] [CrossRef]
- Oluokun, O.O.; Otunniyi, I.O. Kinetic analysis of Cu and Zn dissolution from printed circuit board physical processing dust under oxidative ammonia leaching. Hydrometallurgy 2020, 193, 105320. [Google Scholar] [CrossRef]
- Oraby, E.A.; Li, H.; Eksteen, J.J. An Alkaline Glycine-Based Leach Process of Base and Precious Metals from Powdered Waste Printed Circuit Boards. Waste Biomass Valorization 2020, 11, 3897–3909. [Google Scholar] [CrossRef]
- Zhou, L.-F.; Yang, D.; Du, T.; Gong, H.; Luo, W.-B. The Current Process for the Recycling of Spent Lithium Ion Batteries. Front. Chem. 2020, 8, 578044. [Google Scholar] [CrossRef] [PubMed]
- Akcil, A.; Erust, C.; Gahan, C.S.; Ozgun, M.; Sahin, M.; Tuncuk, A. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants—A review. Waste Manag. 2015, 45, 258–271. [Google Scholar] [CrossRef]
- Sun, Z.; Cao, H.; Xiao, Y.; Sietsma, J.; Jin, W.; Agterhuis, H.; Yang, Y. Toward Sustainability for Recovery of Critical Metals from Electronic Waste: The Hydrochemistry Processes. ACS Sustain. Chem. Eng. 2017, 5, 21–40. [Google Scholar] [CrossRef]
- Sethurajan, M.; van Hullebusch, E.D.; Fontana, D.; Akcil, A.; Deveci, H.; Batinic, B.; Leal, J.P.; Gasche, T.A.; Kucuker, M.A.; Kuchta, K.; et al. Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes—A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 212–275. [Google Scholar] [CrossRef] [Green Version]
- Gorewoda, T.; Eschen, M.; Charasińska, J.; Knapik, M.; Kozłowicz, S.; Anyszkiewicz, J.; Jadwiński, M.; Potempa, M.; Gawliczek, M.; Chmielarz, A.; et al. Determination of Metals’ Content in Components Mounted on Printed Circuit Boards from End-of-Life Mobile Phones. Recycling 2020, 5, 20. [Google Scholar] [CrossRef]
- Terena, L.M.; Almeida Neto, A.F.; Gimenes, M.L.; Vieira, M.G.A. Characterisation of Printed Circuit Boards of Mobile Phones Discarded in Brazil. Chem. Eng. Trans. 2017, 56, 1945–1950. [Google Scholar] [CrossRef]
- Calvo, G.; Mudd, G.; Valero, A.; Valero, A. Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality? Resources 2016, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Tang, L.W.; Popuri, S.R. A study on the recycling of scrap integrated circuits by leaching. Waste Manag. Res. 2011, 29, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Van Yken, J.; Cheng, K.Y.; Boxall, N.J.; Nikoloski, A.N.; Moheimani, N.; Valix, M.; Sahajwalla, V.; Kaksonen, A.H. Potential of metals leaching from printed circuit boards with biological and chemical lixiviants. Hydrometallurgy 2020, 196, 105433. [Google Scholar] [CrossRef]
- Li, H.; Oraby, E.; Eksteen, J. Extraction of copper and the co-leaching behaviour of other metals from waste printed circuit boards using alkaline glycine solutions. Resour. Conserv. Recycl. 2020, 154, 104624. [Google Scholar] [CrossRef]
- Thawornchaisit, U.; Juthaisong, K.; Parsongjeen, K.; Phoengchan, P. Optimizing acid leaching of copper from the wastewater treatment sludge of a printed circuit board industry using factorial experimental design. J. Mater. Cycles Waste Manag. 2019, 21. [Google Scholar] [CrossRef]
- Trinh, H.B.; Kim, S.; Lee, J. Selective Copper Recovery by Acid Leaching from Printed Circuit Board Waste Sludge. Metals 2020, 10, 293. [Google Scholar] [CrossRef] [Green Version]
- Rocchetti, L.; Amato, A.; Fonti, V.; Ubaldini, S.; De Michelis, I.; Kopacek, B.; Vegliò, F.; Beolchini, F. Cross-current leaching of indium from end-of-life LCD panels. Waste Manag. 2015, 42, 180–187. [Google Scholar] [CrossRef]
- Dodbiba, G.; Nagai, H.; Wang, L.P.; Okaya, K.; Fujita, T. Leaching of indium from obsolete liquid crystal displays: Comparing grinding with electrical disintegration in context of LCA. Waste Manag. 2012, 32, 1937–1944. [Google Scholar] [CrossRef] [PubMed]
- Swain, B.; Mishra, C.; Hong, H.S.; Cho, S.S. Beneficiation and recovery of indium from liquid-crystal-display glass by hydrometallurgy. Waste Manag. 2016, 57, 207–214. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, L.; Xu, Z. Indium recovery from In-Sn-Cu-Al mixed system of waste liquid crystal display panels via acid leaching and two-step electrodeposition. J. Hazard. Mater. 2020, 381, 120973. [Google Scholar] [CrossRef] [PubMed]
- Houssaine Moutiy, E.; Tran, L.H.; Mueller, K.K.; Coudert, L.; Blais, J.F. Optimized indium solubilization from LCD panels using H2SO4 leaching. Waste Manag. 2020, 114, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.F.; Wang, S.Y.; Lo, S.L. Indium recovery from spent liquid crystal displays by using hydrometallurgical methods and microwave pyrolysis. Chemosphere 2021, 280, 130905. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Ning, S.; Fujita, T.; Wei, Y.; Zhang, S.; Lu, S. Leaching of indium and tin from waste LCD by a time-efficient method assisted planetary high energy ball milling. Waste Manag. 2021, 120, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, W.; Hu, J.; Zhang, T.; Xu, S. Stepwise Recovery of Valuable Metals from Spent Lithium Ion Batteries by Controllable Reduction and Selective Leaching and Precipitation. ACS Sustain. Chem. Eng. 2020, 8, 15496–15506. [Google Scholar] [CrossRef]
- Fan, E.; Yang, J.; Huang, Y.; Lin, J.; Arshad, F.; Wu, F.; Li, L.; Chen, R. Leaching Mechanisms of Recycling Valuable Metals from Spent Lithium-Ion Batteries by a Malonic Acid-Based Leaching System. ACS Appl. Energy Mater. 2020, 3, 8532–8542. [Google Scholar] [CrossRef]
- Andak, B.; Özduǧan, E.; Türdü, S.; Bulutcu, A.N. Recovery of zinc and manganese from spent zinc-carbon and alkaline battery mixtures via selective leaching and crystallization processes. J. Environ. Chem. Eng. 2019, 7, 103372. [Google Scholar] [CrossRef]
- Oghabi, H.; Haghshenas, D.F.; Firoozi, S. Selective separation of Cd from spent Ni-Cd battery using glycine as an eco-friendly leachant and its recovery as CdS nanoparticles. Sep. Purif. Technol. 2020, 242, 116832. [Google Scholar] [CrossRef]
- Saleh, M.M.; Bamsaoud, S.F.; Barfed, H.M. Optimization of nitric acid properties for chemical recycling of cadmium from spent Ni-Cd batteries. J. Phys. Conf. Ser. 2021, 1900, 12018. [Google Scholar] [CrossRef]
- Chen, W.-S.; Chen, Y.-J.; Yueh, K.-C.; Cheng, C.-P.; Chang, T.-C. Recovery of valuable metal from Photovoltaic solar cells through extraction. IOP Conf. Ser. Mater. Sci. Eng. 2020, 720, 12007. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, M.; Wang, L.; Chen, T.; Zhao, L.; Hu, Y.; Xu, C. Optimization of indium recovery from waste crystalline silicon heterojunction solar cells by acid leaching. Sol. Energy Mater. Sol. Cells 2021, 230, 111218. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Ma, B.; Jie, X.; Xing, P. Extracting antimony from high arsenic and gold-containing stibnite ore using slurry electrolysis. Hydrometallurgy 2019, 186, 284–291. [Google Scholar] [CrossRef]
- Tran, C.D.; Salhofer, S.P. Processes in informal end-processing of e-waste generated from personal computers in Vietnam. J. Mater. Cycles Waste Manag. 2018, 20, 1154–1178. [Google Scholar] [CrossRef] [Green Version]
- Borsook, H.; MacFadyen, D.A. The Effect Of Isoelectric Amino Acids On The Ph+ Of A Phosphate Buffer Solution: A Contribittion In Support Of The “Zwitter Ion” Hypothesis. J. Gen. Physiol. 1930, 13, 509–527. [Google Scholar] [CrossRef] [PubMed]
- Alfantazi, A.M.; Moskalyk, R.R. Processing of indium: A review. Miner. Eng. 2003, 16, 687–694. [Google Scholar] [CrossRef]
- U.S. Customs and Border Protection (CBP). Household Articles of Base Metal. Available online: https://www.cbp.gov/sites/default/files/documents/icp079_3.pdf (accessed on 1 October 2021).
- Akcil, A.; Agcasulu, I.; Swain, B. Valorization of waste LCD and recovery of critical raw material for circular economy: A review. Resour. Conserv. Recycl. 2019, 149, 622–637. [Google Scholar] [CrossRef]
- Domingos, L.F.T.; Azevedo, A.G.S.; Lombardi, C.T.; Strecker, K. Corrosion resistance of fly ash-based geopolymer in hydrochloric and sulfuric acid solutions. Cerâmica 2020, 66, 394–403. [Google Scholar] [CrossRef]
- Tran, L.-H.; Tanong, K.; Jabir, A.D.; Mercier, G.; Blais, J.-F. Hydrometallurgical Process and Economic Evaluation for Recovery of Zinc and Manganese from Spent Alkaline Batteries. Metals 2020, 10, 1175. [Google Scholar] [CrossRef]
- Nain, P.; Kumar, A. Metal dissolution from end-of-life solar photovoltaics in real landfill leachate versus synthetic solutions: One-year study. Waste Manag. 2020, 114, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.B.; Vanapalli, K.R.; Barnwal, V.K.; Dubey, B.; Bhattacharya, J. Evaluation of heavy metal leaching under simulated disposal conditions and formulation of strategies for handling solar panel waste. Sci. Total Environ. 2021, 780, 146645. [Google Scholar] [CrossRef]
- Parize, R.; Katerski, A.; Gromyko, I.; Rapenne, L.; Roussel, H.; Kärber, E.; Appert, E.; Krunks, M.; Consonni, V. ZnO/TiO2/Sb2S3 Core-Shell Nanowire Heterostructure for Extremely Thin Absorber Solar Cells. J. Phys. Chem. C 2017, 121. [Google Scholar] [CrossRef]
- Dias, P.; Javimczik, S.; Benevit, M.; Veit, H.; Bernardes, A.M. Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste Manag. 2016, 57, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.K.; Kim, H.S.; Tran, T.; Hong, S.K.; Kim, M.J. Recovering valuable metals from recycled photovoltaic modules. J. Air Waste Manag. Assoc. 2014, 64, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Park, J.; Park, N. A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers. Sol. Energy Mater. Sol. Cells 2017, 162, 1–6. [Google Scholar] [CrossRef]
- Wongnaree, N.; Kritsarikun, W.; Ma-ud, N.; Kansomket, C.; Udomphol, T.; Khumkoa, S. Recovery of Silver from Solar Panel Waste: An Experimental Study. Mater. Sci. Forum 2020, 1009, 137–142. [Google Scholar] [CrossRef]
- Yang, E.H.; Lee, J.K.; Lee, J.S.; Ahn, Y.S.; Kang, G.H.; Cho, C.H. Environmentally friendly recovery of Ag from end-of-life c-Si solar cell using organic acid and its electrochemical purification. Hydrometallurgy 2017, 167, 129–133. [Google Scholar] [CrossRef]
- Hu, S.H.; Tsai, M.S.; Yen, F.S.; Onlin, T. Recovery of copper-contaminated sludge in a two-stage leaching process. Environ. Prog. 2006, 25, 72–78. [Google Scholar] [CrossRef]
- Panda, S.; Rout, P.C.; Sarangi, C.K.; Mishra, S.; Pradhan, N.; Mohapatra, U.; Subbaiah, T.; Sukla, L.B.; Mishra, B.K. Recovery of copper from a surface altered chalcopyrite contained ball mill spillage through bio-hydrometallurgical route. Korean J. Chem. Eng. 2014, 31, 452–460. [Google Scholar] [CrossRef]
- Baniasadi, M.; Vakilchap, F.; Bahaloo-Horeh, N.; Mousavi, S.M.; Farnaud, S. Advances in bioleaching as a sustainable method for metal recovery from e-waste: A review. J. Ind. Eng. Chem. 2019, 76, 75–90. [Google Scholar] [CrossRef]
- Panda, S.; Akcil, A.; Pradhan, N.; Deveci, H. Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology. Bioresour. Technol. 2015, 196, 694–706. [Google Scholar] [CrossRef]
- Panda, S.; Mishra, S.; Akcil, A. Bioremediation of acidic mine effluents and the role of sulfidogenic biosystems: A mini-review. Euro-Mediterr. J. Environ. Integr. 2016, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Panda, S. Magnetic separation of ferrous fractions linked to improved bioleaching of metals from waste-to-energy incinerator bottom ash (IBA): A green approach. Environ. Sci. Pollut. Res. 2020, 27, 9475–9489. [Google Scholar] [CrossRef]
- Priya, A.; Hait, S. Feasibility of Bioleaching of Selected Metals from Electronic Waste by Acidiphilium acidophilum. Waste Biomass Valorization 2017, 9, 871–877. [Google Scholar] [CrossRef]
- Glombitza, F.; Reichel, S. Metal-containing residues from industry and in the environment: Geobiotechnological urban mining. Adv. Biochem. Eng. Biotechnol. 2014, 141, 49–107. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, S.; Lee, J. Biometallurgical Recovery of Metals from Waste Electrical and Electronic Equipment: A Review. ChemBioEng Rev. 2014, 1, 148–169. [Google Scholar] [CrossRef]
- Islam, A.; Ahmed, T.; Awual, M.R.; Rahman, A.; Sultana, M.; Aziz, A.A.; Monir, M.U.; Teo, S.H.; Hasan, M. Advances in sustainable approaches to recover metals from e-waste—A review. J. Clean. Prod. 2020, 244, 118815. [Google Scholar] [CrossRef]
- Gu, W.; Bai, J.; Dong, B.; Zhuang, X.; Zhao, J.; Zhang, C.; Wang, J.; Shih, K. Enhanced bioleaching efficiency of copper from waste printed circuit board driven by nitrogen-doped carbon nanotubes modified electrode. Chem. Eng. J. 2017, 324, 122–129. [Google Scholar] [CrossRef]
- Panda, S.; Akcil, A.; Mishra, S.; Erust, C. A novel bioreactor system for simultaneous mutli-metal leaching from industrial pyrite ash: Effect of agitation and sulphur dosage. J. Hazard. Mater. 2018, 342, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bai, J.; Xu, J.; Liang, B. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. J. Hazard. Mater. 2009, 172, 1100–1105. [Google Scholar] [CrossRef]
- Sand, W.; Gehrke, T.; Jozsa, P.G.; Schippers, A. (Bio)chemistry of bacterial leaching—Direct vs. indirect bioleaching. Hydrometallurgy 2001, 59, 159–175. [Google Scholar] [CrossRef]
- Arshadi, M.; Mousavi, S.M. Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: Statistical evaluation and optimization. Bioresour. Technol. 2014, 174, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Arshadi, M.; Mousavi, S.M. Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: Simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Sep. Purif. Technol. 2015, 147, 210–219. [Google Scholar] [CrossRef]
- Rodrigues, M.L.M.; Leão, V.A.; Gomes, O.; Lambert, F.; Bastin, D.; Gaydardzhiev, S. Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor. Waste Manag. 2015, 41, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Işıldar, A.; van de Vossenberg, J.; Rene, E.R.; van Hullebusch, E.D.; Lens, P.N.L. Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag. 2016, 57, 149–157. [Google Scholar] [CrossRef]
- Liang, G.; Li, P.; Liu, W.; Wang, B. Enhanced bioleaching efficiency of copper from waste printed circuit boards (PCBs) by dissolved oxygen-shifted strategy in Acidithiobacillus ferrooxidans. J. Mater. Cycles Waste Manag. 2016, 18, 742–751. [Google Scholar] [CrossRef]
- Wang, S.; Chen, L.; Zhou, X.; Yan, W.; Ding, R.; Chen, B.; Wang, C.T.; Zhao, F. Enhanced bioleaching efficiency of copper from printed circuit boards without iron loss. Hydrometallurgy 2018, 180, 65–71. [Google Scholar] [CrossRef]
- Priya, A.; Hait, S. Extraction of metals from high grade waste printed circuit board by conventional and hybrid bioleaching using Acidithiobacillus ferrooxidans. Hydrometallurgy 2018, 177, 132–139. [Google Scholar] [CrossRef]
- Khatri, B.R.; Sodha, A.B.; Shah, M.B.; Tipre, D.R.; Dave, S.R. Chemical and microbial leaching of base metals from obsolete cell-phone printed circuit boards. Sustain. Environ. Res. 2018, 28, 333–339. [Google Scholar] [CrossRef]
- Sodha, A.B.; Qureshi, S.A.; Khatri, B.R.; Tipre, D.R.; Dave, S.R. Enhancement in Iron Oxidation and Multi-metal Extraction from Waste Television Printed Circuit Boards by Iron Oxidizing Leptospirillum feriphillum Isolated from Coal Sample. Waste Biomass Valorization 2019, 10, 671–680. [Google Scholar] [CrossRef]
- Arshadi, M.; Yaghmaei, S. Bioleaching of Basic Metals from Electronic Waste PCBs. J. Min. Mech. Eng. 2020, 1, 51–58. [Google Scholar]
- Erust, C.; Akcil, A.; Tuncuk, A.; Panda, S. Intensified acidophilic bioleaching of multi-metals from waste printed circuit boards (WPCBs) of spent mobile phones. J. Chem. Technol. Biotechnol. 2020, 95, 2272–2285. [Google Scholar] [CrossRef]
- Hubau, A.; Minier, M.; Chagnes, A.; Joulian, C.; Silvente, C.; Guezennec, A.-G. Recovery of metals in a double-stage continuous bioreactor for acidic bioleaching of printed circuit boards (PCBs). Sep. Purif. Technol. 2020, 238, 116481. [Google Scholar] [CrossRef]
- Willner, J.; Fornalczyk, A.; Gajda, B.; Saternus, M. Bioleaching of indium and tin from used LCD panels. Physicochem. Probl. Miner. Process. 2018, 54, 639–645. [Google Scholar] [CrossRef]
- Jowkar, M.J.; Bahaloo-Horeh, N.; Mousavi, S.M.; Pourhossein, F. Bioleaching of indium from discarded liquid crystal displays. J. Clean. Prod. 2018, 180, 417–429. [Google Scholar] [CrossRef]
- Sadeghabad, M.S.; Bahaloo-Horeh, N.; Mousavi, S.M. Using bacterial culture supernatant for extraction of manganese and zinc from waste alkaline button-cell batteries. Hydrometallurgy 2019, 188, 81–91. [Google Scholar] [CrossRef]
- Biswal, B.K.; Jadhav, U.U.; Madhaiyan, M.; Ji, L.; Yang, E.H.; Cao, B. Biological Leaching and Chemical Precipitation Methods for Recovery of Co and Li from Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6, 12343–12352. [Google Scholar] [CrossRef]
- Jegan Roy, J.; Srinivasan, M.; Cao, B. Bioleaching as an Eco-Friendly Approach for Metal Recovery from Spent NMC-Based Lithium-Ion Batteries at a High Pulp Density. ACS Sustain. Chem. Eng. 2021, 9, 3060–3069. [Google Scholar] [CrossRef]
- Ilyas, S.; Lee, J.C.; Chi, R.A. Bioleaching of metals from electronic scrap and its potential for commercial exploitation. Hydrometallurgy 2013, 131–132, 138–143. [Google Scholar] [CrossRef]
- Wu, W.; Liu, X.; Zhang, X.; Zhu, M.; Tan, W. Bioleaching of copper from waste printed circuit boards by bacteria-free cultural supernatant of iron–sulfur-oxidizing bacteria. Bioresour. Bioprocess. 2018, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Liu, X.; Zhang, X.; Li, X.; Qiu, Y.; Zhu, M.; Tan, W. Mechanism underlying the bioleaching process of LiCoO2 by sulfur-oxidizing and iron-oxidizing bacteria. J. Biosci. Bioeng. 2019, 128, 344–354. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Wu, W.; Zhang, X.; Gu, T.; Zhu, M.; Tan, W. Oxidative Stress Induced by Metal Ions in Bioleaching of LiCoO2 by an Acidophilic Microbial Consortium. Front. Microbiol. 2020, 10, 3058. [Google Scholar] [CrossRef]
- Pradhan, J.K.; Kumar, S. Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manag. Res. 2012, 30, 1151–1159. [Google Scholar] [CrossRef]
- Karwowska, E.; Andrzejewska-Morzuch, D.; Łebkowska, M.; Tabernacka, A.; Wojtkowska, M.; Telepko, A.; Konarzewska, A. Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria. J. Hazard. Mater. 2014, 264, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Arshadi, M.; Mousavi, S.M. Enhancement of simultaneous gold and copper extraction from computer printed circuit boards using Bacillus megaterium. Bioresour. Technol. 2015, 175, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Madrigal-Arias, J.E.; Argumedo-Delira, R.; Alarcón, A.; Mendoza-López, M.R.; García-Barradas, O.; Cruz-Sánchez, J.S.; Ferrera-Cerrato, R.; Jiménez-Fernández, M. Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus niger strains. Braz. J. Microbiol. 2015, 46, 707–713. [Google Scholar] [CrossRef]
- Faraji, F.; Golmohammadzadeh, R.; Rashchi, F.; Alimardani, N. Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics. J. Environ. Manag. 2018, 217, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Martínez, M.E.; Argumedo-Delira, R.; Sánchez-Viveros, G.; Alarcón, A.; Mendoza-López, M.R. Microbial Bioleaching of Ag, Au and Cu from Printed Circuit Boards of Mobile Phones. Curr. Microbiol. 2019, 76, 536–544. [Google Scholar] [CrossRef]
- Kaliyaraj, D.; Rajendran, M.; Angamuthu, V.; Antony, A.R.; Kaari, M.; Thangavel, S.; Venugopal, G.; Joseph, J.; Manikkam, R. Bioleaching of heavy metals from printed circuit board (PCB) by Streptomyces albidoflavus TN10 isolated from insect nest. Bioresour. Bioprocess. 2019, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Netpae, T.; Suckley, S. Comparison of three culture media for one-step and two-step bioleaching of nickel and cadmium from spent Ni-Cd batteries by Aspergillus niger. Adv. Environ. Technol. 2020, 6, 167–172. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, N.; Mao, F.; Wu, P.; Dang, Z. Bioleaching of indium from waste LCD panels by Aspergillus niger: Method optimization and mechanism analysis. Sci. Total Environ. 2021, 790, 148151. [Google Scholar] [CrossRef] [PubMed]
- Golzar-Ahmadi, M.; Mousavi, S.M. Extraction of valuable metals from discarded AMOLED displays in smartphones using Bacillus foraminis as an alkali-tolerant strain. Waste Manag. 2021, 131, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Chakankar, M.; Su, C.H.; Hocheng, H. Leaching of metals from end-of-life solar cells. Environ. Sci. Pollut. Res. 2019, 26, 29524–29531. [Google Scholar] [CrossRef] [PubMed]
- Bas, A.D.; Deveci, H.; Yazici, E.Y. Bioleaching of copper from low grade scrap TV circuit boards using mesophilic bacteria. Hydrometallurgy 2013, 138, 65–70. [Google Scholar] [CrossRef]
- Annamalai, M.; Gurumurthy, K. Enhanced bioleaching of copper from circuit boards of computer waste by Acidithiobacillus ferrooxidans. Environ. Chem. Lett. 2019, 17, 1873–1879. [Google Scholar] [CrossRef]
- Gu, W.; Bai, J.; Lu, L.; Zhuang, X.; Zhao, J.; Yuan, W.; Zhang, C.; Wang, J. Improved bioleaching efficiency of metals from waste printed circuit boards by mechanical activation. Waste Manag. 2019, 98, 21–28. [Google Scholar] [CrossRef]
- Wei, X.; Dongfang, L.; Huang, W.; Huang, W.; Lei, Z. Simultaneously enhanced Cu bioleaching from E-wastes and recovered Cu ions by direct current electric field in a bioelectrical reactor. Bioresour. Technol. 2020, 298, 122566. [Google Scholar] [CrossRef]
- Jagannath, A.; Vidya Shetty, K.; Saidutta, M.B. Bioleaching of copper from electronic waste using Acinetobacter sp. Cr B2 in a pulsed plate column operated in batch and sequential batch mode. J. Environ. Chem. Eng. 2017, 5, 1599–1607. [Google Scholar] [CrossRef]
- Arab, B.; Hassanpour, F.; Arshadi, M.; Yaghmaei, S.; Hamedi, J. Optimized bioleaching of copper by indigenous cyanogenic bacteria isolated from the landfill of e-waste. J. Environ. Manag. 2020, 261, 110124. [Google Scholar] [CrossRef] [PubMed]
- Rozas, E.E.; Mendes, M.A.; Nascimento, C.A.O.; Espinosa, D.C.R.; Oliveira, R.; Oliveira, G.; Custodio, M.R. Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera). J. Hazard. Mater. 2017, 329, 120–130. [Google Scholar] [CrossRef]
- Rezza, I.; Salinas, E.; Elorza, M.V.; de Tosetti, M.I.S.; Donati, E. Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochem. 2001, 36, 495–500. [Google Scholar] [CrossRef]
- Arshadi, M.; Nili, S.; Yaghmaei, S. Ni and Cu recovery by bioleaching from the printed circuit boards of mobile phones in non-conventional medium. J. Environ. Manag. 2019, 250, 109502. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Bao, P.; Liu, A.; Wang, M.; Shen, L.; Yu, R.; Liu, Y.; Chen, M.; Li, J.; Wu, X.; et al. Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resour. Conserv. Recycl. 2018, 136, 267–275. [Google Scholar] [CrossRef]
- Kim, M.-J.; Seo, J.-Y.; Choi, Y.-S.; Kim, G.-H. Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species. Waste Manag. 2016, 51, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Valix, M.; Loon, L. Adaptive tolerance behaviour of fungi in heavy metals. Miner. Eng. 2003, 16, 193–198. [Google Scholar] [CrossRef]
- Valix, M.; Tang, J.Y.; Malik, R. Heavy metal tolerance of fungi. Miner. Eng. 2001, 14, 499–505. [Google Scholar] [CrossRef]
- Wang, S.; Tian, Y.; Zhang, X.; Yang, B.; Wang, F.; Xu, B.; Liang, D.; Wang, L. A Review of Processes and Technologies for the Recycling of Spent Lithium-ion Batteries. IOP Conf. Ser. Mater. Sci. Eng. 2020, 782, 022025. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, L.; Yang, D.; Zhu, N. Bioleaching of spent Ni-Cd batteries and phylogenetic analysis of an acidophilic strain in acidified sludge. Front. Environ. Sci. Eng. China 2007, 1, 459–465. [Google Scholar] [CrossRef]
- Velgosová, O.; Kaduková, J.; Marcınčáková, R. Study of Ni And Cd Bioleaching from Spent Ni-Cd Batteries. Nov. Biotechnol. Chim. 2012, 11, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Velgosová, O.; Kaduková, J.; Marcinčáková, R.; Mrážiková, A.; Fröhlich, L. The Role of Main Leaching Agents Responsible for Ni Bioleaching from spent Ni-Cd Batteries. Sep. Sci. Technol. 2014, 49, 438–444. [Google Scholar] [CrossRef]
- Xin, B.; Jiang, W.; Li, X.; Zhang, K.; Liu, C.; Wang, R.; Wang, Y. Analysis of reasons for decline of bioleaching efficiency of spent Zn-Mn batteries at high pulp densities and exploration measure for improving performance. Bioresour. Technol. 2012, 112, 186–192. [Google Scholar] [CrossRef]
- Falco, L.; Martínez, A.; Di Nanno, M.P.; Thomas, H.; Curutchet, G. Study of a pilot plant for the recovery of metals from spent alkaline and zinc-carbon batteries with biological sulphuric acid and polythionate production. Lat. Am. Appl. Res. 2014, 44, 123–129. [Google Scholar] [CrossRef]
- Niu, Z.; Huang, Q.; Wang, J.; Yang, Y.; Xin, B.; Chen, S. Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10. J. Hazard. Mater. 2015, 298, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Xin, B.; Pang, K.; Jiang, M.; Li, Z.; Zhao, J.; Zhang, M. Microwave assisted dissolution efficiency of bioleaching of spent alkaline zinc manganese battery. Chin. J. Environ. Eng. 2015, 9, 5199–5205. [Google Scholar] [CrossRef]
- Naseri, T.; Bahaloo-Horeh, N.; Mousavi, S.M. Bacterial leaching as a green approach for typical metals recovery from end-of-life coin cells batteries. J. Clean. Prod. 2019, 220, 483–492. [Google Scholar] [CrossRef]
- Chatterjee, A.; Das, R.; Abraham, J. Bioleaching of heavy metals from spent batteries using Aspergillus nomius JAMK1. Int. J. Environ. Sci. Technol. 2020, 17, 49–66. [Google Scholar] [CrossRef]
- Ruhatiya, C.; Gandra, R.; Kondaiah, P.; Manivas, K.; Samhith, A.; Gao, L.; Lam, J.S.L.; Garg, A. Intelligent optimization of bioleaching process for waste lithium-ion batteries: An application of support vector regression approach. Int. J. Energy Res. 2021, 45, 6152–6162. [Google Scholar] [CrossRef]
- Gazzo, D.V.; Reed, D.W. Optimization of a Lithium Ion Battery Bioleaching Process Utilizing Organic Acids Produced by Gluconobacter Oxydans; Idaho National Lab. (INL): Idaho Falls, ID, USA, 2019. [Google Scholar]
- Pourhossein, F.; Mousavi, S.M. A novel step-wise indirect bioleaching using biogenic ferric agent for enhancement recovery of valuable metals from waste light emitting diode (WLED). J. Hazard. Mater. 2019, 378, 120648. [Google Scholar] [CrossRef]
- Pourhossein, F.; Mousavi, S.M. Enhancement of copper, nickel, and gallium recovery from LED waste by adaptation of Acidithiobacillus ferrooxidans. Waste Manag. 2018, 79, 98–108. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, T.; Li, M.; Yan, N. Bio-leaching of heavy metals from electroplating sludge by Thiobacillus. Ecol. Environ. 2008, 17, 1787–1791. [Google Scholar]
- Marra, A.; Cesaro, A.; Rene, E.R.; Belgiorno, V.; Lens, P.N.L. Bioleaching of metals from WEEE shredding dust. J. Environ. Manag. 2018, 210, 180–190. [Google Scholar] [CrossRef]
- Sinha, R.; Chauhan, G.; Singh, A.; Kumar, A.; Acharya, S. A novel eco-friendly hybrid approach for recovery and reuse of copper from electronic waste. J. Environ. Chem. Eng. 2018, 6, 1053–1061. [Google Scholar] [CrossRef]
- Pant, D.; Joshi, D.; Upreti, M.K.; Kotnala, R.K. Chemical and biological extraction of metals present in E waste: A hybrid technology. Waste Manag. 2012, 32, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Yazici, E.Y.; Deveci, H. Ferric sulphate leaching of metals from waste printed circuit boards. Int. J. Miner. Process. 2014, 133, 39–45. [Google Scholar] [CrossRef]
- Sethurajan, M.; van Hullebusch, E.D. Leaching and Selective Recovery of Cu from Printed Circuit Boards. Metals 2019, 9, 1034. [Google Scholar] [CrossRef] [Green Version]
- Golsteijn, L.; Valencia Martinez, E. The Circular Economy of E-Waste in the Netherlands: Optimizing Material Recycling and Energy Recovery. J. Eng. 2017, 2017, 8984013. [Google Scholar] [CrossRef] [Green Version]
- EU Horizon 2020 CEWASTE Project. Available online: https://cewaste.eu/about-the-project/ (accessed on 3 October 2021).
- Schroeder, P.; Anggraeni, K.; Weber, U. The Relevance of Circular Economy Practices to the Sustainable Development Goals. J. Ind. Ecol. 2019, 23, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Hsu, E.; Barmak, K.; West, A.C.; Park, A.H.A. Advancements in the treatment and processing of electronic waste with sustainability: A review of metal extraction and recovery technologies. Green Chem. 2019, 21, 919–936. [Google Scholar] [CrossRef]
- Bakhiyi, B.; Gravel, S.; Ceballos, D.; Flynn, M.A.; Zayad, J. Has the question of e-waste opened a Pandora’s box? An overview of unpredictable issues and challenges. Environ. Int. 2018, 110, 173–192. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Huda, N. Reverse logistics and closed-loop supply chain of Waste Electrical and Electronic Equipment (WEEE)/E-waste: A comprehensive literature review. Resour. Conserv. Recycl. 2018, 137, 48–75. [Google Scholar] [CrossRef]
- Cárdenas, J.P.; Valdés, J.; Quatrini, R.; Duarte, F.; Holmes, D.S. Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms. Appl. Microbiol. Biotechnol. 2010, 88, 605–620. [Google Scholar] [CrossRef]
- Valdés, J.; Pedroso, I.; Quatrini, R.; Dodson, R.J.; Tettelin, H.; Blake, R.; Eisen, J.A.; Holmes, D.S. Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications. BMC Genom. 2008, 9, 597. [Google Scholar] [CrossRef] [Green Version]
- Valdés, J.; Pedroso, I.; Quatrini, R.; Holmes, D.S. Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus: Insights into their metabolism and ecophysiology. Hydrometallurgy 2008, 94, 180–184. [Google Scholar] [CrossRef]
- Parida, B.K.; Panda, S.; Misra, N.; Panda, P.K.; Mishra, B.K. BBProF: An Asynchronous Application Server for Rapid Identification of Proteins Associated with Bacterial Bioleaching. Geomicrobiol. J. 2014, 31, 299–314. [Google Scholar] [CrossRef]
- Gönen, M.; Rodene, D.D.; Panda, S.; Akcil, A. Techno-economic Analysis of Boric Acid Production from Colemanite Mineral and Sulfuric Acid. Miner. Process. Extr. Metall. Rev. 2021, 1–9. [Google Scholar] [CrossRef]
- Thompson, V.S.; Gupta, M.; Jin, H.; Vahidi, E.; Yim, M.; Jindra, M.A.; Nguyen, V.; Fujita, Y.; Sutherland, J.W.; Jiao, Y.; et al. Techno-economic and Life Cycle Analysis for Bioleaching Rare-Earth Elements from Waste Materials. ACS Sustain. Chem. Eng. 2018, 6, 1602–1609. [Google Scholar] [CrossRef]
Method | Chemical Method | Biological Method |
---|---|---|
Merits |
|
|
Demerits |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, S.; Panda, S.; Akcil, A.; Dembele, S.; Agcasulu, I. A Review on Chemical versus Microbial Leaching of Electronic Wastes with Emphasis on Base Metals Dissolution. Minerals 2021, 11, 1255. https://doi.org/10.3390/min11111255
Mishra S, Panda S, Akcil A, Dembele S, Agcasulu I. A Review on Chemical versus Microbial Leaching of Electronic Wastes with Emphasis on Base Metals Dissolution. Minerals. 2021; 11(11):1255. https://doi.org/10.3390/min11111255
Chicago/Turabian StyleMishra, Srabani, Sandeep Panda, Ata Akcil, Seydou Dembele, and Ismail Agcasulu. 2021. "A Review on Chemical versus Microbial Leaching of Electronic Wastes with Emphasis on Base Metals Dissolution" Minerals 11, no. 11: 1255. https://doi.org/10.3390/min11111255
APA StyleMishra, S., Panda, S., Akcil, A., Dembele, S., & Agcasulu, I. (2021). A Review on Chemical versus Microbial Leaching of Electronic Wastes with Emphasis on Base Metals Dissolution. Minerals, 11(11), 1255. https://doi.org/10.3390/min11111255