Origin of the Coloured Karst Fills in the Neogene Extensional System of NE Iberia (Spain)
Abstract
:1. Introduction
2. Geological Setting
3. Study Areas
3.1. Casablanca-1A Well
3.2. Amposta Marino C2 Well
3.3. The Penedès Basin
4. Materials and Methods
5. Petrology of Host Carbonates and Karst Fills
5.1. Casablanca-1A Well
5.2. Amposta Marino C2 Well
5.3. Penedès Basin
6. Geochemistry of the Karst Fills and Host Rocks
6.1. Fe Oxidation State (Mössbauer Spectrometry)
6.1.1. Casablanca-1A Well
6.1.2. Penedès Basin
6.2. Minor and Trace Elements Content
6.2.1. Casablanca-1A Well
6.2.2. Amposta Marino C2 Well
6.2.3. Penedès Basin
6.3. δ18O, δ13C and 87Sr/ 86Sr Isotope Geochemistry
6.3.1. Casablanca-1A Well
6.3.2. Amposta Marino C2 Well
6.3.3. Penedès Basin
7. Discussion
7.1. Detrital Versus Residual Origin of Karst Fills
7.2. Significance of the Colour of the Karst Fillls
7.3. Depositional Environment of Karst Fills
8. Conclusions
- Karst fills of the Penedès Basin and València Trough have red to pink, ochre, green and orange colours. The main mineralogy of these fills is calcite and dolomite, with minor contents of illite, smectite, kaolinite, chlorite, quartz, feldspar and pyrite;
- Mössbauer spectrometry of karst fills and adjacent host carbonates indicate that, in general, Fe3+ from goethite is the dominant species in reddish fills, whereas Fe2+ from dolomite is dominant in the ochre to orange fills;
- The carbonate fraction of karst fills is considered to have originated from the erosion of their host carbonates (limestones and dolostones). The non-carbonate fraction, which consists of illite (authigenic and as grain coatings), kaolinite, smectite, pyrite (authigenic and of irregular shape), quartz and feldspar, accounts for a polygenic origin of the karst fills (detrital and residual);
- The lower δ13C values and higher 87Sr/6Sr ratios of most of the karst fills with respect to their adjacent host rocks could indicate the input of soil-derived CO2 together with the input of an external radiogenic source into the karstic system;
- The higher Mn content of the onshore Penedès Basin fills with respect to those of the offshore Casablanca and Amposta oil wells could indicate a greater influence of meteoric fluids in the former. The decrease in Mg in the Castellví outcrop from RD1 to CS1 can also be interpreted as a progressive increase in meteoric percolation in the karst system or a change in the host-carbonate feeding the karst system;
- The reddish colours of the fills result from the presence of pigment minerals such as hematite and goethite, as well as the dominance of the Fe3+ species, whereas the ochre and orange colours are attributed to the dominance of Fe2+. The greenish colours could result from fluctuations in the Fe3+/Fe2+ ratio;
- The variation in colour of the karst fills is attributed to fluctuations in the water table, which control the Eh/pH conditions in the karst system. Thus, reddish colours are attributed to lower water table level and oxidising episodes, and orange and ochre ones to high water table level and more reducing episodes.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Šušteršič, F.; Rejšek, K.; Mišič, M.; Eichler, F. The role of loamy sediment (terra rossa) in the context of steady state karst surface lowering. Geomorphology 2009, 106, 35–45. [Google Scholar] [CrossRef]
- White, W.B. Cave sediments and paleoclimate. J. Cave Karst Stud. 2007, 69, 76–93. [Google Scholar]
- Baqués, V.; Travé, A.; Cantarero, I. Development of successive karstic systems within the Baix Penedès Fault zone (onshore of the Valencia Trough, NW Mediterranean). Geofluids 2014, 14, 75–94. [Google Scholar] [CrossRef]
- Baqués, V.; Ukar, E.; Laubach, S.E.; Forstner, S.R.; Fall, A. Fracture, Dissolution, and Cementation Events in Ordovician Carbonate Reservoirs, Tarim Basin, NW China. Geofluids 2020, 2020, 9037429. [Google Scholar] [CrossRef]
- Geet, M.V.; Swennen, R.; Durmishi, C.; Roure, F.; Muchez, P. Paragenesis of Cretaceous to Eocene carbonate reservoirs in the Ionian fold and thrust belt (Albania): Relation between tectonism and fluid flow. Sedimentology 2002, 49, 697–718. [Google Scholar]
- Hajna, N.Z.; Bosák, P.; Pruner, P.; Mihevc, A.; Hercman, H.; Horáček, I. Karst sediments in Slovenia: Plio-Quaternary multi-proxy records. Quat. Int. 2020, 546, 4–19. [Google Scholar] [CrossRef]
- Esteban, M.; Klappa, C.I. Subaerial exposure environments. In Carbonate Depositional Environments; Scholle, P.A., Bebout, D.G., Moore, C.H., Eds.; American Association Petroleum Geologists: Tulsa, OK, USA, 1983; pp. 1–54. [Google Scholar]
- Beukes, N.J.; Dorland, H.; Gutzmer, J.; Nedachi, M.; Ohmoto, H. Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic. Geology 2002, 30, 491–494. [Google Scholar] [CrossRef]
- Iacovello, F.; Martini, I. Clay minerals in cave sediments and terra rossa soils in the Montagnola Senese karst massif (Italy). Geol. Quaterly 2013, 57, 527–536. [Google Scholar] [CrossRef] [Green Version]
- Iacovello, F.; Martini, I. Provenance and geological significance of red mud and other clastic sediments of the Mugnano Cave (Montagnola Senese, Italy). Int. J. Speleol. 2012, 31, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Zarza, A.M.; Jones, B. Root calcrete formation on Quaternary karstic surfaces of Grand Cayman. Geol. Acta 2007, 5, 77–88. [Google Scholar]
- Fornós, J.J.; Ginés, J.; Gràcia, F. Present-day sedimentary facies in the coastal karst caves of Mallorca Island (Western Mediterranean). J. Cave Karst Stud. 2009, 71, 86–99. [Google Scholar]
- Roca, E.; Sans, M.; Cabrera, L.; Marzo, M. Oligocene to Middle Miocene evolution of the central Catalan margin (northwestern Mediterranean). Tectonophysics 1999, 315, 209–229. [Google Scholar] [CrossRef]
- Travé, A.; Calvet, F.; Soler, A.; Labaume, P. Fracturing and fluid migration during Paleogene compression and Neogene extension in the Catalan Coastal Ranges, Spain. Sedimentology 1998, 45, 1063–1082. [Google Scholar] [CrossRef]
- Rodríguez-Morillas, N.; Playà, E.; Travé, A.; Martín-Martín, J.D. Diagenetic processes in a partially dolomitized carbonate reservoir: Casablanca oil field, Mediterranean Sea, offshore Spain. Geol. Acta 2013, 11, 195–214. [Google Scholar]
- Playà, E.; Travé, A.; Caja, M.A.; Salas, R.; Martín-Martín, J.D. Diagenesis of the Amposta offshore oil reservoir (Amposta Marino C2 well, Lower Cretaceous, Valencia Trough, Spain). Geofluids 2010, 10, 314–333. [Google Scholar] [CrossRef] [Green Version]
- Baqués, V.; Travé, A.; Roca, E.; Marín, M.; Cantarero, I. Geofluid behaviour in successive extensional and compressional events: A case study from the southwestern end of the Vallès-Penedès Fault (Catalan Coastal Ranges, NE Spain). Pet. Geosci. 2012, 18, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Baqués, V.; Travé, A.; Benedicto, A.; Labaume, P.; Cantarero, I. Relationships between carbonate fault rocks and fluid flow regime during propagation of the Neogene extensional faults of the Penedès basin (Catalan Coastal Ranges, NE Spain). J. Geochem. Explor. 2010, 106, 24–33. [Google Scholar] [CrossRef]
- Esteban, M. Paleokarst: Case histories. In Paleokarsts and Paleokarstic Reservoirs; Wright, V.P., Esteban, M., Smart, P.L., Eds.; Postgraduate Research Institute for Sedimentology, University of Reading PRIS Contribution: Reading, UK, 1991; Volume 152, pp. 20–46. [Google Scholar]
- Lomando, A.J.; Harris, P.M.; Orlopp, D.E.; Fritz, R.D.; Wilson, J.L.; Yurewicz, D.A. Casablanca Field, Tarragona Basin, Offshore Spain: A Karsted Carbonate Reservoir. In Paleokarst Related Hydrocarbon Reservoirs; SEPM Society for Sedimentary Geology: Broken Arrow, OK, USA, 1993; Volume 18. [Google Scholar]
- Baqués, V.; Travé, A.; Benedicto, A.; Labaume, P. Relationship between fluid flow and tectonic brecciation in the Neogene extensional Vallès–Penedès basin (Catalan Ranges, NE Iberian). J. Geochem. Explor. 2009, 101, 4. [Google Scholar] [CrossRef]
- Bartrina, M.T.; Cabrera, L.; Jurado, M.J.; Guimerà, J.; Roca, E. Evolution of the central Catalan margin of the Valencia trough (western Mediterranean). Tectonophysics 1992, 203, 219–247. [Google Scholar] [CrossRef]
- Roca, E.; Guimerà, J. The Neogene structure of the eastern Iberian margin: Structural constraints on the crustal evolution of the Valencia trough (western Mediterranean). Tectonophysics 1992, 203, 203–218. [Google Scholar] [CrossRef]
- Roca, E. La evolución geodinámica de la Cuenca Catalano-Balear y áreas adyacentes desde el Mesozoico hasta la actualidad. Acta Geol. Hisp. 1994, 29, 3–25. [Google Scholar]
- Marín, M.; Roca, E.; Marcuello, A.; Cabrera, L.; Ferrer, O. Mesozoic structural inheritance in the Cenozoic evolution of the central Catalan Coastal Ranges (western Mediterranean): Structural and magnetotelluric analysis in the Gaià-Montmell High. Tectonophysics 2021, 814, 228970. [Google Scholar] [CrossRef]
- Cabrera, L.; Roca, E.; Garcés, M.; Porta, J.d. Estratigrafía y evolución tectonosedimentaria oligocena superior-neógena del sector central del margen catalán (Cadena Costero-Catalana). In Geología de España; Vera, J.A., Ed.; Sociedad Geológica de España; Instituto Geológico y Minero de España: Madrid, Spain, 2004; pp. 569–572. [Google Scholar]
- Clavell, E.; Berastuegui, X. Petroleum Geology of the Gulf of València. In Generation, Accumulation and Production of Europe’s Hydrocarbons; Spencer, A.M., Ed.; European Association of Petroleum Geologists: Oxford, UK, 1991; Volume 1, pp. 355–368. [Google Scholar]
- Agustí, J.; Cabrera, L.; Moya, S. Sinopsis estratigráfica del Neógeno en la fosa del Vallès-Penedès. Paleontol. Evol. 1985, 18, 57–81. [Google Scholar]
- Cabrera, L.; Calvet, F. Onshore Neogene record in NE Spain: Vallès-Penedès and el Camp half-grabens (NW Mediterranean). In Tertiary Basins of Spain; Friend, P.T., Abrio, C.T., Eds.; Cambridge University Press: Cambridge, MA, USA, 1996; pp. 97–105. [Google Scholar]
- Demaison, G.; Bourgeois, F.T. Environment of deposition of Middle Miocene (Alcanar) Carbonate Source Beds, Casablanca Field, Tarragona Basin, Offshore Spain. In Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks; Palacas, J.G., Ed.; American Association of Petroleum Geologists Studies in Geology: Tulsa, OK, USA, 1984; Volume 18, pp. 151–161. [Google Scholar]
- Permanyer, A.; Salas, R. Integrated thermal model, diagenetic history and oil correlation in western Mediterranean, Spain. In Proceedings of IV ALAGO Workshop on Basin Modelling, Buenos Aires, Argentina, 16–19 October 2005. [Google Scholar]
- Arasa-Tuliesa, A.; Cabrera, L. Neogene-Quaternary onshore record in the lower Ebro river incised palaeovalley (Ebro margin, Catalan Coastal Range, NE Iberia). Geol. Acta 2018, 16, 265–292. [Google Scholar] [CrossRef]
- Watson, H.J. Casablanca Field Offshore Spain, a Paleogeomorphic Trap. In The Deliberate Search for the Subtle Trap; American Association of Petroleum Geologists: Tulsa, OK, USA, 1982; Volume 32, pp. 237–250. [Google Scholar]
- Baqués, V. Diagenesis and Fluid-Fracture Evolution in an Intracontinental Basin: The Penedès Half-Graben, Western Mediterranean. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2012; 110p. [Google Scholar]
- Seemann, U.; Pümpin, V.F.; Casson, V.F. Amposta oil field. In American Association of Petroleum Geologists Treatise of Petroleum Geology. Atlas of Oil and Gas Fields; American Association of Petroleum Geologists: Tulsa, OK, USA, 1990; Volume A-017, pp. 1–20. [Google Scholar]
- Salas, R. El Malm i el Cretaci Inferior Entre el Massís de Garraf i La Serra d’Espadà. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 1987. [Google Scholar]
- McCrea, J.M. On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. J. Chem. Phys. 1950, 18, 849–957. [Google Scholar]
- Craig, H.; Gordon, I.-I. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto, July 26th-30th, 1965; Tongiorgi, E., Ed.; Consiglio Nazionale delle Richerche, Laboratorio di Geologia Nucleare: Pisa, Italy, 1965; pp. 9–130. [Google Scholar]
- Claypool, G.E.; Kaplan, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretations. Chem. Geol. 1980, 28, 199–260. [Google Scholar]
- McArthur, J.M.; Howarth, R.J.; Bailey, T.R. Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr-Isotope Curve for 0–509 Ma and Accompanying Look-up Table for Deriving Numerical Age. J. Geol. 2001, 109, 155–170. [Google Scholar]
- Merino, E.; Banerjee, A. Terra Rossa Genesis, Implications for Karst, and Eolian Dust: A Geodynamic Thread. J. Geol. 2008, 116, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Thornbury, W.D. Principles of Geomorphology; John Wiley & Sons: New York, NY, USA; London, UK, 1954. [Google Scholar]
- Moresi, M.; Mongelli, G. The relation between the terra rossa and the carbonate-free residue of the underlying limestones and dolostones in Apulia, Italy. Clay Miner. 1988, 23, 439–446. [Google Scholar] [CrossRef]
- Olson, C.G.; Ruhe, R.V.; Mausbach, M.J. The Terra Rossa Limestone Contact Phenomena in Karst, Southern Indiana. Soil Sci. Soc. Am. J. 1980, 44, 1075–1079. [Google Scholar] [CrossRef]
- Durn, G. Terra rossa in the Mediterranean region: Parent materials, composition and origin. Geol. Croat. 2003, 56, 83–100. [Google Scholar]
- Durn, G.; Ottner, F.; Slovenec, D. Mineralogical and geochemical indicators of the polygenetic nature of terra rossa in Istria, Croatia. Geoderma 1999, 91, 125–150. [Google Scholar] [CrossRef]
- Moraes, M.A.S.; Ros, L.F.d. Infiltrated clays in fluvial Jurassic sandstones of Reconcavo Basin, northeastern Brazil. J. Sediment. Res. 1990, 60, 809–819. [Google Scholar] [CrossRef]
- Parcerisa, D.; Gómez-Gras, D.; Travé, A. A model of early calcite cementation in alluvial fans: Evidence from the Burdigalian sandstones and limestones of the Vallès-Penedès half-graben (NE Spain). Sediment. Geol. 2005, 178, 197–217. [Google Scholar] [CrossRef]
- Parcerisa, D.; Gómez-Gras, D.; Travé, A.; Martín-Martín, J.D.; Maestro, E. Fe and Mn in calcites cementing red beds: A record of oxidation–reduction conditions: Examples from the Catalan Coastal Ranges (NE Spain). J. Geochem. Explor. 2006, 89, 318–321. [Google Scholar] [CrossRef]
- Parcerisa, D.; Gómez-Gras, D.; Roca, E.; Madurell, J.; Agustí, J. The Upper Oligocene of Montgat (Catalan Coastal Ranges, Spain): New age constraints to the western Mediterranean Basin opening. Geol. Acta 2007, 5, 3–17. [Google Scholar]
- Delgado, R.; Martín-García, J.M.; Oyonarte, C.; Delgado, G. Genesis of the terra rossa of Sierra de Gádor, Almería, Spain. Eur. J. Soil Sci. 2003, 54, 1–16. [Google Scholar]
- McBride, E.F. Significance of color in red, green, purple, olive, brown, and gray beds of Difunta Group, northeastern Mexico. J. Sediment. Res. 1974, 44, 760–773. [Google Scholar] [CrossRef]
- Torrent, J.; Schwertmann, U. Influence of hematite on the color of red beds. J. Sediment. Res. 1987, 57, 682–686. [Google Scholar] [CrossRef]
- Eren, M.; Kadir, S. Colour genesis of Upper Cretaceous pelagic red sediments within the Eastern Pontides, NE Turkey. Yerbilimleri 2001, 24, 71–79. [Google Scholar]
- Keller, W.D. Illite and montmorillonite in green sedimentary rocks. J. Sediment. Res. 1953, 23, 3–9. [Google Scholar] [CrossRef]
- Goodman, B.A. Chapter 5 Mossbauer Spectroscopy. In Developments in Sedimentology; Fripiat, J.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1982; Volume 34, pp. 113–137. [Google Scholar]
- Velde, B. Composition and Mineralogy of Clay Minerals. In Origin and Mineralogy of Clays: Clays and the Environment; Velde, B., Ed.; Springer: Berlin/Heidelberg, Germay, 1995; pp. 8–42. [Google Scholar] [CrossRef]
- Casas, L.; Parcerisa, D.; Gómez-Gras, D.; Calvet, F.; Roig, A.; Molins, E. Mössbauer spectrometry to study diagenetical processes of red beds and sand dikes in the Vallès-Penedès half graben. In Hyperfine Interactions (C); Thomas, M.F., Williams, J.M., Gibb, T.C., Eds.; Kluver Academic Publishers: Amsterdam, The Netherlands, 2003; Volume 5, pp. 393–396. [Google Scholar]
- Matsuo, M.; Kubo, K.; Isozaki, Y. Mössbauer spectroscopic study on characterization of iron in the Permian to Triassic deep-sea chert from Japan. In Hyperfine Interactions (C); Thomas, M.F., Williams, J.M., Gibb, T.C., Eds.; Kluver Academic Publishers: Amsterdam, The Netherlands, 2003; Volume 5, pp. 435–438. [Google Scholar]
- Worden, R.H.; Morad, S. Clay Minerals in Sandstones: Controls on Formation, Distribution and Evolution. In Clay Mineral Cements in Sandstones; Wiley-Blackwell: Hoboken, NJ, USA, 1999; pp. 1–41. [Google Scholar] [CrossRef]
- Cerling, T.E.; Quade, J.; Wang, Y.; Bowman, J.R. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature 1989, 341, 138–139. [Google Scholar]
- Moore, C. Carbonate reservoirs: Porosity evolution and diagenesis in a sequence stratigraphic framework. Dev. Sedimentol. 2001, 55, 444. [Google Scholar]
- Webb, G.E.; Nothdurft, L.D.; Kamber, B.S.; Kloprogge, J.T.; Zhao, J.X. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite. Int. Assoc. Sedimentol. 2009, 56, 1433–1463. [Google Scholar] [CrossRef]
- Travé, A.; Calvet, F. Syn-rift geofluids in fractures related to the early-middle Miocene evolution of the Vallès-Penedès half-graben (NE Spain). Tectonophysics 2001, 336, 101–120. [Google Scholar] [CrossRef]
- Esteban, M.; Wilson, J.L. Introduction to Karst Systems and Paleokarst Reservoirs. In Paleokarst Related Hydrocarbon Reservoirs; Fritz, R.D., Wilson, J.L., Yurewicz, D.A., Eds.; SEPM Society for Sedimentary Geology: Broken Arrow, OK, USA, 1993; Volume 18. [Google Scholar]
- Playà, E. Garraf Project: Breached Oil Field or Carrier in Jurassic Dolomites. Nor. Hydro Intern. Rep. 1998, unpublished. [Google Scholar]
Studied Outcrop/Well | Optical and Cathodoluminescemicroscope | SEM, TEM | XRD | Mössbauer Spect. | Electron Microprobe, δ18O, δ13C | 87Sr/86Sr |
---|---|---|---|---|---|---|
València Trough | ||||||
Casablanca-1A | [15] | This work | [15] | This work | [15] | [15] |
Amposta Marino C2 | [16] | - | - | - | [16] | [16] |
Penedès Basin | ||||||
Castellví | [3], this work | - | This work | This work | [3] | [3] |
Olèrdola | This work | - | - | - | This work | - |
Montjuïc | This work | - | This work | This work | This work | - |
Area | Studied Outcrop/Well | Fill | Host Rock | Colour | Mineralogy |
---|---|---|---|---|---|
València Trough | Casablanca-1A | Dolomite 2b | Dolomite 2a | Red and ochre | Dolomite |
València Trough | Amposta Marino C2 | CS3r | Limestones | Red | Calcite |
València Trough | Amposta Marino C2 | CS3g | Limestones | Green | Calcite |
Penedès Basin | Castellví | DS2 | RD1 | Orange | Dolomite |
Penedès Basin | Castellví | DS3 | RD1 | Pink to red | Dolomite |
Penedès Basin | Castellví | CS1 | RD1 | Pink | Calcite |
Penedès Basin | Olèrdola | CS2 | Limestones | Orange | Calcite |
Penedès Basin | Olèrdola | CS3 | Limestones | Red | Calcite |
Penedès Basin | Montjuïc | OP1 | Limestones | Orange | Calcite |
Sample | Description/Colour | Γ (mm/s) | δFe (mm/s) | Δ (mm/s) | 2ε (mm/s) | Bhf | % | Interpretation | Fe2+/Fe3+ Ratio |
---|---|---|---|---|---|---|---|---|---|
Casablanca-1A well | |||||||||
NR1 | Dolomite 2a | 0.22(-) | 0.21(4) | 0.36(7) | - | 19 | Fe3+ | 4.3 | |
(host rock) | 0.35(-) | 1.24(2) | 1.45(4) | - | 81 | Fe2+ | |||
NR2 | Reddish Dolomite 2b | 0.44(6) | 0.26(3) | 0.38(4) | - | 43.5 | Fe3+ | 1.3 | |
(karst fill) | 0.29(3) | 1.25(1) | 1.41(2) | - | 56.5 | Fe2+ | |||
NR3 | Dolomite2a | 0.22(-) | 0.31(2) | 0.46(4) | - | 34 | Fe3+ | 1.9 | |
(host rock) | 0.35(-) | 1.17(2) | 1.58(4) | - | 66 | Fe2+ | |||
NR4 | Ochre Dolomite 2b | 0.22(2) | 0.31(1) | 0.58(2) | - | 36 | Pyrite | - | |
(karst fill) | 0.25(2) | 1.21(1) | 1.52(2) | - | 64 | Fe2+ | |||
Penedès Basin | |||||||||
Castellví | |||||||||
VCV24 | DS2 | 0.60(5) | 0.35(2) | 0.55(3) | - | 34 | Pyrite? | - | |
(karst fill) | - | 0.39(2) | −0.19(3) | DIST | 66 | Hematite/Goethite. | |||
Montjuïc | |||||||||
VMJ17 | OP1 | 0.22(8) | 0.38(2) | 0.55(3) | - | 100 | Pyrite? | - | |
VMJ14B | OP1 | 0.36(6) | 0.32(2) | 0.54(4) | - | 49 | Pyrite? | ||
1.26(6) | 1.13(2) | 1.59(3) | - | 51 | Fe2+ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Travé, A.; Rodríguez-Morillas, N.; Baqués, V.; Playà, E.; Casas, L.; Cantarero, I.; Martín-Martín, J.D.; Gómez-Rivas, E.; Moragas, M.; Cruset, D. Origin of the Coloured Karst Fills in the Neogene Extensional System of NE Iberia (Spain). Minerals 2021, 11, 1382. https://doi.org/10.3390/min11121382
Travé A, Rodríguez-Morillas N, Baqués V, Playà E, Casas L, Cantarero I, Martín-Martín JD, Gómez-Rivas E, Moragas M, Cruset D. Origin of the Coloured Karst Fills in the Neogene Extensional System of NE Iberia (Spain). Minerals. 2021; 11(12):1382. https://doi.org/10.3390/min11121382
Chicago/Turabian StyleTravé, Anna, Noelia Rodríguez-Morillas, Vinyet Baqués, Elisabet Playà, Lluís Casas, Irene Cantarero, Juan Diego Martín-Martín, Enrique Gómez-Rivas, Mar Moragas, and David Cruset. 2021. "Origin of the Coloured Karst Fills in the Neogene Extensional System of NE Iberia (Spain)" Minerals 11, no. 12: 1382. https://doi.org/10.3390/min11121382